
Aberystwyth University

A Distributed Rough Set Theory based Algorithm for an Efficient Big Data Pre-
processing under the Spark Framework
Chelly Dagdia, Zaineb; Zarges, Christine; Beck, Gaël; Lebbah, Mustapha

Published in:
2017 IEEE International Conference on Big Data (Big Data)

DOI:
10.1109/BigData.2017.8258008

Publication date:
2018

Citation for published version (APA):
Chelly Dagdia, Z., Zarges, C., Beck, G., & Lebbah, M. (2018). A Distributed Rough Set Theory based Algorithm
for an Efficient Big Data Pre-processing under the Spark Framework. In J.-Y. Nie, Z. Obradovic, T. Suzumura, R.
Ghosh, R. Nambiar, C. Wang, H. Zang, R. Baeza-Yates, X. Hu, J. Kepner, A. Cuzzocrea, J. Tang, & M. Toyoda
(Eds.), 2017 IEEE International Conference on Big Data (Big Data) (pp. 911-916). IEEE Press.
https://doi.org/10.1109/BigData.2017.8258008

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Apr. 2024

https://doi.org/10.1109/BigData.2017.8258008
https://doi.org/10.1109/BigData.2017.8258008

A Distributed Rough Set Theory based Algorithm
for an Efficient Big Data Pre-processing under the

Spark Framework
Zaineb Chelly Dagdia⇤†, Christine Zarges⇤, Gaël Beck‡ and Mustapha Lebbah‡

⇤Department of Computer Science, Aberystywth University, Aberystwyth, United Kingdom
†LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia

‡ Computer Science Laboratory (LIPN), University Paris-North - 13, Villetaneuse, France

Abstract—Big Data reduction is a main point of interest across
a wide variety of fields. This domain was further investigated
when the difficulty in quickly acquiring the most useful informa-
tion from the huge amount of data at hand was encountered. To
achieve the task of data reduction, specifically feature selection,
several state-of-the-art methods were proposed. However, most
of them require additional information about the given data for
thresholding, noise levels to be specified or they even need a
feature ranking procedure. Thus, it seems necessary to think
about a more adequate feature selection technique which can
extract features using information contained within the dataset
alone. Rough Set Theory (RST) can be used as such a technique
to discover data dependencies and to reduce the number of
features contained in a dataset using the data alone, requiring no
additional information. However, despite being a powerful feature
selection technique, RST is computationally expensive and only
practical for small datasets. Therefore, in this paper, we present
a novel efficient distributed Rough Set Theory based algorithm
for large-scale data pre-processing under the Spark framework.
Our experimental results show the efficient applicability of our
RST solution to Big Data without any significant information
loss.

Index Terms—Big Data Pre-processing; Feature Selection;
Rough Set Theory; Distributed Processing; Scalability.

I. INTRODUCTION

Big Data are extremely valuable, but arise with many
challenges—most importantly in dimensionality reduction and
specifically for feature selection [1], [2]. The use of Rough Set
Theory (RST) [3], [4] for feature selection is one approach
that has proved successful and more efficient in comparison
to a variety of state-of-the-art feature selection methods [5].
However, despite being a powerful feature selection technique,
most of the traditional rough set based algorithms are sequen-
tial algorithms, computationally expensive and can only deal
with small datasets. The computational intensive nature of
RST and its incapacity to deal with high dimensional data arise
from the necessity to generate all the possible combinations of
features at once, process them in turn to finally select the most
relevant set. However, as the number of features is increasing
this task becomes challenging and this is where the RST
inadequacy arises [6]. It is quite unmanageable to generate
the set of all possible feature combinations due to hardware
and memory constraints. Thus, in this paper, we present a
novel efficient distributed rough set based algorithm, named
Sp-RST, for large-scale data pre-processing.

