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Abstract—Healthcare can be considerably expensive for both
patients and insurance companies. In some cases, high costs in
healthcare are an indirect outcome of a low quality of care, for
example, when treatments have to be repeated. Unfortunately,
identifying the factors that lead to such repetitions is a complex
and challenging task. In this paper, we focus on the domain
of dental healthcare and develop an approach that can predict
treatment repetitions in the context of the implant denture
therapy process. The challenges associated with predicting
treatment repetitions in this setting are considerable. First,
hardly any patient undergoes the exact same series of treat-
ments like another. This results in a high degree of variation
in the data. Second, only a few patients experience treatment
repetitions. This lead to a highly imbalance in the data. To
address these challenges, we develop a prediction technique that
particularly exploits the process perspective. What is more, we
apply so-called resampling methods to deal with the imbalance
in the data. Our resulting model is able to predict treatment
repetitions with an AUC value of 0.69.

Keywords-process prediction; treatment repetitions; implant
denture therapy

I. INTRODUCTION

Healthcare can be considerably expensive for both patients
and insurance companies. Typically, such high costs are
caused by a combination of expensive medication, highly
customized treatments, and a large number of caregivers
that are involved in the delivery of care [1]. Sometimes,
however, high costs are also the indirect outcome of a low
quality of care [2]. Among others, this is the case when
treatments have to be repeated. As an example, consider
a patient receiving a dental implant. If certain steps of the
implant denture therapy process have to be repeated because
of an insufficiently fitting implant or a preventable infection,
the costs associated with the implant can be expected to
increase considerably.

Unfortunately, identifying the factors that lead to such rep-
etitions is a complex and challenging task. One reason is the
large number of parties that may be involved in the delivery
of care to a single patient: the general practitioner, medical
specialists, medical professionals within a hospital, etc.
Another reason is that in many medical domains different
patients may receive treatments from varying combinations
of these parties for the same health problem. While in theory

this variation should not affect the quality of care, data from
the healthcare domain suggests that it actually does [3].

In this paper, we focus on the domain of dental health-
care and develop a technique that can predict treatment
repetitions in the context of the implant denture therapy
process. We chose this particular process because it is one of
the most cost-intensive processes in dental therapy. Hence,
repetitions in this process have particularly severe financial
consequences for both patients and insurance companies.
The challenges associated with predicting treatment repe-
titions in the implant denture therapy process are twofold.
First, there are hardly any two patients who receive the
exact same series of treatments. Therefore, we need to
deal with a high degree of variation in the data. Second,
the fraction of patients experiencing treatment repetitions
is typically smaller than five percent. This means, we also
need to deal with a considerable imbalance in the data. To
address these challenges, we develop a prediction technique
that particularly exploits the process perspective [4], i.e., the
temporal order of treatments. What is more, we apply so-
called resampling methods to deal with the imbalance in
the data. Our resulting model is able to predict treatment
repetitions with an AUC value of 0.69.

The rest of the paper is structured as follows. Section II in-
troduces the implant denture therapy process and elaborates
on the problem we address. Section III discusses related
work and highlights the innovative aspects of our work.
Section IV develops our technique for treatment prediction.
Section V presents the results. Finally, Section VI discusses
the implications of our work before Section VII concludes
the paper.

II. PROBLEM ILLUSTRATION

The goal of this paper is to develop a technique for pre-
dicting treatment repetitions in the implant denture therapy
process. Figure 1 shows the main activities of the implant
denture therapy process using the Business Process Model-
ing and Notation (BPMN). It shows that the process starts
when a request from a patient is received. Such a request
can occur in the context of regular implant consultation or
also in the context of an emergency, for instance, when a
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Figure 1: Implant denture therapy process (simplified)

tooth is broken in an accident. Afterwards, several steps are
conducted before placing the actual implant. Most impor-
tantly, the caregiver will check whether a bone adjustment
is required (the jaw bone degenerates after losing a tooth
and might not be sufficient for "holding” the implant). If
this is the case, a respective bone adjustment treatment is
performed. Then the implant is placed. Once the implant is
suitable for the denture, the denture is placed in the jaw. If
everything went satisfactory, i.e., the implant fits well and
the patient did not experience any infections, the process
ends as illustrated in Figure 1.

