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Abstract—In the age of Big Data, we are witnessing a
huge proliferation of digital data capturing our lives and our
surroundings. Data privacy is a critical barrier to data analytics
and privacy-preserving data disclosure becomes a key aspect
to leveraging large-scale data analytics due to serious privacy
risks. Traditional privacy-preserving data publishing solutions
have focused on protecting individual’s private information while
considering all aggregate information about individuals as safe
for disclosure. This paper presents a new privacy-aware data
disclosure scheme that considers group privacy requirements of
individuals in bipartite association graph datasets (e.g., graphs
that represent associations between entities such as customers and
products bought from a pharmacy store) where even aggregate
information about groups of individuals may be sensitive and
need protection. We propose the notion of εg-Group Differential
Privacy that protects sensitive information of groups of individuals
at various defined group protection levels, enabling data users
to obtain the level of information entitled to them. Based on the
notion of group privacy, we develop a suite of differentially private
mechanisms that protect group privacy in bipartite association
graphs at different group privacy levels based on specialization
hierarchies. We evaluate our proposed techniques through exten-
sive experiments on three real-world association graph datasets
and our results demonstrate that the proposed techniques are
effective, efficient and provide the required guarantees on group
privacy.

I. INTRODUCTION

In the age of Big Data, organizations and governments
can obtain rich information and insights by mining large
volumes of data that are generated at an unprecedented ve-
locity, volume and scale[3], [6], [12]. Data privacy becomes
a critical barrier in effectively leveraging large-scale data
analytics due to serious privacy risks[1], [30]. Publishing and
maintaining data that contains sensitive information about
individuals is a challenging problem. Such sensitive datasets
may include private information such as medical information,
patient records, census information or sales transactions made
by customers. Private data also arise in the form of associations
between entities in real world such as the drugs purchased by
patients in a pharmacy store or the movies rated by viewers
in a movie rating database or the communication between
friends in an online social network[4], [8]. In general, the
associations between the entities (such as the drugs purchased
by an individual patient or the movies rated by an individual
viewer) are considered sensitive and such associations are
naturally represented as large, sparse bipartite graphs[8] with
nodes representing the entities (e.g., drugs and patients) and

the edges representing the associations between them (e.g.,
purchases of the drugs made by the patients).

Publishing real-world association data in a privacy-
conscious manner is critical for a number of purposes. For
instance, medical scientists may want to study the outbreaks
of new diseases based on the type of drugs administered to
patients and drug manufacturers may wish to perform business
analytics based on the purchase trends of the drugs. In the
past, data privacy schemes [7], [10], [13], [17], [18], [19],
[20], [25], [26], [27] have primarily focused on protecting
individuals’ information in sensitive datasets while allowing
aggregate information on groups of individuals. Differential
privacy [10] provides a model to quantify the disclosure
risks by ensuring that the published statistical data does not
depend on the presence or absence of a single individual’s
record in the dataset[10], [11]. These schemes developed with
an intrinsic assumption that all aggregate information in a
dataset is safe for disclosure do not consider the scenarios
when some aggregate information itself can be sensitive.
Sensitive information may arise either as: (i) an individual
sensitive value indicating an individual’s private information
(e.g., did buyer ‘Bob’ purchase the drug ‘insulin’?) in a
dataset or (ii) a statistical value representing some sensitive
statistics about a group/sub-group of individuals (e.g., the
total number of ‘Psychiatric’ drugs purchased by buyers in
a given neighborhood represented by a zipcode). Such group
privacy requirements may also result in multi-level privacy
controlled situations where data users may have different levels
of access to the data at different privacy levels. For example,
in a drug purchase association graph dataset, we may have
a need to protect group privacy at different protection levels
based on the access privilege of the data users. Some data
users (e.g., less privileged data analysts) may be allowed to
obtain graph structure and aggregate information for a larger
group size (e.g., the number of purchases of ‘Psychiatric’
drugs in the city of ‘Pittsburgh’) while some other more
privileged data users may have access to the same information
at smaller group sizes (e.g., the number of ‘Psychiatric’ drugs
purchased in the zipcode ‘15206’ within ’Pittsburgh’). While
existing mechanisms [7], [10], [13], [19], [20], [26], [27],
[31] have focused on protecting individual’s sensitive values
in datasets, this paper proposes a privacy-preserving data pub-
lishing mechanism addressing group privacy when aggregate
information about groups of individuals can be sensitive and
needs protection.



PID DOB Sex Zipcode
P1 7/18/87 F 19130
P2 2/17/83 M 90031
P3 5/07/77 M 94107
P4 1/5/76 F 19181
P5 8/4/82 M 94177
P6 3/9/79 M 90101
P7 4/10/64 M 15203
P8 2/6/81 F 15217

TABLE I: Patients

DID Drug name Sub category Main category
D1 CItalopram SSRIs Antidepressants
D2 Phenelzine MAOIs Antidepressants
D3 Erythromycin Macrolide Antibiotic
D4 Selegiline MAOIs Antidepressants
D5 Azithromycin Macrolide Antibiotic
D6 Cephalosporin Beta-Lactams Antibiotic
D7 Penicillines Beta-Lactams Antibiotic
D8 Fluoxetine SSRIs Antidepressants

TABLE II: Drugs

Concretely, this paper makes the following key contri-
butions: We first propose the notion of εg-group differential
privacy that provides guaranteed protection of aggregate infor-
mation of a group of individuals in a given dataset. Second,
based on the notion of εg-group differential privacy, we study
the group privacy problem (Section 2) in the context of bipar-
tite associations graphs and develop a suite of differentially
private mechanisms (Section 3) that guarantee group privacy
at variously defined group granularity levels. We show that
this model can be used to support multi-level privacy that
provides different levels of group granularity to users based on
access privileges. Finally, we evaluate the proposed techniques
through extensive experiments on three real-world association
graph datasets (Section 4) and our results demonstrate that
the proposed techniques are effective, efficient and provide the
required guarantees on group privacy.