II. ROUGH SETS FOR FEATURE SELECTION

In Rough Set Theory, an information table is defined as a
tuple T = (U,A) where U and A are two finite, non-empty
sets, U the universe of primitive objects and A the set of
attributes. Each attribute or feature a 2 A is associated with a
set Va of its value, called the domain of a. We may partition
the attribute set A into two subsets C and D, called condition

and decision attributes, respectively.
Let P ⇢ A be a subset of attributes. The indiscernibility

relation, denoted by IND(P), is the central concept to
RST and it is an equivalence relation which is defined as:
IND(P) = {(x, y) 2 U ⇥ U : 8a 2 P, a(x) = a(y)},
where a(x) denotes the value of feature a of object x. If
(x, y) 2 IND(P), x and y are said to be indiscernible

with respect to P . The family of all equivalence classes of
IND(P), referring to a partition of U determined by P , is
denoted by U/IND(P). Each element in U/IND(P) is a
set of indiscernible objects with respect to P . The equivalence
classes U/IND(C) and U/IND(D) are called condition and
decision classes, respectively. For any concept X ✓ U and
attribute subset R ✓ A, X could be approximated by the
R-lower approximation and R-upper approximation using the
knowledge of R. The lower approximation of X is the set
of objects of U that are surely in X , defined as: R(X) =S
{E 2 U/IND(R) : E ✓ X}. The upper approximation of

X is the set of objects of U that are possibly in X , defined
as: R(X) =

S
{E 2 U/IND(R) : E \X 6= ;}. The concept

defining the set of objects that can possibly, but not certainly,
be classified in a specific way is called the boundary region

which is defined as: BNDR(X) = R(X) � R(X). If the
boundary region is empty, that is R(X) = R(X), concept X is
said to be R-definable; otherwise X is a rough set with respect
to R. The positive region of decision classes U/IND(D)
with respect to condition attributes C is denoted by POSc(D)
where POSc(D) =

S
R(X). The positive region POSc(D)

is a set of objects of U that can be classified with certainty
to classes U/IND(D) employing attributes of C. Based on
the positive region, the dependency of attributes is defined as:
k = �(C, ci) = |POSC(ci)|

|U | measuring the degree k of the
dependency of an attribute ci on a set of attributes C.

Based on these basics, RST defines two important concepts

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916, IEEE, 2017.

for feature selection which are the Core and the Reduct.
In RST, a subset R ✓ C is said to be a D-reduct of C if
�(C,R) = �(C) and there is no R

0 ⇢ R such that �(C,R
0
) =

�(C,R). In other words, the Reduct is the minimal set of
selected attributes preserving the same dependency degree as
the whole set of attributes. Meanwhile, RST may generate a set
of reducts, RED

F

D
(C), from the given information table. In

this case, any reduct from RED
F

D
(C) can be chosen to replace

the initial information table. The second concept, the Core, is
the set of attributes that are contained by all reducts, defined
as CORED(C) =

T
REDD(C); where REDD(C) is the

D-reduct of C. Specifically, the Core is the set of attributes
that cannot be removed from the information system without
causing collapse of the equivalence-class structure. This means
that all attributes present in the Core are indispensable.

III. THE PROPOSED SOLUTION

A. General Model Formalization

Sp-RST creates a Resilient Distributed Dataset (RDD) and
formalizes it as a given information table defined as TRDD,
where U = {x1, . . . , xN} is the universe, the conditional
attribute set is C = {c1, . . . , cV } and the decision attribute
D = {d1, . . . , dW } corresponds to the class (label) of each
TRDD sample. The conditional attribute set C presents the
pool from where the most convenient features will be selected.

In order to make our algorithm scalable with the high
number of features, we partition the given TRDD into m data
blocks based on splits from the conditional attribute set C.
Hence, TRDD =

S
m

i=1(Cr)TRDD(i)
, where r 2 {1, . . . , V }.

Each TRDD(i)
is constructed based on r random features

selected from C, where 8TRDD(i)
: @{cr} =

T
m

i=1 TRDD(i)
.

To ensure scalability, rather than applying Sp-RST to TRDD

including the whole C set the distributed algorithm will
be applied to every single TRDD(i)

that at the end all the
intermediate results will be gathered from the different m

partitions. In such a way, we can guarantee that Sp-RST can be
applied to a computable number of features and hence solving
the standard RST computational inefficiencies. Algorithm 1
highlights the pseudo-code of our proposed Sp-RST solution.
In order to further guarantee the Sp-RST performance while
avoiding any significant information loss, we apply the algo-
rithm N times on the TRDD m data blocks. More precisely,
through all the iterations, the algorithm will first generate
the m random TRDD(i)

as previously explained. Then, for
each partition the distributed Sp-RST tasks, Algorithm 1
line 5 to 10, will be executed. As seen in Algorithm 1,
line 1 presenting the first Sp-RST task is executed before
the iteration loop. This is because this task deals with the
calculation of the indiscernibility relation of the decision class
IND(D) and is independent from the m generated partitions
as the result depends on the data items class and not on the
features. After the iteration loop, line 12, the output of each
partition is either a single reduct REDi(D)