While this is the case for the majority of patients, some
patients also encounter problems. In some cases, the denture
needs be replaced or the implant placement has to be
repeated. In a very few cases, even both is necessary. Since
such repetitions are very costly for the patient and the
insurance company, they should be avoided to the largest
possible extent. Given this setting, we operationalize the goal
of this paper as a multi-class classification problem with four
distinct classes:

o Class 0: No repetition

o Class 1: Repetition of the implant placement

o Class 2: Repetition of the denture placement

o Class 3: Repetition of implant and denture placement

The challenges associated with developing an appropriate
prediction model for this problem are twofold. First, there
are hardly any two patients receiving the exact same series
of treatments, resulting in a high degree of variation in the
data. Second, the fraction of patients experiencing treatment
repetitions is typically smaller than five percent, which
means the data is also highly imbalanced. In the next section,
we review related work in order to show to what extent prior
work has addressed these challenges.

III. RELATED WORK

In this paper, we adopt a process perspective, i.e., we
exploit information about the temporal order of the treat-
ments a patient undergoes. Thus, this paper most closely
relates to work in the area of process mining [5]. Within

the field of process mining, various approaches exist for
predicting relevant aspects of a particular case. These include
predicting the time remaining until completion [6], [7], [8],
the risks involved with possible future events [9], predicting
the case outcome [10], and predicting which future events
will probably be executed [8].

Within this paper, we are particularly interested in pre-
dicting the case outcome, i.e., we want to predict whether
a patient will undergo additional treatments. Existing strate-
gies to predict the case outcome include the application of
decision and regressions trees [10], the combination of the
control-flow perspective with the data perspective [11], and
the analysis of how specific data attributes change over time
[12]. What all these approaches have in common is that they
do not take a potential imbalance in the data into account.
Hence, they are not directly applicable to our setting. At the
same time, the technique presented in this paper can provide
a valuable addition for their applicability to other (medical)
domains.

IV. PREDICTING TREATMENT REPETITIONS

In this section, we develop our technique for predicting
treatment repetitions in the implant denture therapy process.
Section IV-A presents the data set we use. Section IV-B
introduces the features we selected for our prediction model.
Section I'V-C discusses the classifier selection. Section IV-D
explains how we address the data imbalance challenge.
Finally, Section IV-E describes how we selected the best
prediction model.

A. Data

For this paper we used a data set we obtained from
an health insurance company in the Netherlands. The data
set consists of 1,048,576 dental treatments that have been
conducted for 36,527 patients between 2009 to 2015. For
each treatment, we had information about the executer and
the day the treatment has been performed. Based on this
information, we were able to reconstruct the individual
process each patient experienced in terms of the order of
treatments. In the following, we will refer to this individual



Table I: Data set characteristics

Characteristic Total Avg. per case
Number of patients 36,527 1

Number of executers 7,249 2

Number of treatments 1,048,576 91

Number of (distinct) treatments 1,255 31

Variability 97 % not applicable
Duration 2009-2015 24 months

process as a case. Table I summarizes the key characteristics
of the data set. Note that we differentiate between the total
number of treatments and the distinct number of treatments
since several treatments, such as check-ups, are conducted
multiple times with in a single case.

Besides the data set, we also collected information about
the implant denture therapy process. To this end, we had
several meetings with implant knowledge experts such as
dentist, dental implantologist, oral surgeons, and denturists.
The outcome was a reference process that defined the bound-
aries of how the implant denture therapy process should be
implemented in practice.

B. Feature Selection

To identify appropriate prediction features, we anlayzed
our data set with respect to potentially discriminating fea-
tures. As a result, we selected a set of six features:

o Patient sex (female / male)

o Process compliance (true / false)

« Bone adjustment before the implant (yes / no)

o Number of treatments taken before the implant (integer)

« Implant executor (dentist / surgeon)

o Type of denture (lower denture / upper denture / full

denture)

The most notable and also innovative feature is the feature
process compliance. It is only true if the executor (i.e.
the dentist or the surgeon) followed the reference process
we defined together with the knowledge experts. In case
additional treatments were conducted or certain treatments
were skipped, the feature process compliance is false. It
is worth highlighting that, with exception of the number
of treatments taken before the implant, all features have
binary values. In order to check whether the selected features
were adequate, we used two algorithms: univariate feature
selection (UVFS) and random forest feature importance
(RFFI). Table II shows the scores obtained for each feature
using the two algorithms.