II. CONCEPTS AND MODELS

In this section, we review the fundamental concepts related
to association graphs and define the group privacy-aware
multi-level privacy protection problem. We also review the
conventional differential privacy model for protecting indi-
vidual privacy and present the proposed notion of εg-group
differential privacy.

A. Bipartite Association Graphs
We represent a bipartite graph as BG = (V,W,E). The

graph BG consists of m = |V | nodes of a first type and
n = |W | of a second type and a set of edges E ⊆ V ×
W .Thus, a bipartite graph can be simply represented as a set of
two-node pairings, where a two-node pairing (a, b) represents
an edge in E between node a ∈ V and node b ∈ W . For
instance, the bipartite graph could represent the associations
of patients and drugs based on the purchases made by them or
the movies watched by individual viewers in a movie rating
database. In that case, the set of nodes, V represents patients
and W represents drugs and any edge (p, d) in E will represent
the association that the patient p bought the drug d. We note
that these association graphs are quite sparse. Each patient
buys only a very small subset of the set of all available drugs.
Similarly, each viewer watches and rates only a small subset of
all available movies. We show an example of such a bipartite
graph in Figure 1 where the nodes represent drugs and patients
and the edges represent the drugs purchased by the patients.
The details of the patients and drugs are shown in Tables I -
II and the associations are shown in Table III.

B. Group Privacy and Multi-level protection
Sensitive information in an association graph may arise

either as: (i) an individual sensitive value indicating an indi-
vidual’s private information (e.g., did buyer ‘Bob’ purchase
the drug ‘insulin’?) or (ii) a statistical value representing some
sensitive statistics about a group/sub-group of individuals (e.g.,
the total number of ‘Psychiatric’ drug purchases made by

PID DID
P1 D6
P2 D1
P3 D4
P3 D7
P4 D6
P5 D8
P6 D2
P7 D3
P7 D8
P8 D5
P8 D7

TABLE III: Associations Fig. 1: Graph

buyers in a given neighborhood represented by a zipcode).
While existing mechanisms[7], [10], [13], [19], [20], [26],
[27], [31] have focused on protecting individual’s sensitive
values, this paper proposes a privacy-preserving data pub-
lishing mechanism addressing group privacy concerns when
aggregate information about groups of individuals is sensitive
and needs protection. In a drug purchase association graph,
one may need to protect group privacy at different protection
levels depending on the access privilege of the data users. For
instance, in the example shown in Figure 3, some data users
(e.g., less privileged data analysts) may be allowed to access
the published graph at access level, L2. Such a user can infer
the structural properties and aggregate information at course
granular groups (e.g., the total number of antidepressants pur-
chased by California residents). Some other higher privileged
data users may be allowed to access the graph at access level,
L1 in which he/she may obtain information about fine-grained
groups in the graph (e.g., how many residents in San Francisco
purchased a SSRIs type antidepressant?).

In general, the queries in a bipartite association graph
may use the graph structure characteristics in addition to
attribute predicates (e.g., in the drug purchase dataset, the
number customers in the Zipcode 30323 who had purchased
3 or more different kinds of antibiotic drugs will require
structural characteristics of the graph for processing). Thus, the
group privacy-aware graph perturbation process should retain
as many structural properties as possible after the perturbation
process. We next introduce the notion of conventional differen-
tial privacy that protects the inference of a single individual’s
record in a dataset.

C. Differential Privacy
Differential privacy is a classical privacy definition [10] that

makes conservative assumptions about the adversary’s back-
ground knowledge and protects a single individual’s privacy
by considering adjacent data sets which differ only in one
record. Formally, a data set D can be considered as a subset of
records from the universe U , represented by D ∈ N|U |, where
N stands for the non-negative set and Di is the number of
element i in N. For example, in the case of a bipartite graph, if
U = {(a, c), (a, d), (b, d)}, D = {(a, c), (a, d), (b, d)} can be
represented as {1, 1, 1} as it contains each element of U once.
Similarly, D′ = {(a, c), (b, d)} can be represented as {1, 0, 1}
as it does not contain {(a, d)}. Based on this representation,
it is appropriate to use l1 distance (Manhattan distance) to
measure the distance between data sets.

DEFINITION 1 (DATA SET DISTANCE): The l1 distance
between two data sets D1 and D2 is defined as ||D1 −D2||1,



which is calculated by:

||D1 −D2||1 =

|U |∑
i=1

|D1i −D2i |

The manhattan distance between the datasets leads us the
notion of adjacent data sets.

DEFINITION 2 (ADJACENT DATA SET): Two data sets
D1, D2 are adjacent data sets of each other if ||D1−D2||1 =
1.

Based on the notion of adjacent datasets defined above,
differential privacy can be defined formally as follows.

DEFINITION 3 (DIFFERENTIAL PRIVACY): A
randomized algorithm A guarantees (ε, δ)-differential
privacy if for all adjacent data sets D1 and D2 differing by at
most one record, and for all possible results S ⊆ Range(A),

Pr[A(D1) = S] ≤ eε × Pr[A(D2) = S] + δ

where the probability space is over the randomness of A.

Differential privacy ensures that even when the adversary
knows all the records in a data set D except that of a target
individual, the probability of inferring that information is
restricted by an upper bound.

