
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data context informed data wrangling

Citation for published version:
Koehler, M, Bogatu, A, Civili, C, Konstantinou, N, Abel, E, Fernandes, AAA, Keane, J, Libkin, L & Paton,
NW 2018, Data context informed data wrangling. in 2017 IEEE International Conference on Big Data.
Institute of Electrical and Electronics Engineers (IEEE), 2017 IEEE International Conference on Big Data,
Boston, United States, 11/12/17. https://doi.org/10.1109/BigData.2017.8258015

Digital Object Identifier (DOI):
10.1109/BigData.2017.8258015

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2017 IEEE International Conference on Big Data

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1109/BigData.2017.8258015
https://doi.org/10.1109/BigData.2017.8258015
https://www.research.ed.ac.uk/en/publications/6abb10e6-7fb1-4edd-81a7-bafdbcb2bda1


Data Context Informed Data Wrangling

Martin Koehler∗, Alex Bogatu∗, Cristina Civili†, Nikolaos Konstantinou∗, Edward Abel∗, Alvaro A. A. Fernandes∗,
John Keane∗, Leonid Libkin† and Norman W. Paton∗

∗School of Computer Science, University of Manchester, Manchester, UK
†School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract—The process of preparing potentially large and
complex data sets for further analysis or manual examina-
tion is often called data wrangling. In classical warehousing
environments, the steps in such a process have been carried
out using Extract-Transform-Load platforms, with significant
manual involvement in specifying, configuring or tuning many
of them. Cost-effective data wrangling processes need to ensure
that data wrangling steps benefit from automation wherever
possible. In this paper, we define a methodology to fully
automate an end-to-end data wrangling process incorporating
data context, which associates portions of a target schema with
potentially spurious extensional data of types that are com-
monly available. Instance-based evidence together with data
profiling paves the way to inform automation in several steps
within the wrangling process, specifically, matching, mapping
validation, value format transformation, and data repair. The
approach is evaluated with real estate data showing substantial
improvements in the results of automated wrangling.

Keywords-Data Wrangling, Data Context, Data Integration

I. INTRODUCTION

Data wrangling is the process by which potentially large
and complex data sets are prepared for analysis or manual
examination [1], [2]. However, there may be quite a few
steps involved in data wrangling; a possible process involves
data extraction (for example from the deep web or web
tables), schema matching, mapping generation, data repair,
value format transformations, and resolution and fusion of
entities.

Such steps can be carried out using Extract-Transform-
Load (ETL) [3] or Big Data analytics platforms [4], both
necessitating significant manual involvement in specifying,
configuring, programming or tuning many of the steps. It
is widely reported that intense manual involvement in such
processes is expensive (e.g. [2]), often representing more
than half the time of data scientists. As the numbers of data
sources within organisations and in the public domain grows,
there is an increasingly pressing need for cost-effective
techniques for addressing the variety and veracity of big
data.

In this paper, we study the problem of automating an
end-to-end data wrangling process, that is, to integrate
(addressing variety) and clean (addressing veracity) a large
set of input sources and create a data product that is suitable
for downstream analysis. In more detail, we focus on how
a wrangling process can be improved by data context: data

from the domain in which wrangling is taking place [1].
There have been proposals tailored to a specific type of
auxiliary information and for automating individual steps
in the wrangling process (e.g. [5], [6], [7]), but there is a
need to be more systematic and holistic, ensuring that all
the steps can be automated, and that all these steps make
use of the available data context.

Automating the end-to-end process supports the popula-
tion of the data product, but potentially results in a data
product of limited quality. Data context, such as master data,
reference data, or example entities from the domain of data
wrangling, can serve as a guide to improve the results of
many steps within the wrangling process. Specifically, the
claim is that a small number of often readily available types
of contextual data can substantially improve the quality of
the automatically produced data product.

Our solution adopts and extends some of the latest tech-
niques from the data profiling, integration and cleaning com-
munities on dependency discovery [8], [9], [10], instance-
based schema matching [7], mapping generation and val-
idation [11], value format transformations [12], and rule-
based repair [13]. We refine and combine their approaches
to the use of target instances for automation to provide a
comprehensive, end-to-end approach incorporating instance
based evidence from the data context that may be partial.

Our contributions in this paper are as follows:
1) A definition of the notion of data context, and of its

specific types.
2) A methodology to fully automate an end-to-end data

wrangling process that incorporates data context.
3) A description of how the data context can inform

multiple steps within an end-to-end wrangling process,
specifically matching, mapping validation, value for-
mat transformation, and rule-based data cleaning.