(Cr) or a family of
reducts RED

F

i(D)
(Cr). Based on the RST preliminaries, any

reduct of RED
F

i(D)
(Cr) can be used to represent the TRDD(i)

Algorithm 1 Sp-RST
Inputs: TRDD the information table

m number of partitions
N the number of iterations

Output: Reduct

1: Calculate IND(D)
2: for each iteration n 2 [1, . . . , N] do
3: Generate TRDD(i)

based on the m partitions
4: for each TRDD(i)

partition, i 2 [1, . . . ,m] do
5: Generate AllComb(Cr)

6: Calculate IND(AllComb(Cr))
7: Calculate DEP (AllComb(Cr))
8: Select DEPmax(AllComb(Cr))
9: Filter DEPmax(AllComb(Cr))

10: Filter NbFmin(DEPmax(AllComb(Cr)))

11: end for
12: for each TRDD(i)

output do
13: Reductm =

S
m

i=1 REDi(D)
(Cr)

14: end for
15: end for
16: Reduct =

T
N

n=1 Reductm

17: return (Reduct)

information table. Consequently, if Sp-RST generates only
one reduct, for a specific TRDD(i)

block, then the output of
this feature selection phase is the set of the REDi(D)

(Cr)
features. These features reflect the most informative ones
among the Cr attributes resulting a new reduced TRDD(i)

,
TRDD(i)

(RED), which preserves nearly the same data quality
as its corresponding TRDD(i)

(Cr) that is based on the whole
feature set Cr. On the other hand, if Sp-RST generates a
family of reducts then the algorithm randomly selects one
reduct among RED

F

i(D)
(Cr) to represent the corresponding

TRDD(i)
. This random choice is justified by the same priority

of all the reducts in RED
F

i(D)
(Cr). At this stage, each i data

block has its output REDi(D)
(Cr) referring to the selected

features. However, since each TRDD(i)
is based on distinct

features and with respect to TRDD =
S

m

i=1(Cr)TRDD(i)
a

union of the generated selected features is required to represent
the initial TRDD; Algorithm 1, line 12 to 14. As previously
mentioned, the process of applying Sp-RST will iterate N

times generating N Reductm. Thus, at the end an intersection
of all the obtained Reductm is needed. By removing irrelevant
and redundant features, Sp-RST can reduce the dimensionality
of the data from TRDD(C) to TRDD(Reduct).

B. Algorithmic Details

The algorithm goes through 7 main jobs in order to
generate the final sought Reduct. First, Sp-RST has to
compute the indiscernibility relation for the decision class
D = {d1, . . . , dW }; defined as IND(D): IND(di). More
precisely, Sp-RST will calculate the indiscernibility relation
for every decision class di by gathering the same TRDD data
items which are defined in the universe U = {x1, . . . , xN}

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916. IEEE, 2017.

and which belong to the same class di. To do so, Sp-RST
processes a foldByKey operation where the decision label
di defines the key and the TRDD data items identifiers idi of
xi, define the values (see Algorithm 2).

Algorithm 2 Calculate IND(D)

Input: TRDD

Output: IND(D) : Array[Array[xi]]
1: IND(di) = data.map{case(idi, vector, di) =>

(di, ArrayBuffer(idi))}
.foldByKey(ArrayBuffer.empty[Long])(+ + =)

2: IND(di).map{case(di, xi) => xi}.collect

Once the IND(D) is calculated and within a specific
partition, Sp-RST creates all the possible combinations of the
Cr set of feature; AllComb(Cr). The third Sp-RST job deals
with the indiscernibility relation computation for every previ-
ously generated combination. As presented in Algorithm 3,
Sp-RST aims at grouping all the data items identifiers idi

sharing the same specific combination of features extracted
from AllComb(Cr). In order to achieve this, we use the
foldByKey spark operation where the combination of fea-
tures defines the key and the idi as value.