D. Group Differential Privacy

In this work, we extend the conventional notion of differ-
ential privacy model to protect group privacy at various group
granularity levels. We focus on the scenarios where one needs
to protect group-level privacy in addition to individual privacy,
where a group consists of a set of individuals. We define the
proposed notion of εg - group differential privacy by con-
sidering adjacent data sets from a group privacy perspective.
Figure 2(a) shows an example dataset of patients (with patient
IDs, PID) belonging to different zipcodes. In Figure 2(b), we
partition the universe, U into N non-overlapping subgroups,
U = ∪ni=1Gi, G = {G1, ..., Gn} with each record of U joining
only one subgroup Gi ∈ G. Here N represents the natural
number set. Therefore, the overall data set space can be repre-
sented as D = {Di|Di = ∪i∈IGi, Gi ∈ G, I ⊆ {1, ..., N}} as
shown in Figure 2(c). This leads to a number of group-level
adjacent data sets as shown in Figure 2(d). Formally, group-
level adjacent data sets are defined as

DEFINITION 4 (GROUP-LEVEL ADJACENT DATA SETS):
Two data sets D1 and D2 are group-level adjacent data sets
of each other if ∃Gi ∈ G such that D1 = D2 ∪Gi.

Thus the notion of εg- group differential privacy based on level
adjacent datasets is defined as

DEFINITION 5 (GROUP DIFFERENTIAL PRIVACY): A
randomized algorithm A guarantees εg- group differential
privacy if for all adjacent data sets D1 and D2 differing
by at most one group, Gi ∈ G, and for all possible results
S ⊆ Range(A),

Pr[A(D1) = S] ≤ eεg × Pr[A(D2) = S]

where the probability space is over the randomness of A.

E. Differential Privacy Mechanisms

Many randomized algorithms have been proposed to guar-
antee differential privacy. We briefly introduce the most com-
monly used differentially private mechanisms namely the
Laplace Mechanism[10], the Gaussian Mechanism[11] and the
Exponential Mechanism[22].

Laplace Mechanism: Given a data set D, a function f
and the budget ε, the Laplace Mechanism first calculates the
actual f(D) and then perturbs this true answer by adding a
noise[10]. The noise is calculated based on a Laplace random
variable, with the variance λ = 4f/ε, where 4f is the l1
sensitivity.

DEFINITION 6 (l1 SENSITIVITY [11]): Given a function
f : N|U | → Rd, the l1 sensitivity is measured as:

4f = max
D1,D2∈N|U|
||D1−D2||1=1

||f(D1)− f(D2)||1

where ||f(D1)−f(D2)||1 = |f(D1)−f(D2)| is the Manhattan
Distance.

In other words, l1 sensitivity measures the maximum im-
pact that can be caused by changing a single record. It is only
related to the function f itself, but independent of the data
sets.

DEFINITION 7 (LAPLACE MECHANISM [10]): Given a
function f : N|U | → Rd, a budget ε and a data set D, for
each output,

ALM (D, f, ε) = f(D) + Lap(4f/ε)

where Lap(4f/ε) is a random variable sampled from the
Laplace distribution with 0 mean and 4f/ε variance.

Gaussian Mechanism: Instead of adding Laplace noise
to achieve (ε, 0)-differential privacy, it is possible to achieve
(ε, δ)-differential privacy using a Gaussian noise[11]. When δ
is small, the gap between the two privacy level is small.

DEFINITION 8 (l2 SENSITIVITY [11]): Given a function
f : N|U | → R, the l2 sensitivity is measured as:

42f = max
D1,D2∈N|U|
||D1−D2||1=1

||f(D1)− f(D2)||2

where ||f(D1) − f(D2)||2 =
√
|f(D1)− f(D2)|2 is the

Euclidean Distance.

For real-valued functions, ||f(D1)−f(D2)||1 = ||f(D1)−
f(D2)||2, so 4f = 41f = 42f .

DEFINITION 9 (GAUSSIAN MECHANISM [11]): Given a
function f : N|U | → R, a budget ε ∈ (0, 1), a δ and a data
set D, for each output,

AGM (D, f, ε) = f(D) +Gaus(c42f/ε)

where Gaus(c42f/ε) is a random variable sampled from the
Gaussian distribution with 0 mean and c42f/ε variance, and
c2 > 2ln(1.25/δ)
Exponential Mechanism: Unlike Laplace Mechanism and
Gaussian Mechanism, the Exponential Mechanism is proposed
to give differential privacy for non-numerical data sets[22].
Given an output range R, a utility function u : (D×R)→ R



(a) Universe U (b) Group space G (c) Data set space D (d) Group adjacent
data setsFig. 2: Group-level adjacent data sets

is designed to assign a score for each r ∈ R, where higher
scores means higher utility and is expected to be given
higher probability to be chosen. Therefore, the exponential
mechanism builds a probability distribution over the whole
range R and takes one sample as the output. The sensitivity
of utility function u is

4u = max
D1,D2∈N|U|
||D1−D2||1=1

|u(D1, r)− u(D2, r)|

DEFINITION 10 (EXPONENTIAL MECHANISM [22]):
Given a budget ε, a data set D, an output range R and a
utility function u : (D×R)→ R, the Exponential Mechanism
AEM selects and outputs each r ∈ R with probability
proportional to exp( εu(D,r)24u ).

In the next section, we employ these differential privacy
mechanisms to develop group differential privacy aware mech-
anisms for disclosure of association graphs.