4) An evaluation of the approach in a real estate applica-
tion combining deep web and open government data
that shows both: (i) significant improvements in the
results of automated processes (e.g., the precision of
the result increased from 0.64 to 0.88); and (ii) the
impact of data context on the individual steps.

II. PROBLEM STATEMENT

Although data wrangling processes may include different
steps, in this paper we demonstrate the application of data



Figure 1: Data wrangling process: User annotates the target
schema with data context and starts the wrangling process
that involves several steps.

context1 using the data wrangling process illustrated in
Figure 1. We assume that the end user is a data scientist,
who is familiar with the domain within which the data is
to be wrangled, and thus who can provide a data product
schema (P ) that is to be populated by the wrangling process.
An example target schema for the real estate domain is
illustrated in Table III. Given some data sources S, such
as those in Table I, it is the role of the wrangling process
to populate the target schema with (as much as possible)
correct and consistently formatted values.

In the process in Figure 1, this involves matching the
source and target schemas, generating mappings from the
matches, reformatting values that may be represented in dif-
ferent ways (e.g. transforming Homestead Rd to Homestead
Road) and completing or correcting inconsistent values (e.g.
providing a missing city value of London for a property
with a London postcode). Carrying out all these tasks
automatically is not straightforward.

In this paper, we describe how automation can be in-
formed by the data context consisting of data sources (D)
that can be aligned with the target schema, thereby providing
partial, potentially erroneous instance-based evidence about
the target. Data context data (examples in Table II) can be:

Reference data: A collection of values that stipulate the
valid domain of a set of specific attributes of the product
P : correctly repaired and transformed instances IP of P are
a subset of instances Id of d ∈ D, for the set of related
attributes. Thus reference data is complete, in that there are
no missing values, and accurate, in that it provides correct
values to be occurring in the product. In the real estate
example in Table II, the Address data is used as reference
data, and is freely available in the UK2.

Master data: Master data can be defined as constituting

1Note that our notion of data context is different from, and comple-
mentary to, previous work on context aware systems (e.g. [14]). In such
proposals, the focus is on identifying the subset of an extent that is most
appropriate for a user in a given situation. In contrast, our notion of data
context emphasizes data from the domain within which data wrangling
occurs. The term data context is also used in the proposal for the Ground
data context service [15], which is used to capture metadata and annotations
relating to diverse data sets. Our notion of data context would seem to be
suitable for capturing and sharing using a platform such as Ground.

2Open addresses: https://alpha.openaddressesuk.org/

a consistent view on the core entities in an organization.
Thus, master data are correct and accurate values stipulating
a set of target attributes. In contrast to reference data, the
set relation between the sets IP of P and Id of d ∈ D is
not known a priori. In the real estate example, master data
comprises information about the properties for sale/rent from
the real-estate agency the data scientist works for.

Example data: A collection of data items that (partly)
express the domain of the target. Examples may include
empty and erroneous values and stipulate a set of target
attributes. Again, the relation between the sets IP and Id is
not known a priori. In the real estate example in Table II,
the freely available UK price paid data3 holds information
about sample property sales conducted in the past and thus
exemplifies values for attributes of interest.

Data context sources (D) can be related to the ta-
bles in the target schema (P ) using data context rela-
tionships R(d, p, t), where d ∈ D, p ∈ P and t ∈
{reference,master, example}. For expressing data con-
text relationships we use the notion of a tuple generating
dependency (tgd) of the form ∀x(φD(x) → ∃yψP (x, y))
where φD(x) is a conjunction of atoms over the data
context and ψP (x, y) is a conjunction of atoms over the
target schema. As an example, considering data context
sources (D) in Table II and the data product (P ) in Table
III, Address data (A), as reference data, can be used to
specify the valid domain of attributes in a target table
(P), by means of the tgd ∀p, sn, tn, pn(A(p, sn, tn, pn) →
∃y1, y2, y3, y4P (sn, tn, pn, y1, y2, y3, y4)), giving rise to a
data context relationship R(A,P, reference). The data
product is not directly populated from the data context,
but rather the data context is used to inform the steps that
populate the data product. We assume the data scientist
has sufficient knowledge of the domain to identify suitable
data sets for the data context, and to envisage their precise
relationship to the target schema (as exemplified by the tgd
above). They might then be made available using an user
interface to the wrangling platform, as done in VADA [16].

We can now explicitly state the problem of how to inform
an end-to-end data wrangling process consisting of multiple
steps with data context: given a set of sources S, source
instances Is for each source s ∈ S, a target P , data context
sources D with instances Id when d ∈ D, and data context
relationships R(d, p, t), automatically populate the target P
with (potentially transformed and repaired) instances.