Algorithm 3 Calculate IND(AllComb(Cr))

Inputs: TRDDi , AllComb(Cr)

Output: IND(AllComb(Cr)) : Array[Array[idi]]
1: IND(AllComb(Cr)) = data.map

{case(idi, vector, di) => ((AllComb(Cr)i
, vector),

ArrayBuffer(idi))}.foldByKey(ArrayBuffer.
empty[Long])(+ + =)

2: IND(AllComb(Cr)).map{case(ListV alues, idi) =>

idi}.collect

Then, the dependency degrees �(Cr, AllComb(Cr)) of each
feature combination are computed. To do so, the calculated
indiscernibility relations IND(D) and IND(AllComb(Cr))
as well as the set of all feature combinations AllComb(Cr)

are required. The task is to first test first if the intersection
of every IND(di) with each IND(AllComb(Cr)) keeps
all the latter elements; referring to the lower approxima-
tion. If so then a score which is equal to the length of
IND(AllComb(Cr)) is given, zero otherwise. As this process
is made in a distributed way where each machine is dealing
with some feature combinations, a first sum operation of
the IND(di) scores is operated followed by a second sum
operation to record all the IND(D) scores; referring to the
dependency degrees �(Cr, AllComb(Cr)). The output of this
step is the set of dependency degrees �(Cr, AllComb(Cr)) of
the feature combinations AllComb(Cr) and their associated
sizes Size(AllComb(Cr)). At this stage, Sp-RST looks for the
maximum dependency value among all �(Cr, AllComb(Cr))
using the max function operated on the given RDD. The output
MaxDependency reflects in one hand the dependency of the
whole feature set (Cr) representing the TRDDi and on the

other hand the dependency of all the possible feature combina-
tions satisfying the constraint �(Cr, AllComb(Cr)) = �(Cr).
MaxDependency is the baseline value for feature selection.

Once the MaxDependency is generated, Sp-RST keeps
the set of all combinations having the same depen-
dency degrees as MaxDependency; �(Cr, AllComb(Cr)) =
MaxDependency. This is achieved by applying a filter
function. In fact, at this stage Sp-RST removes in each
computation level the unnecessary features that may affect
negatively the performance of any learning algorithm. Fi-
nally and based on the output of the previous step, Sp-
RST keeps the set of combinations having the minimum
number of features, Size(AllComb(Cr)), by applying a fil-
ter operation and by satisfying the full reduct constraints
discussed in Section II; �(Cr, AllComb(Cr)) = �(Cr)
while there is no AllComb

0

(Cr)
⇢ AllComb(Cr) such that

�(Cr, AllComb
0

(Cr)
) = �(Cr, AllComb(Cr)). Each combi-

nation satisfying this condition is considered as a viable
minimum reduct set. The attributes of the reduct set describe
all concepts in the original training dataset TRDDi .

IV. EXPERIMENTAL SETUP

A. Used Benchmark

To demonstrate the effectiveness of our proposed approach
we chose the Amazon Commerce reviews data set from the
UCI machine learning repository [7] as it was the dataset with
the largest number of features that still had a sufficiently large
number of data items. This data set was derived from customer
reviews on the Amazon commerce website by identifying a set
of most active users and with the goal to perform authorship
identification. It includes 1 500 data items described through
10 000 features and 50 distinct classes (authors). Instances are
identically distributed across the different classes.

B. Experimental plan, testbed and tools

Our experiments are performed on the Grid5000 testbed
which is a French national large-scale and versatile platform.
Under this testbed, we used dual 8 core Intel Xeon E5-2630v3
CPUs and 128 GB memory to test the performance of our Sp-
RST algorithm which is implemented in Scala 2.11 within the
Spark 2.1.1 framework [8].

The main aim of our experimentation is to demonstrate
how our proposed approach Sp-RST speeds up the execution
time for large data sets without introducing too much infor-
mation loss. We investigate different parameters of Sp-RST
and analyze how these affect execution time and stability of
the feature selection. We then show that the improvement in
performance does not decrease the feature selection ability by
using a Random Forest classifier on the original dataset and
the reduced datasets produced by Sp-RST. We use the Ran-
dom Forest implementation provided in the Spark framework
(org.apache.spark.mllib.tree.RandomForest) with the following
parameters: maxDepth=6, numTrees=300, featureSubsetStrat-
egy=‘all’ and impurity=‘gini’. The algorithm automatically
identifies categorical features and indexes them. Preliminary
results revealed that a maximum of 10 features per partition

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916. IEEE, 2017.

is the limit that can be processed by Sp-RST. We therefore
perform experiments for 1000, 1200, 1250, 1330, 1500, 2000
and 2500 partitions in Algorithm 1. We run all settings on 1,
4, 8, 16, and 32 nodes on Grid5000. For the purpose of this
study we set the number of iterations in Algorithm 1 to 10
(based on preliminary experiments).