III. GROUP PRIVACY-AWARE DISCLOSURE

We present our proposed techniques for supporting group-
privacy aware disclosure bipartite association graphs consider-
ing the guarantees of group privacy requirements in a dataset.
Our proposed approach consists of two parts: (i) the first
part of the proposed approach, namely DiffPar hierarchically
partitions and groups the nodes and edges of the given associ-
ation graph into different levels of granularity of disclosure
in terms of group size considering the sensitivity of the
formed groups and (ii) the second component of the algorithm,
namely DiffAggre performs a bottom-up aggregation and noise
injection to guarantee εg-group differential privacy in the
published dataset. In DiffPar, the groups on the left and
right sides of a bipartite graph are specialized iteratively and
partitioned into a set of fine granular smaller sub groups. Each
left subgroup is connected to one or more right subgroups
through associations (edges), forming a subgraph. Therefore,
after n specializations, the raw graph is partitioned up to 4n

subgraphs. DiffPar employs an exponential mechanism[22] to
ensure that the partitioning process is differentially private.
After the input graph is specialized and partitioned using
DiffPar, DiffAggre injects carefully calibrated Gaussian noise
to ensure group differential privacy of each group at a given
privacy level. The proposed approach protects against the
inference of the number of edges between the sub groups
(within the subgraphs) through the injection of random noise
while retaining the structural properties of the subgraphs even
after the addition of the random noise. We illustrate these
algorithms in detail in the following subsections.

A. Top-down Group Partitioning
The objective of the DiffPar partitioning algorithm is to

partition the nodes of the bipartite graph through a series
of specializations such that the sensitivity for each level in
the classification hierarchy is minimized. In other words, the
algorithm tries to reduce the noise required to be injected
for guaranteeing group differential privacy. An example of
the partitioning process of DiffPar is shown in Figure 3
where a three level classification is obtained as a result of
two specializations. The level L3 in the figure indicates the
raw input association graph with node IDs namely ‘Patient
ID’ and ‘Drug ID’ and with attributes namely ‘Zipcode’ and
‘Drug name’. Each specialization of this raw graph splits both
the left group represented by ‘All Zipcodes’ and the right
group represented by‘All drugs’ to two sub-groups and creates
2X2 subgraphs for level L2. The subgroups are represented
by ‘Pennsylvania-Antidepressants’, ‘Pennsylvania-Antibiotic’,
‘California-Antidepressants’ and ‘California-Antibiotic’ re-
spectively. By performing another specialization for each of the
four subgraphs at level L2, we can generate 4X4 fine-grained
subgraphs for level L1. In this way, subgraphs at different
levels can be disclosed to users with different privileges.
Typically, with higher privilege, users can obtain more fine-
grained subgraphs. However, before subgraphs at a certain
level, say La, are released, noises are injected to protect group
differential privacy for a lower level, say Lb where b < a
such that the disclosed data guarantees the required group
privacy. We denote such group-differentially private bipartite
graph disclosure as L′a(b) that represents that subgraphs at level
a are disclosed with group differential privacy protection for
fine-grained subgraphs at level b in the disclosed data. We refer
to La as the disclosure level and Lb as the protection level.
For example, L′2(1) in Figure 3 denotes that in the disclosed
data, data users can view the 4 subgraphs at disclosure level
L2 while group differential privacy of the 16 fine-grained
subgraphs at protection level L1 is protected.

In order to reduce the required noise under a fixed budget
to protect group differential privacy, the sensitivity needs to
be minimized during the specialization and splitting process.
For example, if a user is allowed to access the count of
edges within each subgraph at level L3 with group differential
privacy protected for level L2, the sensitivity in this context
refers to the maximum contribution by a single subgraph at
level L2. If the entire bipartite graph contains 20000 edges,
theoretically the contribution (in terms of edge count) of level
L2 subgraph can be any value in the range [0, 20000]. There-
fore, the maximum influence caused by changing one level



Fig. 3: top-down group partitioning

L2 subgraph is the maximum value within this range, namely
20000. Such a high sensitivity can generate an unacceptably
higher noise to guarantee εg-group differential privacy, making
the final published data less useful. A key objective of the
partitioning is to provide an upper bound on the maximum
number of edges that can be contained in a subgraph at a given
hierarchy level (eg., level L2). Given that association graphs
are extremely sparse (i.e., a single buyer buys only a few drugs
among the list of all available drugs in a pharmacy store, a
single viewer watches only a very small subset of all movies
available in a movie database), we note that it is possible to
drastically reduce the sensitivity of the partitioned graph using
an appropriate differentially private node grouping. Inspired
by this observation, the proposed DiffPar aims to determine
the most appropriate split points in the specialization to intelli-
gently partition the bipartite graph to minimize the group-level
sensitivity while operating the algorithm under a differential
privacy budget. DiffPar achieves the minimized sensitivity
through a three-step process. First, after one specialization in
each subgroup at level Li (i ∈ [2, n] where n is the total
number of levels), the number of edges E within this subgraph
is divided into four parts, namely E1, E2, E3, E4, where
E1+E2+E3+E4 = E. For example, in Figure 3, the total
number of edges E = 11 between the left group All Zipcode
and right group All drug at level L3 is composed of E1 = 1,
between group Pennsylvania and group Antidepressants,
E2 = 5, between Pennsylvania and Antibiotic, E3 = 4,
between California and Antidepressants and E4 = 1,
between California and Antibiotic at level L2. Depending
on the selection of split points, the values of E1, E2, E3, E4
are varied, but only the maximum value among them,
max{E1, E2, E3, E4}, decides the maximum influence of
these four level Li−1 subgraphs which in turn decides the level
sensitivity. We use s = max{E1, E2, E3, E4} to represent a
split option for a subgraph, namely the selection of a pair
of left and right split points. If all the possible split options
for a subgraph, which can be generated by randomly or
uniformly selecting the pairs of split points, are denoted by
∪Splitk, we will have s ∈ ∪Splitk. Second, to minimize the
influence of the four subgraphs at level Li−1, the minimum
s need to be selected from ∪Splitk in a differentially private
manner while splitting the subgraph at level Li. In order to
preserve differential privacy, DiffPar employs an exponential
mechanism with the utility function designed as:

u(subgraph,∪Splitk) =
1

s−min(∪Splitk) + 1

where min(∪Splitk) denotes the minimum s within ∪Splitk.
Since s ≥ min(∪Splitk), the maximum change of u happens

when s changes from min(∪Splitk) + 1 to min(∪Splitk),
thus giving the sensitivity 4u = 1 − 1

2 = 1
2 . The selected s

represents the highest contribution of the 4 subgraphs at level
Li−1 after splitting, denoted by senSub. Finally, the first two
steps are repeated for all the subgraphs at level Li to split each
of them to 4 smaller subgraphs at level Li−1 while minimizing
the influence of all the subgraphs at level Li−1. Once all level
Li subgraphs are split to level Li−1 subgraphs, the maximum
number of edges contained by a level Li−1 subgraph, namely
max(senSub), naturally becomes the group-level sensitivity
of level Li−1 as it would be the maximum influence caused
by changing any one subgraph at level Li−1.

Algorithm 1: DiffPar
Input : Bipartite graph BG, privacy budget ε and number of specializations n.
Output: Partitioned bipartite graph B̂G (the subN ), level sensitivities senN .

1 Sort both left and right sides based on one attribute;
2 Initialize senN , subN to record sensitivities and subgraphs for specializations;
3 subN(0)← BG;
4 ε′ = ε

n ;
5 for i = 1 to n do
6 Initialize senSub to record subgraph sensitivities;
7 for each subgraph ∈ subN(i− 1) do
8 Determine ∪Splitk;
9 Select s ∈ ∪Splitk ∝ exp ε′u

24u ;
10 senSub← s;
11 Split this subgraph with s;
12 subN(i)← split results;
13 end
14 senN(i)← max{senSub};
15 end

In DiffPar (Algorithm 1), initially, after sorting the bipartite
graph (line 1), senN and subN are initialized to record
sensitivity and subgraphs for each specialization respectively
(line 2). Specially, subN(0) records the input BG as the graph
without specialization (line 3). After that, the entire privacy
budget is equally divided (line 4) for the n specializations
(line 5 to 15). Within one specialization, the senSub is
first initialized to record the subgraph sensitivities (line 6).
Then, for each subgraph in the current level before the nth
specialization (line 7 to 13), a set of split options is determined
(line 8), where the option s is selected through exponential
mechanism (line 9). After recording s in senSub (line 10),
we split this subgraph with the pair of split points in option
s (line 11) and record the split results in subN(i) (line 12).
After we collect senSub from all the subgraphs in this level,
the maximum one is the sensitivity of this level (line 14). We
next show that the algorithm is differentially private.

Theorem 1: DiffPar is ε-differentially private.



Fig. 4: Bottom-up sub-graph perturbation

Proof: In line 4, the entire budget is divided into n parts for
the n specialization based on sequential composition[23]. To
achieve ε-differential privacy, we need each specialization to
guarantee ε

n -differential privacy. For each specialization, based
on parallel composition [23], the splittings of subgraphs share
the same budget. Therefore, each subgraph splitting should
preserve ε

n -differential privacy, which is guaranteed by the use
of Exponential Mechanism[22] in line 9.

B. Bottom-up Sub-graph Perturbation

In the bottom-up sub-graph perturbation process, the par-
titioned graph produced by DiffPar is perturbed through a
proposed mechanism called DiffAggre that implements a care-
fully calibrated noise injection and structure-preserving graph
perturbation to guarantee group privacy at each hierarchy level.
Before presenting the details of noise calibration and structure-
preserving subgraph perturbation process in DiffAggre, we
briefly review its design goals.

1) Design Goal: The goal of the sub-graph perturbation
and noise calibration is to protect the inference of the edges
between different sub-groups of the exposed differentially
private graph under the guarantees of εg-group differential
privacy. Precisely, when a differentially private perturbed out-
put graph is published, a data user accessing the graph at
a given access privilege level should not be able to infer
any aggregate information in terms of the edges between the
subgroups at any granularity finer than what is entitled to
the user. For example, if the user’s access privilege is at
level, L2 in Figure 3, the data user may be able to access
information at the level L2’s subgroup granularity such as the
total number of purchases of Antidepressant drugs made by
Pennsylvania buyers. Additionally, the data user may also be
able to obtain the structural properties (e.g., queries related to
the edge distribution within the subgraph) of the subgraphs at
level, L2. However, the user at level, L2 should not be able to
infer any finer level information like the number of purchases
of SSRIs antidepressants purchased by buyers in Pittsburgh,
which is only entitled to data users of level, L1.

A key property that we require in the noise injection
process of DiffAggre is that the noise that is added to guarantee
the group differential privacy requirements of the lower levels
should be reusable for the higher levels so that the overall noise
at the higher levels can be minimized. This motivates the use
of a Gaussian Mechanism in DiffAggre instead of a Laplace
mechanism as it is true for any two Gaussian-distributed
random variables X ∼ G(µX , σ

2
X) and Y ∼ G(µY , σ

2
Y ),

the sum of them Z = X + Y ∼ G(µX + µY , σ
2
X + σ2

Y )
also follows Gaussian distribution. This property of Gaussian

distribution facilitates the addition of Gaussian noise at each
access privilege level during the perturbation process.