III. DATA CONTEXT INFORMED WRANGLING

This section describes how data context is used to inform
the automation of the stages in the wrangling process (see
Figure 1). For each consecutively executed stage, we define
the problem and present a general methodology with two
phases: generation – the creation of candidate solutions;

3Price paid: https://www.gov.uk/government/collections/price-paid-data



Zoopla
heading h1 h2 nth of type 1 n th of type h2 nth of type 1 details box 8 details box 6
Whitfield St Greater London W1T 5EF 137,495 Leaders 898756
Biscayne Ave London E14 9BE 189,950 ReedsRains 8654789
Belvoir
lst det address h2 lst det city h2 lst details h1 p nth of type tab details ui tabs pc tab details ui tabs
9 Canton St London E14 6JW 595,000 E14 3NE Limited Belvoir London
20 South Drive - W1A 0AA 575,000 E14 3NE Limited Belvoir London
Deprivation
postcode postcodestatus crimerank crimedecile
E14 3NE Live 34 7

Table I: A collection of raw web extracted real-estate records and deprivation data

Price paid data
price paid saon paon street postcode town
155000 Flat 6 25 Bournem. Rd SE15 4UJ London
Address data
pao street.name town.name postcode.name
14 Heron Lane Scarborough YO12 4TW
Master data
street nr paon city postcode price
Redhill street 8 London E14 3NE 125.000

Table II: Data context information: price paid data (exam-
ples), address data (reference data) and master data

testing – assessment, selection and refinement of candidates
in the light of the evidence from data context. We show how
each stage can be automated without data context, and how
the approach can be revised to take account of data context.

A. Schema Matching

Problem definition. Schema matching can be defined as
the problem of detecting schematic correspondences be-
tween schema elements of data sources S and the target P .
Schematic correspondences identify potentially equivalent
pairs of schema elements, along with a confidence measure
that is most often expressed as a similarity score.

Evidence. We approach the challenge of automating
schema matching by applying the generate-and-test method-
ology. Generating and testing candidate schematic corre-
spondences involves different types of evidence. Metadata
evidence explains characteristics of schema elements such as
their names, data types, and structural properties, and sup-
ports the comparison of the source and the target schema for
finding correspondences. Target instances provide additional
evidence on the values that are part of the target, which can
be exploited by instance-based matchers. Domain-specific
evidence explains additive knowledge of parts of a data
source. Usually, domain evidence is created and maintained
by domain experts and exploited by domain recognisers or
gazetteers.

Context informed automation. Algorithm 1 is used to
automate schema matching, using data context information
when it is available. The algorithm is invoked for each source
S and the target P . It uses metadata and data context based
evidence in the two phases, generate, and test.

In the absence of data context, the algorithm applies
schema based matchers (line 2) to generate candidate

tuple street city postcode price
t1 Whitfield Street London W1T 5EF 137,495
t2 Biscayne Ave London E14 9BE 189,950
t3 Canton Street London E14 6JW 595,000
t4 South Drive London W1A 0AA 575,000
tuple agency contact crimestats
t1 Leaders 898756 136
t2 ReedsRains 8654789 45
t3 Belvoir London LTD E14 3NE 34
t4 Belvoir London LTD E14 3NE 78

Table III: Transformed, integrated and repaired records

schematic correspondences. We utilize the Coma 3.0 com-
munity edition4, specifically, the Coma workflow (config-
uration 7001) combining different metadata-based match
heuristic. When data context is provided in D, each such
data set is used as a partial extensional representation of
the target to carry out instance based matching with the
source (line 5). Specifically, the Coma instance matchers
(configuration 7008) are executed in addition to the schema-
based matchers.

Match testing takes further advantage of data context
through the utilization of domain recognisers. In general,
recognisers employ dictionaries or rules to recognise the
data values of certain kinds of attributes. In our system,
we have implemented generic recognisers, exploiting the
information gained from data context (line 10). The generic
recognisers combine inference of basic types (e.g. numeric,
floating-point, string) and characteristics such as the length
and tokenization of the values. Recognisers are utilised to
refine schematic correspondences to target attributes aligned
with data context by increasing or decreasing their similarity
scores, and to detect new correspondences not detected by
schema- and instance based matchers (line 11).

B. Schema Mapping Generation and Validation

Problem definition Schema mapping generation and val-
idation can be defined as the problem of generating data
transformations from data sources S into a target P and
validating the resulting candidates for use. Schema map-
pings can be expressed using source-to-target tuple gen-
erating dependencies (st-tgds) of the form σ : ∀x(φS(x)

4Coma Community Edition: https://sourceforge.net/projects/coma-ce/



→ ∃yψP (x, y)), where φS(x) is a conjunction of source
atoms, and ψP (x, y) is a conjunction of target atoms.