Our analysis first focuses on the scalability of the algorithm
that allows it to solve the standard rough set feature selection
inadequacy to be applied to Big Data. To do so, we will
evaluate the performance of Sp-RST using the speedup and
sizeup criteria introduced in [9]. It should be noted that the
authors introduce a third criterion (scaleup), however, given
the above experimental setup and the overall execution times
we are currently unable to obtain sufficient data to perform
a meaningful analysis based on scaleup. For the evaluation
of the Random Forest classifier we use the standard set
based performance measures which are the time, measured
in seconds, and the classification error.

Since both, Sp-RST and Random Forest are randomized, we
need to use appropriate statistics in our analysis. For Sp-RST,
randomization is used during partitioning and the selection of
one reduct among the generated family of reducts. We reduce
the effect of the first by performing several iterations of the
main part of the algorithm and keeping only features that
are selected in all iterations. The second is justified by the
fundamentals of Rough Set Theory as discussed in Section II.

We perform an analysis of the stability of the selected
feature sets by considering several runs of Algorithm 1 and
report averages and standard deviations for the classification
error of 100 independent runs of the Random Forest classifier.
To investigate the significance of any observed difference in
classification error between the Random Forest classifier on
the original dataset and a reduced set produced by Sp-RST
we perform Wilcoxon signed rank tests.

V. RESULTS AND ANALYSIS

A. Speedup

We first consider the speedup [9] of Sp-RST: We keep the
size of the dataset constant (where size is measured by the
number of features in each partition) and increase the number
of nodes. We plot the average time needed to run a single
iteration within Algorithm 1 (over the 10 iterations executed)
and the respective speedups in Figures 1 and 2, respectively.

As discussed in [9], an ideal parallel algorithm has linear
speedup, which is, however, difficult to achieve in practice
due to communication cost and the fact that the slowest slave
dominates the total execution time. From Figure 1 we see
that our method has a good speedup for settings with fewer
partitions. The more the size of the database, i. e., the number
of attributes per partition, increases, the closer the speedup
gets to linear. This can be explained by the fact that fewer
partitions imply that each partition has more features. As
discussed previously the execution time grows exponentially
in the number of features and thus, using more nodes is
more beneficial in cases with many features. We obtain good
speedup if the number of features per partition is between

●

●

●

●

●

0
5

10
15

Number of Nodes

Sp
ee

du
p

1 4 8 16 32

●

●

●

●

●

●

●

#Partitions
1000
1200
1250
1330
1500
2000
2500

Fig. 1. Speedup for different numbers of nodes and partitions.

●

●

●

●

●

0
10

00
20

00
30

00
40

00

Number of Nodes

Ex
ec

ut
ion

 T
im

e
(s

ec
on

ds
)

1 4 8 16 32

● ● ● ● ●

●

●

#Partitions
1000
1200
1250
1330
1500
2000
2500

Fig. 2. Average execution times for a single iteration of Algorithm 1 and for
different numbers of nodes and partitions.

7 and 10 (1000 to 1330 partitions), but for 4 or 5 features
(2000 and 2500 partitions, respectively) the speedup quickly
stagnates. This observation is also supported by the execution
times (Figure 2). For few partitions the execution time quickly
decreases with increasing number of nodes while for many
partitions we observe hardly any improvement.

B. Sizeup

We use Sp-RST with 2500 partitions as baseline as this is
the smallest dataset in our experiments and calculate the m

values for the other settings based on the number of features
per partition. We then plot the sizeup [9] in Figure 3. We see
that the sizeup of Sp-RST grows very quickly as m increases,
but gets better as the number of nodes increases. Recall that
we define the size of the database as the number of features per
partition. Thus, this behavior was expected due to the runtime

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916. IEEE, 2017.

● ●

●

●

●
●

●
0

20
40

60
80

m

Si
ze
up

1 1.25 1.67 1.88 2 2.5

● ● ●
●

● ●

●

●

●

#Nodes
1
4
8
16
32

Fig. 3. Sizeup for different numbers of nodes and values of m.

properties of Sp-RST previously discussed. We conjecture that
using the classic definition of size as the number of features
in the whole database would yield a good sizeup, i. e., that
our method is able to process large datasets efficiently while
keeping the number of nodes constant and increasing the size
of the data.