2) Graph Structure-preserving Noise Injection: The noise
injection process adds a carefully calibrated random Gaussian
noise in terms of the number of noisy edges to the grouped
graph at various hierarchical levels. Figure 4 shows an example
of the noise injection process in DiffAggre. The graph in Figure
4 represents the output partitioned graph provided by the top-
down partitioning in DiffPar(Figure 3). The noise injection in
Figure 4 starts from groups in level L1 and ends at groups in
level L3.

A key challenge in the noise injection process is to ensure
that the perturbed noise added graph still retains the structural
properties of the original graph. For example, in a drug-
purchase association graph, the node distribution within a
subgroup of buyers would represent information about the
buying trends of the top buyers in that group. If such a
group after noise injection loses the structural properties, then
a data user trying to obtain the node distribution statistics
about the buying trends of the top buyers will not be able to
obtain that information. To achieve a structure-preserving noise
injection, DiffAgree employs the dK-graph model [21], which
uses degree correlations of subgraphs to represent the graph
structure. dK captures the structure of a graph at different
levels of detail into statistics called dK-series [29], [25]. The
dK-series is the degree distribution of connected components
of some size K within a target graph. For example, dK − 1
captures the number of nodes with each degree value, i.e. the
node degree distribution. dK − 2 captures the number of 2-
node subgraphs with different combinations of node degrees,
i.e. the joint degree distribution. When dK − 2 graph model
is used, a graph is described by the edges within it where
each edge is represented by the degree of its two terminals.
For a subgraph, its DK-series are first extracted to represent it,
which contains both the information of number of edges and
graph structure (node/edge degrees) that need to be retained
during the noise injection. The noise injection process then
calibrates a deterministic noise in terms of the number of
edges that need to be injected into the subgraphs. Based on
Definition 9 on Gaussian mechanism, once δ is decided, the
value of c can be calculated, which determines the variance of
Gaussian distribution with ε and sensitivity 42f . Therefore,
each subgraph samples a random variable following Gaussian
distribution Gaus(c42f/ε) and it is calibrated as the number
of edges that need to be injected to perturb the number of
edges within this subgraph.

We present the pseudo-code of the Botton-up Aggregation,
DiffAggre algorithm in Algorithm 2. Initially, V is initialized



to record the variances for all the levels (line 1). Then, for
each level (line 2 to 18), the sensitivity is selected (line 3) to
calculate the variance (line 4 to 5). From line 6 to 16, the noises
are injected for several times. In each time, the aggregated
noises can be reused to reduce the variance (line 8 to 10)
first. After that, the reduced variance is used to inject noise to
each subgraph through Gaussian Mechanism (line 11 to 14).
Once all the noises have been generated, the new variances
are recorded in V (line 15). After noise injection, the graph
perturbation is implemented (line 17).

Algorithm 2: DiffAggre
Input : Partitioned bipartite graph B̂G, privacy budget group and structure

εg, εs, the sensitivities for each specialization senN , the total number
of levels n, the required number of specializations for each level Spe.

Output: Perturbed bipartite graph B̃G.
1 Initialize V to record the variances for all the levels;
2 for i = 0 to n− 1 do
3 sen = senN(Spe(i));
4 δ = sen

εg

n(n−1)
2 ;

5 δ2real = δ2;
6 for j = n to i+ 1 do
7 Initialize a list V ar to record the variances;
8 for t = 1 to j do
9 δ2real = δ2real − aggre{Vt};

10 end
11 for each subgraph in level j do
12 noise = Gau(δreal);
13 record δ2real in V ar;
14 end
15 record V ar in Vj
16 end
17 Pert(level (i+ 1));
18 end

Theorem 2: DiffAggre is (ε, δ)-differentially private.

Proof: In DiffAggre, there are n(n−1)
2 possible group-

differentially private bipartite graph disclosures. Based on
parallel composition, all the subgraphs in the same level share
the same budget. So the entire budget ε can be divided into

2
n(n−1)εg fractions to be used by the Gaussian Mechanism,
making the entire DiffAggre process differentially private .

IV. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the performance

of the proposed group differential privacy-aware data disclo-
sure algorithms. Before presenting the results, we first briefly
describe the experimental setup.

Datasets Left-side node Right-side node Edges
Amazon 1851132 252331 2982326
Song 992 1084620 4413834
Movie 69878 10677 10000054

TABLE IV: Summary of bipartite graph datasets

A. Experimental setup
The proposed differentially private partitioning and graph

perturbation algorithms were implemented in Java with an
Intel Core i7 2.70GHz PC with 16GB RAM and evaluated
using three datasets including the Amazon product review
dataset [16], Last.fm songs dataset [5] and MovieLens 100k
dataset [15] (Table IV). The Amazon dataset consists of nodes
representing users and products in health and personal care
category and edges represent the individual ratings. The Song
dataset has users as the left-side nodes and songs as the right

side nodes and edges represent individual ratings. The Movie
dataset describes ratings of movies (right-side nodes) made by
users (left-side nodes).