Evidence. We approach the challenge of automating
schema mapping generation and validation by applying
generate and test phases. Generating and testing are based
on different types of evidence. Metadata evidence describ-
ing schema elements, their structure and primary/foreign
key relationships, combined with schematic correspondences
between the sources and the target, supports the applica-
tion of mapping generation approaches such as Clio [17]
or ++Spicy [18]. Data profiling [8], [9] infers descriptive
information about sources that can be exploited by mapping
generation and validation, though automatically detected
candidate keys and inclusion dependencies can provide
misleading evidence. Target instances can be exploited by
mapping validation approaches exploiting instance based
similarity measures. For example, tree similarity measures
taking into account the topology and the information content
support target instance evidence [11].

Context informed automation. Algorithm 2 is used to
automate mapping generation and validation without data
context, and improves the result if data context is available.
The algorithm is invoked for the set of input sources S
and the target. It takes metadata, profiling and data context
evidence into account. In the generation phase (line 2),
foreign key candidates are detected based on criteria from
[8]. Foreign key candidates are generated if we identify a
key candidate and an inclusion dependency between two
attributes in different sources matching with the same target
attribute.

The input sources are clustered into subsets exploiting
the candidate foreign keys (line 3), and mapping generation
and validation is executed for each source cluster (line 9).
To generate candidate mappings we use the ++Spicy toolkit
[18], which generates mapping candidates based on the given

Algorithm 1 Data context matching
Input: source schema S and instances Is, product schema P , Set

of data context schemas D and instances ID , lower and upper
bound lb, up

Output: Set of matches M
1: procedure MATCH
2: M ← gen schema match(S, P )
3: Md ←Mr ← {}
4: for all d ∈ D do
5: IP ← Id
6: Md ← combine(Md, gen instance match(S, P ))
7: end for
8: M ← update(M,Md)
9: for all d ∈ D do

10: Mr ← match domain(S, P, d)
11: M ← test(M,Mr, lb, up)
12: end for
13: return M
14: end procedure

Algorithm 2 Mapping generation and validation
Input: set of source schemas S and instances IS , product schema

P , Set of data context schemas D and instances ID , set of
relationships R, upper bound up, lower bound lb, step size
step, set of matches M

Output: Set of mappings G
1: procedure MAPPING
2: K ← profile fks(S)
3: C ← cluster(S,K)
4: Gbest ← {}
5: t← ub
6: for all c ∈ C do
7: while t > lb, t = t− step do
8: Mt ← filter(M, t,m.score > t)
9: G← gen schema mapping(c,Mt,K)

10: for all d ∈ D do
11: Vg ← test(G,D,R, ID)
12: end for
13: if max(Vg > Gbestc) then
14: Gbest ← max(Vg)
15: end if
16: end while
17: end for
18: return Gbest

19: end procedure

schematic correspondences and foreign key candidates (see
Section III-A). We generate mappings by exploiting and
neglecting the detected foreign keys to handle potentially
spurious evidence.

An example candidate mapping generated for the data
sources Zoopla (Z) and Deprivation (D) in Table I and the
data product in Table III is depicted in (1).

σ : ∀x1,..,9(Z(x1, x2, x3, x4, x5, x6) ∧D(x3, x7, x8, x9),

→ ∃y1, y2P (y1, x1, x2, x3, x4, x5, y2, x8))
(1)

When data context is available (line 10), we test mapping
candidates by carrying out mapping verification, as proposed
in [11] for target instances, to select between alternative
candidates. For each candidate mapping we translate the data
context instances into the target and compute the verification
score by executing structural analysis.

The algorithm repeats the generate and test phases, low-
ering the threshold for schematic correspondences (line 7),
retaining the result with the best verification score (line 13).
In the absence of data context, we choose the mapping
candidate satisfying the most schematic correspondences for
each group of sources.

C. Value Format Transformation

Problem definition. The value format transformation prob-
lem is that of converting the values for an attribute from
sources into a uniform format in the target by applying
syntactic manipulations such as concatenate or substring.
For example, a source might abbreviate recurring parts of



an address (e.g. Canton St), when the full representation is
required (Canton Street). Correctly inferring and applying
transformation rules is a hard problem and usually involves
some form of user involvement [19], [2]. In our approach,
we seek to automatically identify data examples that can be
used to synthesize transformation rules using FlashFill [19].