Together with the above discussion of the speedup we see
that there is some trade-off between the number of partitions
and the number of nodes used. If only few nodes are available,
it may be advisable to use a larger number of partitions
to reduce execution times while the number of partitions
becomes less important if a high degree of parallelization can
be afforded. It should be noted that using a larger number of
partitions has the potential to increase information loss during
the data-preprocessing step. Our following experimentation
and analysis shows that this, however, is not the case.

C. Stability of Feature Selection

To measure the stability of the feature selection process we
consider the number of features selected over several runs
as well as the overlap of the resulting feature sets (keeping
in mind that according to Rough Set Theory different sets
may be equivalent). Since the number of nodes used has no
influence on the concrete feature selection, we compare the
results for each number of partitions (7 different settings)
based on the experiments performed on different number of
nodes (5 settings), generating 35 different feature sets. A
summary of our observations is shown in Table I. We see that
the number of features selected is very similar in all cases
(less than 100 features difference), but varies significantly
based on the number of partitions used. Comparing the overlap
for each pair of runs, we see that this is also very similar
(again less than 100 features). We consider the two extreme
cases of features that were always selected and features that
were never selected and observe that our method is very
reliably in identifying features for removal. There is more

variation regarding selection, particularly in cases where only
few features survive: Here the set of features that are always
selected is relatively small and it is not that likely that always
the same features are selected. This can be explained by the
fact that features are only included in the final set if they were
selected in all 10 iterations of the algorithm. We will show in
the following sections that this property of our algorithm is not
detrimental for the classification task performed and conjecture
that this can be explained by the fundamentals of Rough Set
Theory as discussed in Section II.

D. Classification Error With and Without Sp-RST

To validate the suitability of our method with respect to
classification, we investigate the influence of Sp-RST on the
classification error of the Random Forest classifier. We present
results of 100 independent runs on the original dataset with
10 000 features and the datasets derived by Sp-RST with
different numbers of partitions in Table II. While the overall
error seems high, it should be noted that the used database
contains 50 distinct classes. Thus, a naive baseline classifier
making random guesses would have a classification error of
98%, which is significantly higher than for our approach. The
median error of Random Forest on the original dataset is
larger than the corresponding value for all Sp-RST settings.
Considering averages, only 1000 partitions and 2000 partitions
are slightly higher than Random Forest without Sp-RST.
We perform statistical tests as described previously and find
that the error difference by Sp-RST with 1330, 1500, and
2500 partitions is statistically significant at confidence level
0.05 while for the other settings no statistically significant
difference could be found. We, therefore, conclude that Sp-
RST introduces no significant information loss as results are
at least comparable.

E. Execution Times With and Without Sp-RST

Table III shows execution times for Sp-RST and Random
Forest for different numbers of partitions as well as the number
of selected features in the considered cases. We see that the
overall execution time is decreasing for increasing number
of partitions (with the exception of 1200 and 1250 where
it should be noted that the number of features selected by
the latter is significantly larger, resulting in larger times for
Random Forest). For 2000 and 2500 partitions the overall
execution time is smaller than the execution time of Random
Forest without Sp-RST on the original data set. Together with
the analysis of the classification error this clearly demonstrates
the strength of our proposed method.

We remark that Sp-RST can easily be further parallelized by
executing the n iterations in Algorithm 1 in parallel. Assuming
we are able to use n nodes, the times for Sp-RST can be
reduced significantly and the overall execution times for Sp-
RST and Random Forest become smaller in the majority of
settings (see Table III; exceptions are the smallest number of
partitions and 1250 which was already pointed out as an outlier
with respect to the number of features selected).

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916. IEEE, 2017.

Partitions 1000 1200 1250 1330 1500 2000 2500
of selected features [6131, 6197] [3644, 3735] [5549, 5598] [2490, 2514] [1616, 1691] [4093, 4134] [3178, 3245]

pairwise overlap [5508, 5561] [2129, 2221] [4899, 4959] [1049, 1097] [466, 533] [3501, 3566] [2477, 2522]
features never selected 23.93% 34.83% 29.91% 43.41% 54.28% 46.01% 53.44%

features always selected 49.42% 5.61% 43.8% 1.08% 0.12% 28.9% 17.09%
share of features in the [79.75, 80.61] [15.02, 15.40] [78.24, 78.93] [4.30, 4.33] [0.71, 0.74] [69.90, 70.61] [52.67, 53.78]returned set that were % % % % % % %

selected in all runs
TABLE I

COMPARISON OF THE SETS OF SELECTED FEATURES IN DIFFERENT SETTINGS. [] INDICATES MINIMAL AND MAXIMAL VALUES OBSERVED.