B. Experimental results
Our experimental evaluation consists of three parts. First,

we evaluate the amount of noise required for protecting εg-
group differential privacy for different protection levels using
the three datasets. Then, the performance of Diffpar and
DiffAggre to protect various εg-group differential privacy levels
is analyzed. Finally, we study the impact of varying the
specialization depth on the obtained results. We use relative
error rate (RER) as a metric to measure the accuracy of
the disclosed differentially private data. For level Li with
m subgraphs, we can first calculate absolute error AEj =
|PCj − TCj | (j ∈ [1,m]) for each subgraph, where PCj de-
notes perturbed edge count and TCj denotes true edge count.
Then, relative error rate is calculated as RER =

∑m
j=1 AEj

Total ,
where Total represents true edge count of the entire bipartite
graph. Without any privacy protection, with no noise injected,
RER = 0. Thus, a lower RER represents higher data utility
as more accurate information can be retained in the published
data.

1) Impact of εg with varying group protection levels: Our
first set of experiments evaluates the amount of noise required
for protecting various group protection levels. Specifically, for
each bipartite graph, we run DiffPar to do seven specializations
so that eight levels, denoted by Li(1 ≤ i ≤ 8) are formed,
where L8 represents the original graph without partitioning and
L1 contains the most fine-grained subgraphs. Here, adjacent
levels differ by only one specialization (similar to the example
shown in Figure 3). By injecting different amount of noise into
the original L8 bipartite graph, different levels, from L6 to L1,
can be protected. Intuitively, with less noise (lower RER), εg-
group differential privacy can be achieved for lower levels with
finer-grained subgraphs. However, with higher noise (higher
RER), higher levels with coarser-grained groups can also be
protected. We measure the relative error, RER for six possible
disclosures L′8(j)(1 ≤ j ≤ 6) that represent fixed disclosure
level L8 and varying group protection levels Lj , 1 ≤ j ≤
6. Here, the privacy budget for DiffPar is set to 1 while the
privacy budget for one level noise injection in DiffAggre is
varied from 0.999 to 0.1. The value of δ is set to 0.001 for all
the experiments.

The results for achieving εg-group differential privacy for
three higher levels L6, L5, L4 with coarse-grained subgraphs
is shown in Figure 5 and the results for the three lower
levels L3, L2, L1 with fine-grained subgraphs is shown in
Figure 6. Here, all the three datasets (A=Amazon, S=Song,
M=Movie) are used and compared. First we observe that
for all datasets, RER for L′8(a) is always higher than RER
for L′8(b)(b ≤ a) which shows that more noise is required
to protect group differential privacy for higher levels. The
reason is that sensitivity for higher levels is always higher
than sensitivity for lower levels. Second, we note that when
εg is varied, smaller εg makes RER larger. Specifically, when
εg = 0.999, all the disclosures from L′8(1) to L′8(6) show
small relative error and L′8(1) generates RER less than 1%
for all tested datasets. Their RER upper-bound increase to
17% at L′8(5) and finally reaches 35% at L′8(6). As can be
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Fig. 5: Impact of εg for protecting coarse-grained subgraphs
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Fig. 6: Impact of εg for protecting fine-grained subgraphs
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seen, users accessing level L8 with noise protecting level L6

are given highly perturbed information. After that, as εg is
decreased, RER for all the disclosures gradually increases.
When εg goes down to 0.1, the budget is highly restricted and
hence more noise has to be injected. It makes the RER for all
the disclosures increase significantly, especially for L′8(6) and
L′8(5). However, their RER upper-bound reduces for L′8(4) and
L′8(3) to be 5% and 2% respectively to provide higher utility for
users with higher privilege. Finally, by comparing the results
from the three different datasets, we found that the Amazon
dataset and the Movie dataset show highest and lowest RER
respectively for L′8(6), L

′
8(5) and L′8(4) in Figure 5. However,

it is interesting to find that their performance is opposite for
L′8(3), L

′
8(2) and L′8(1) in Figure 6. The difference is mainly

impacted by sensitivity, which is related to the features of the
datasets. As we have discussed, each specialization splits a
subgraph into four smaller sub graphs and therefore reduces
the sensitivity since the maximum contribution of the smaller
subgraphs is usually smaller than the original parent subgraph.
We measure sensitive ratio that captures the reduction of the
sensitivity after the specialization in comparison to the sensi-
tivity before specialization. Ideally, the sensitivity ratio after
each specialization is 4. However, due to the error introduced
in the exponential mechanism in partitioning, sensitivity ratio
is always smaller than 4 in practice. We present the sensitivity
ratio of all seven specializations for the three datasets in
Figure 7. As can be seen, during the first three specializations,

Amazon dataset has the highest ratio while Movie dataset
has the least ratio. The key reason is due to the difference
between the average node degree of the datasets. With much
higher average node degree, Movie dataset is more influenced
by the skewed node degree distribution, which results in
smaller sensitivity ratio that does not get adjusted fast during
the first few specializations. However, during the last four
specializations, because of highly partitioned groups and larger
volume of edges, sensitivity ratio of Movie dataset becomes
high, which results in smaller sensitivity and lower RER in
Figure 6(c).

2) Impact of εg for varying Group Disclosure levels: This
set of experiments evaluates the performance of the DiffPar
and DiffAgree algorithms to protect group-differential privacy
at various group disclosure levels with varying εg . For this
experiment, the DiffPar partitions the entire bipartite graph into
3 levels through 7 specializations, where level L3 is the entire
bipartite graph while level L2 and L1 are generated through
3 and 7 specializations respectively. In addition, we consider
traditional differential privacy protection for the inference of a
single edge at the lowest level L0 with group size 1. Therefore,
there are six possible disclosures, namely L′3(0), L

′
2(0), L

′
1(0),

L′3(1), L
′
2(1) and L′3(2) and the privacy budget for DiffPar is

set as 1 while εg for noise injection in DiffAggre is changed
from 0.999 to 0.1. The RER values of the six disclosures with
varying εg are measured.