Evidence. We approach the challenge of automating value
format transformations by applying the generate and test
methodology. Generating and testing are based on different
types of evidence. Metadata evidence describing schema el-
ements combined with schematic correspondences between
the source and the target are used to identify potentially
equivalent concepts whose value representations have to be
aligned. Profiling evidence such as functional dependencies,
gives rise to a means of aligning tuples from multiple data
sets [12]. In this paper, data context provides the extensional
data that is required for the target. More specifically, as-
sume that we would like to transform the values in source
attribute S.sn into the format used in P.pm. If functional
dependencies (FD) in S and in P (fd1 : [S.si]→ [S.sn] and
fd2 : [P.pj ]→ [P.pm]) and schematic correspondences exist
between the determinants (S.si, P.pj) and the dependents
(S.sn, P.pm) of the functional dependencies, and if the
values in the determinants correspond, data examples can
be generated automatically.

Context informed automation. Algorithm 3 is used to
automate value format transformations when data context
is available. To automate value format transformation, we
make use of data context as a partial representation of the
target. The algorithm is invoked for each source S separately
and returns a transformed source S′. In the generation
phase, data examples E between the source and each data
context source D are generated (line 6). Data examples are
then utilized to automatically generate transformation rules
(line 7). The algorithm presented in [19], [20] is used to
synthesize transformation rules, from the identified source
and target data examples, by applying a programming-by-
example (PBE) approach.

Data examples and transformation rules are tested and se-
lected together using a k-fold validation approach. Different
data context types are utilised consecutively to generate data
examples and transformation rules. If source columns can
be transformed by means of multiple data context items, we
select the one with the larger set of data examples. Finally,
each selected transformation rule is applied on the sources
to transform the data from the complete column.

D. Rule Based Data Repair

Problem definition The data repair problem involves de-
tecting and repairing certain classes of data errors, e.g.
violations of integrity constraints. Integrity constraints can
be given in a range of languages, varying from user-
defined functions to database constraints like conditional
functional or inclusion dependencies [21], [22]. Here we

Algorithm 3 Value format transformation
Input: source schema S and instances IS , Set of data context

schemas D and instances ID , set of matches M
Output: Transformed source S′

1: procedure TRANSFORM
2: FDS ← profile functional dependencies(S)
3: R← {} . R are selected transformation rules
4: for all d ∈ D do
5: FDd ← profile functional dependencies(d)
6: E ← generate examples(s, d,M, FDS , FDd)
7: Rd ← generate transform rules(E)
8: Rd ← test examples rules(E,Rd)
9: R← accumulate selected(Rd)

10: end for
11: S′ ← apply transform(S,R)
12: return S′

13: end procedure

adopt conditional functional dependencies (CFD). A CFD
φ = (R : X → Y, tp) extends standard functional depen-
dencies (FDs) by enforcing pattern tuples tp of semantically
related constants [13]. To increase the consistency and
accuracy of data, violations have to be detected based on
the given constraints, and suitable repairs have to be chosen
for the detected violations.

Evidence. We approach the challenge of automating rule
based data repair by applying generate and test phases.
Target instances can be used to underpin the automatic
discovery of integrity constraints from data. For instance,
the CFD discovery algorithm described in [10] is capable
of finding a canonical cover of s-frequent minimal constant
CFDs based on an input relation R and a support size
support. The support size is the number of tuples matching
the pattern of each CFD learned by the algorithm.

Context informed automation. Algorithm 4 is used to
automate rule-based repair when data context is available.
The algorithm is invoked for each source S and the data
product P . It takes source instances IS and data context into
account. In the candidate generation phase, we generalize
an approach that utilizes master data to discover certain
fixes [23] towards discovering CFDs for all available data
context sources D. This relaxes the notion of certain fixes,
as data context might provide spurious evidence. To fully
automate the process, there is a need to (1) automatically
configure the CFD discovery algorithm, and to (2) select
the CFDs to apply. The described algorithm focuses on
discovering and selecting a set of CFDs maximizing the
precision of the repair process, i.e. minimising the number
of incorrect repairs. We incrementally increase the support
size parameter used for discovering CFDs (line 6, 7, 13) and
apply filter and validation steps (line 7, 8) on the discovered
ones. CFDs violating tuples in the training data are filtered
out. The confidence of the CFDs is used to calculate a score
for each iteration, i.e. set of CFDs, to select the set of CFDs
CFDbest to be applied in the repair process. The score



Algorithm 4 Rule-based repair
Input: source schema S and instances IS product schema P , set of

relationships R, Set of data context schemas D and instances
ID , lower bound lb, initial support is, step size step

Output: Repaired source S′

1: procedure REPAIR
2: for all d ∈ D do
3: CFDbest ← {}
4: scorebest = lb
5: support← is
6: while score > scorebest do
7: CFDd ← generate cfd(d, support)
8: CFDd ← filter(CFDd, d)
9: score← test(CFDd, d)

10: if score > scorebest then
11: scorebest = score
12: CFDbest ← CFDd

13: support = support+ step
14: end if
15: end while
16: CFD ← rewriteToSource(CFD,S,R))
17: S′ ← gen test repair(S,CFDbest)
18: return S′

19: end for
20: end procedure

resembles the percentage of CFDs with confidence equal
to 1, i.e. CFDs not violating any tuple in the training data.