Partitions 1 1000 1200 1250 1330 1500 2000 2500
Average 50.50% 51.00% 49.69% 49.25% 47.14% 42.18% 51.44% 45.16%
Median 52.53% 51.38% 50.77% 49.83% 46.59% 41.51% 51.51% 45.40%

Standard deviation 11.09% 11.13% 9.98% 9.79% 11.77% 11.65% 10.71% 10.36%
p-value (comparison with ‘1’) - 0.4897 0.1852 0.1945 0.009471 7.221e-07 0.6261 0.000485

TABLE II
AVERAGE, MEDIAN AND STANDARD DEVIATION OF THE CLASSIFICATION ERROR OVER 100 INDEPENDENT RUNS OF RANDOM FOREST DEPENDING ON
THE NUMBER OF PARTITIONS (ROUNDED TO 2 DECIMAL PLACES). THE CASE OF ‘1 PARTITION’ CORRESPONDS TO THE ORIGINAL DATASET WITHOUT

PERFORMING SP-RST.

Partitions 1 1000 1200 1250 1330 1500 2000 2500
Sp-RST (average per iteration) - 4448 886 936 451 210 72 52

Sp-RST - 44481 8861 9359 4514 2099 723 520
Random Forest 1811 1309 837 1200 648 325 895 717

Total Time 1811 45790 9698 10559 5161 2424 1618 1237
Total Time (based on average) 1811 5757 1723 2136 1099 535 967 769

of selected Features 10000 6184 3665 5556 2490 1647 4129 3209
TABLE III

EXECUTION TIMES ON A SINGLE NODE DEPENDING ON THE NUMBER OF PARTITIONS (IN SECONDS, ROUNDED). THE CASE OF ‘1 PARTITION’
CORRESPONDS TO THE ORIGINAL DATASET WITHOUT PERFORMING SP-RST.

VI. CONCLUSION AND EMERGING TRENDS

We have presented a novel efficient distributed algorithm
based on Rough Set Theory for large-scale data pre-processing
under the Spark framework. To reduce the computational effort
of the rough set computations, our approach splits the given
dataset into partitions with smaller numbers of features which
are then processed in parallel. We have demonstrated its effec-
tiveness using the Amazon Commerce reviews data set from
the UCI machine learning repository, a dataset with 10 000
features and 1 500 data items equally spread over 50 classes.
A detailed experimentation reveals that our proposed Sp-RST
method achieves a good speedup, but in order to also achieve
good sizeup a large number of partitions is necessary. Indeed,
our method performs feature selection without any significant
information loss while decreasing the run time of the learning
process. Our study provides many ideas for future research
directions with particular focus on further analysis of the
sizeup and the parameterization of the algorithm. Moreover,
tests on other real-world applications will demonstrate the
wider applicability of our method.

ACKNOWLEDGMENT

This work is part of a project that has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No 702527. The authors would additionally like to
thank Beck’s main supervisor Hanene Azzag.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks

and Applications, vol. 19, no. 2, pp. 171–209, 2014.
[2] W. Fan and A. Bifet, “Mining big data: current status, and forecast to the

future,” ACM sIGKDD Explorations Newsletter, vol. 14, no. 2, pp. 1–5,
2013.

[3] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Information

sciences, vol. 177, no. 1, pp. 3–27, 2007.
[4] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data.

Springer Science & Business Media, 2012, vol. 9.
[5] K. Thangavel and A. Pethalakshmi, “Dimensionality reduction based on

rough set theory: A review,” Applied Soft Computing, vol. 9, no. 1, pp.
1–12, 2009.

[6] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[7] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[8] J. G. Shanahan and L. Dai, “Large scale distributed data science using

apache spark,” in Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2015,
pp. 2323–2324.

[9] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algorithm
for large spatial databases,” in High Performance Data Mining. Springer,
1999, pp. 263–290.

©2017 IEEE, https://doi.org/10.1109/BigData.2017.8258008 (accepted version)
Z. Chelly Dagdia, C. Zarges, G. Beck, and M. Lebbah: A distributed rough set theory based algorithm for an efficient big data pre-

processing under the spark framework. In: 2017 IEEE International Conference on Big Data (BIGDATA), pages 911-916. IEEE, 2017.