The results for three datasets are shown in Figure 8. First,
it is clear that there is a huge gap of RER between L′2(1),
L′3(2) and other disclosure levels. A larger RER for Ia,b can
be attributed to two factors, namely sensitivity of level Lb
and number of subgraphs at level La. For L′3(0), L

′
2(0) and

L′1(0), level L0 has sensitivity as low as 1. For L′3(1), although
sensitivity for level L1 becomes larger, there is only 1 graph
at level L3. Therefore, RER increases significantly. From this
perspective, L′2(1) has both higher L1 sensitivity and a larger
number of subgraphs in L2 while L′3(2) has high L2 sensitivity,
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Fig. 8: Impact of εg for varying Group Disclosure levels
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Fig. 9: Impact of depth of specialization

which results in larger RER. Second, we can see that the Movie
dataset shows significantly lower RER for all values of εg
for all disclosures compared to Amazon and Song datasets.
For L′3(0), L

′
2(0) and L′1(0), theoretically, all datasets suffer

from the same amount of noise as L0 sensitivity is always
1. However, since Movie dataset has the largest number of
edges, RER of Movie dataset becomes lower. For L′3(1) and
L′2(1), as we have discussed, Movie dataset has the smallest
L1 sensitivity after 7 specializations. It results in lower RER
at these two disclosures. For L′3(2), from Figure 7 we can find
that Movie dataset has higher sensitivity after 3 specialization
and therefore higher L2 sensitivity. As a result, Movie dataset
has the largest difference between RER of L′3(2) and RER
of L′2(1) because of its higher L1 sensitivity among the three
datasets.

3) Impact of depth of specialization: This set of experi-
ments evaluates the performance of DiffPar and DiffAgree al-
gorithms by varying the depth of specialization of the disclosed
association bipartite graph. For this experiment, we consider
levels L3 to L0 but we vary the specialization depth, namely
the number of specialization steps required by DiffPar to
generate subgraphs at L1. We denote the specialization depth
as d. Then, L1 requires d specializations and L2 requires bdc
specializations. The privacy budgets for DiffPar is set to 1 and
εg for DiffAggre is set to 0.999. The relative error rates, RERs
for L′3(0), L

′
2(0), L

′
1(0), L

′
3(1), L

′
2(1) and L′3(2) are measured.

The results for the three datasets are shown in Figure
9. As can be seen, Amazon and Song datasets have quite
similar performance, which is very different from that of
the Movie dataset. Movie dataset has the highest RER at
d = 4. This can be explained by the change of sensitivity
ratio in Figure 7. The sensitivity ratio of Movie dataset is
the lowest after 3 specializations and then becomes higher
during the later 4 specializations. Therefore, the last four
specializations primarily improve the performance for Movie
dataset. When specialization depth is low, none or few last

four specializations can be involved in, which results in lower
performance. However, by increasing specialization depth from
4 to 7, all the last four specializations can be included and
hence the Movie dataset demonstrates the best performance.

V. RELATED WORK

The problem of information disclosure has been studied
extensively in the framework of statistical databases. Samarati
and Sweeney [26],[27] introduced the k-anonymity approach
which has led to some new techniques and definitions such
as l-diversity [20] and t-closeness [19]. There had been some
work on anonymizing graph datasets with the goal of pub-
lishing statistical information without revealing information
of individual records. Backstrom et al. [2] show that in fully
censored graphs where identifiers are removed, a large enough
known subgraph can be located in the overall graph with high
probability. Ghinita et al. present an anonymization scheme for
anonymizing sparse high-dimensional data using permutation
based methods [14] by considering that sensitive attributes are
rare and at most one sensitive attribute is present in each group.
The safe grouping techniques proposed in [4], [8] consider
the scenario of retaining graph structure but aim at protecting
privacy when labeled graphs are released. But, as mentioned
earlier, these existing schemes have been focused on individual
privacy and do not provide support for group privacy.

Based on the concept of differential privacy[10], there
had been many work focused on publishing sensitive datasets
through differential privacy constraints [7], [13], [28]. Differ-
ential privacy had also been applied to protecting sensitive in-
formation in graph datasets such that the released information
does not reveal the presence of a sensitive element [9], [17],
[25]. Recent work had focused on publishing graph datasets
through differential privacy constraints so that the published
graph maintains as much structural properties as possible while
providing the required privacy [25]. But, as mentioned earlier,
these existing schemes do not support group privacy and



multi-level access to the published dataset. The preliminary
discussion of group privacy proposed in this work is briefly
introduced in a recent poster publication by the authors [24]. In
this paper, we propose the Diffpar and DiffAggre algorithms
that apply the proposed notion of group differential privacy
over bipartite association graph data to provide guaranteed
group differential privacy. To the best of our knowledge, our
work presented in this paper is the first significant effort
on providing guaranteed group privacy and multi-level group
privacy protection in a large-scale dataset such as association
graphs.

VI. CONCLUSION

Existing privacy-preserving data publishing techniques
have primarily focused on protecting the privacy of individual’s
information with the assumption that all aggregate (statisti-
cal) information about individuals are safe for disclosure. In
this paper, we have focused on scenarios when aggregate
information about a group of individuals can be sensitive
and needs protection. We proposed the notion of εg-Group
Differential Privacy and studied the problem of group privacy
protection in the context of bipartite association graphs. We
developed a suite of differentially private mechanisms that
guarantee group privacy requirements of users, allowing data
users to obtain different levels of information based on the
group privacy protection levels in the disclosed data. Extensive
experiments on real association graph data show that the
proposed techniques are effective, efficient and provide the
required level of privacy.
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