To apply rule based repair, we again use data context
to represent target instances. Thus, we assume that we can
apply the CFDs discovered using data context data for the
target to detect violations and generate repair operations
for sources based on the repair algorithm described in
[13] (line 16). Repair operations are based on attribute
value modifications as they are sufficient to resolve CFD
violations. In short, and following the notation in [13], if a
tuple t violates a CFD φ = (R : X → Y, tp), composed of a
FD plus a pattern tuple tp, the algorithm either modifies the
values of t for the attributes matching the right-hand side
of the FD, according to the pattern tuple, or modifies the
values of some attributes of t matching the left-hand side
of the FD. In case of violations of t with another tuple t′,
different attribute modifications will be applied. The repair
algorithm produces a repair that is as close as possible to
the original dataset, by choosing, at each step (testing), to
repair the attribute of a tuple t with minimum repair cost.
Such a cost model depends on a distance function, which in
our case is based on the Damerau-Levenshtein metric.

IV. EXPERIMENTAL EVALUATION

We present an experimental study of informing multiple
data wrangling steps with different types of data context by
evaluating the effect against the base case where data context
is not used.

Application domain and data. We perform our experi-
ments on real world data consisting of web-extracted data
from the real-estate domain. The data used is an extension

of the running scenario described in Section II, and consists
of data from 40 real-estate agencies. All datasets have been
extracted with OXPath [24] according to their representation
on the web page to be as close as possible to a completely
automated extraction. In addition to the real-estate data, we
include a freely available deprivation statistics dataset5 for
the UK. We used a subset of the extracted data with full
postcode information building upon 6K tuples.

Data context. For reference data we utilised the open
address data set for the UK (30k tuples). It provides high
quality address data including postcode, street names, city
and primary and secondary address objects. For examples we
used the freely available UK price paid data including 160k
tuples representing property sales information. To emulate
master data, we cleaned the set of extracted records from a
single real-estate agency.

Measuring wrangling quality. While the methods used
in all stages of the wrangling process have been evaluated
separately (see [7], [18], [12], [13]), the approach of ap-
plying readily available information, data context, to them,
individually or together, has not. To measure the quality for
single stages and for the whole wrangling process we created
the ground truth for the test scenario by hand. The ground
truth represents the correct representation of the data the user
is interested in. It provides correctly transformed, cleaned
and integrated values for the set of sources according to the
data context.

We use the following metrics: Precision, the fraction of
relevant items among the retrieved items: P = TP

TP+FP ; Re-
call, the fraction of relevant items that have been retrieved:
R = TP

TP+FN ; f-measure, the harmonic mean of precision
and recall: F1 = 2 ∗ PPV ∗TPR

PPV+TPR ; Accuracy, the fraction of
true items among all items: ACC = TP+TN

TP+FP+TN+FN ; Neg-
ative predictive value, the fraction of negative predictions
that are correct: NPV = TN

TN+FN .

A. Effect of Data Context on the Wrangling Result

The propositions to be tested are 1) that the wrangling
process in total can benefit from being informed by data
context, 2) that using multiple data context types together
is able to improve the overall wrangling result, 3) that each
data context type can be used to improve the results of at
least a single step, and 4) that data context can be used to
gain combined effects on multiple wrangling stages.

We report on precision, recall, f-measure, accuracy, and
NPV according to the ground truth. We compare all values
of the resulting tuples with the ground truth by applying
the following definitions: TP – a value in the result that
corresponds to a value in ground truth, FP – a value in the
result that does not correspond to a value in ground truth,
FN – a value in the ground truth that should be but is not

5English deprivation indices: https://www.gov.uk/government/statistics/
english-indices-of-deprivation-2015



(a) Data wrangling process (b) Wrangling stage combinations (c) Individual wrangling stages

Figure 2: Experimental results: Effect of data context types on wrangling process and on individual stages

in the result, TN – a value of a source tuple that is not in
the result and should not be.

We conducted experiments informing all steps of data
wrangling with each data context type separately, and ap-
plying all data context types at each stage. An overview
of the results is depicted in Figure 2a. In the case
of No data context the process executes Coma schema-
based matchers, and mappings are selected at random
as no instances are available to inform mapping valida-
tion. The process misses several schematic correspondences
(e.g. street, status) and produces some incorrect ones
(propertyheaderbedroomandprice left h1 ≡ bedroom).
Value format transformations and rule-based repairs can’t be
applied without data context. By applying data context we
can find additional matches, apply mapping validation, and
execute format transformations and rule-based data repair.

The experiments show that applying all data context types
at once at each wrangling step results in better target values
than not informing the process and than applying a single
data context item. There is a gain of 0.15 in f-measure
by applying all data context items at once, with precision
and recall improved by 0.24 and 0.09 respectively. This
substantial improvement is achieved by simply associating
context data with the target schema.

The quality of the result is greatest when all data con-
text types are available because each type holds different
information to be exploited. For instance, master data and
reference data items enable the process to find different
schematic correspondences. Reference data enables correct
matching of street attributes, while master data addition-
ally links a status attribute. Reference data also supports
format transformation of street attributes into their desired
representation. The format of the attribute type can only be
transformed by having examples at hand. Rule-based repair
can correct values for attribute agency based on master data,
while reference data corrects city and street values.

The results for individual data context items show that
the f-measure of the target improved by 0.07, 0.09 and 0.11
(master data, reference data and examples respectively). We
can report a gain in precision of 0.08, 0.12 and 0.15 and
recall is increased by 0.5, 0.6 and 0.7. Each data context

type has a positive effect and a corresponding combined
effect is achieved by applying them together.

In Figure 2b we show how the target quality is affected
by applying all data context items at once on different
combinations of wrangling stages, e.g. schema matching and
mapping generation (1: matching, 2: mapping, 3: transforma-
tion, 4: repair). The figure shows that by informing multiple
steps of the process with data context, combined effects can
be achieved. For instance, consider the combined effect of
using data context for matching and transformation (1,3).
Using data context in schema matching increases precision
by 0.05, in transformations by 0.08, and in both at the same
time by 0.16. Another example is that using data context
for matching and repair can slightly increase the individual
gains in precision from 0.05 and 0.01 to 0.07.

B. Effect of Data Context on Individual Wrangling Steps

The objective of the second experiment is to investigate
how, and to what extent, each of the wrangling steps have
benefited from the data context. To evaluate the effect of
data context on individual stages we report on f-measure of
detected matches, validated transformations and repairs, and
we use the same notion of TP, FP, FN as for target quality
to evaluate mappings (see Figure 2c).

By applying all data context types at once, a gain of 0.13
in f-measure can be achieved as the detected matches are
partly cumulative. Most of the additional matches can be
detected by domain recognisers. For instance, using master
data, additional matches for the target attribute price are
detected. In general, domain recognisers work well to detect
matches for address data including streets and cities.

Utilising data context for mapping validation leads to
an increase of 0.05 to 0.06 in f-measure. If multiple data
context types are available, we select the mapping with the
highest target coverage and the highest verification score
based on the data context instances. The reported f-measure
on validated transformations when applying all data context
types at once is 0.97, for reference and master data we
achieved 0.95 and 0.98, while examples lead to 0.81. It
appears that the combination of sources and examples is, in
some cases, not expressive enough to enable the required



transformation to be synthesised. The f-measure in data
repair depends on the data context (master data: 1, reference
data: 0.73, examples: 0.66, all: 0.83) applied. The lower
f-measure for reference data and examples occurs because
some opportunities for repairs are missed.

V. CONCLUSIONS

Data scientists have been found to be spending as much as
80% of their time on data wrangling6, so cost-effective data
wrangling is crucial to the successful use of big data. In this
paper we have shown in a representative real world example
an improvement in precision of 24%, combined with a
9% increase in recall, by extending a four step wrangling
process to use data context throughout. As illustrated in our
demo paper, data scientists can associate data context with
a target schema with modest effort [16]. As such this paper
has presented a methodology for enhanced automation that
provides a significant return on investment.

Specifically, readily available types of contextual infor-
mation, such as master data, reference data, and examples,
have been used to improve the outcome of all steps in our
data wrangling process in different ways: in matching by
extending the collection of matchers that can be applied; in
mapping by allowing mapping validation to be informed by
the results of verification; and in both format transformation
and repair by enabling rules to be learned. We showed that
applying multiple data context types on several wrangling
stages results in a combined gain in the quality of the
final wrangling result; firstly, by adding up the effect of
different data context types within a stage, and secondly,
by accumulating results from different stages.
Acknowledgment We thank the UK EPSRC for their support
through the VADA Programme Grant.

REFERENCES

[1] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton,
“Data wrangling for big data: Challenges and opportunities,”
in EDBT ’16, Bordeaux, France, 2016.

[2] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham,
N. Riche, C. Weaver, B. Lee, D. Brodbeck, and P. Buono,
“Research directions in data wrangling: Visualizations and
transformations for usable and credible data,” Inf. Vis., 2011.

[3] P. Vassiliadis, “A survey of extract-transform-load technol-
ogy,” Int. Journal on Data Warehousing & Mining, 2009.

[4] Y. Kaniovskyi, M. Koehler, and S. Benkner, “A containerized
analytics framework for data and compute-intensive pipeline
applications,” in Proc. SIGMOD Ws. BeyondMR’17, 2017.

[5] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schall-
hart, and C. Wang, “DIADEM: Thousands of websites to a
single database,” Proc. VLDB Endow., 2014.

[6] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti,
and M. Stonebraker, “Dataxformer: A robust transformation
discovery system,” in ICDE’16, May 2016.

6New York Times://http://nyti.ms/1Aqif2X

[7] D. Aumueller, H. Do, S. Massmann, and E. Rahm, “Schema
and ontology matching with coma++,” in SIGMOD ’05. New
York, NY, USA: ACM, 2005.

[8] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and
U. Leser, “A machine learning approach to foreign key
discovery.” in WebDB, 2009.

[9] T. Papenbrock and F. Naumann, “A hybrid approach to
functional dependency discovery,” in SIGMOD. ACM, 2016.

[10] W. Fan, F. Geerts, J. Li, and M. Xiong, “Discovering
conditional functional dependencies,” IEEE Transactions on
Knowledge and Data Engineering, vol. 23, no. 5, 2011.

[11] A. Bonifati, G. Mecca, and A. Pappalardo, “Schema mapping
verification: the spicy way,” EDBT ’08, 2008.

[12] A. Bogatu, N. W. Paton, and A. A. A. Fernandes, “Towards
automatic data format transformations: Data wrangling at
scale,” in BICOD 2017, 2017, pp. 36–48.

[13] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving
data quality: Consistency and accuracy,” in Proc. VLDB
Endow., ser. VLDB. VLDB Endowment, 2007.

[14] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato,
F. A. Schreiber, and L. Tanca, “And what can context do for
data?” Commun. ACM, 2009.

[15] J. M. Hellerstein, V. Sreekanti, J. Gonzalez, J. Dalton, A. Dey,
S. Nag, K. Ramachandran, S. Arora, A. Bhattacharyya,
S. Das, M. Donsky, G. Fierro, S. Chang, C. Steinbach, V. Sub-
ramanian, and E. Sun, “Ground: A data context service,” in
CIDR ’17, 2017.

[16] N. Konstantinou, M. Koehler, E. Abel, C. Civili, B. Neumayr,
E. Sallinger, A. Fernandes, G. Gottlob, J. A. Keane, L. Libkin,
and N. W. Paton, “The VADA architecture for cost-effective
data wrangling,” in SIGMOD. ACM, 2017.

[17] R. Miller, L. Haas, and M. Hernández, “Schema mapping as
query discovery,” in Proc. VLDB Endow., 2000.

[18] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and D. San-
toro, “++ Spicy: an OpenSource tool for second-generation
schema mapping and data exchange,” VLDB Endow., 2011.

[19] S. Gulwani, “Automating string processing in spreadsheets
using input-output examples,” in POPL ’11. ACM, 2011.

[20] B. Wu and C. A. Knoblock, “Maximizing correctness with
minimal user effort to learn data transformations,” in IUI’16,
2016.

[21] Z. Abedjan, X. Chu, D. Deng, R. Fernandez, I. Ilyas, M. Ouz-
zani, P. Papotti, M. Stonebraker, and N. Tang, “Detecting data
errors: Where are we and what needs to be done?” Proc.
VLDB Endow., vol. 9, no. 12, Aug. 2016.

[22] A. Ganapathi and Y. Chen, “Data quality: Experiences and
lessons from operationalizing big data,” in 2016 IEEE Big
Data, 2016.

[23] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain
fixes with editing rules and master data,” Proc. VLDB Endow.,
vol. 3, no. 1-2, Sep. 2010.

[24] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and A. Sell-
ers, “OXPath: A language for scalable data extraction, au-
tomation, and crawling on the deep web,” Proc. VLDB
Endow., vol. 22, no. 1, 2013.