The results from Table II illustrate that the univariate
feature selection considers bone adjustment, the number of
treatments taken before the implant, and the type of denture
as most informative. The random forest feature importance
confirms this assessment particularly for the features bone
adjustment and the number of treatments taken before the

Table II: Feature scores based on UVFS and RFFI

Feature UVFS RFFI
Patient sex 1.194 0.033
Process compliance 8.807 0.030
Bone adjustment before the implant 117.411  0.188
No. of treatments before the implant ~ 17.330 0.644
Implant executor 7.874 0.042
Type of denture 16.735 0.064

implant. However, given the scores and the potentially
interesting domain insights based on the full set of features,
we decided to include all of them in the prediction model.

C. Classifier Selection

Selecting appropriate classification algorithms is a key
task when developing a prediction technique. However,
unfortunately, there is no silver bullet. Hence, we analzyed
related work to identify classification algorithms that have
been applied in similar healtchare contexts [13], [14]. As a
result, we selected three promising candidates: (1) decision
trees (DTs), (2) random forests (RFs), and (3) and Support
Vector Machines (SVMs). The advantage of decision trees is
that they are easy to interpret and that their visualization is
often considered useful for identifying interesting patterns
[15]. Random forests avoid overfitting and can deal well
with unstructured data. SVMs have been found to deal well
with high variation, also when the variation only occurs in
a small fraction of the data.

D. Dealing with the Data Imbalance

We identified two strategies to deal with the imbalance
in our data set, i.e. the fact that only a few patients
experienced repetitions: (1) We defined weights for each
of the four classes when training the predictive model.
With this approach the classification algorithm is configured
in such a way that all classes receive weights that are
inversely proportional to the class frequencies in the input
data. In this way, we ensured that the predictive model was
constructed in a balanced way with respect to each class. (2)
We used techniques for the generation of synthetic samples.
More specifically, we used advanced resampling methods to
generate new samples from the minority classes to obtain
a balanced data set. Unlike other oversampling techniques,
the employed techniques SMOTE [16] and ADASYN [17]
do not replicate existing samples. The core idea of these
methods is to resample to training set but to keep the
validation set with the original distribution.

In order to select the most appropriate data balancing
strategy, we compared the normalized confusion matrices we
obtained for each of the classifiers when using the different
techniques to balance the data set. Our goal was to identify
the model with the highest proportion of true positives in the



Table III: Results for different classifiers in combination with
SMOTE

Precision  Recall F1 Score

o Decision tree depth 5 0.904 0.086 0.154
% Random forest depth 5 0.934 0.288 0.434
g SVM OvO 0.936 0.310 0.464

SVM OvA 0.938 0.248 0.375
—  Decision tree depth 5 0.084 0.321 0.133
%2 Random forest depth 5 0.097 0.318 0.148
5 SVM OvO 0.107 0.385 0.167

SVM OvA 0.085 0.164 0.110
«  Decision tree depth 5 0.021 0.621 0.041
%2 Random forest depth 5 0.020 0.408 0.039
8 SVM OvO 0.020 0.329 0.037

SVM OvA 0.021 0.521 0.041
« Decision tree depth 5 0.011 0.233 0.021
2  Random forest depth 5 0.008 0.200 0.015
8 SVM OvO 0.004 0.167 0.007

SVM OvA 0.017 0.442 0.033

minority classes. Preferring a model with a high proportion
of true positives in the minority classes over others can be
justified by the fact that patients generally do not require
implant repetitions or denture replacements. Therefore, we
focused on the cases in which it was necessary to repeat the
implant, replace the denture or both.

For each of the selected classification algorithms (DTs,
RFs, and SVMs), we trained six different models by ap-
plying different variations of the previously introduced data
balancing strategies. This resulted in a total of 24 predictive
models. For each predictive model, we computed precision,
recall, and the F1 score. The results revealed that the data
balancing method SMOTE produced the best results for all
classifiers. More specifically, the models that were trained
with synthetic samples obtained by SMOTE delivered the
highest number of true positives in the minority classes. As
a result, we selected SMOTE to deal with the data imbalance
challenge.

E. Selection of best prediction model

To select the best prediction model, we analyzed which
model yielded the best results in terms of precision, recall,
and F1 score for the minority classes. Table IIl gives an
overview of the results obtained for each model and each
class.

Focusing on the overall F1 score, the results emphasize the
challenge associated with accurately predicting the minority
classes 1, 2, and 3. Analyzing the detailed results for each
class reveals that the SVM One-versus-One (OvO) classifier
delivered the best results for classes 0 and 1. That is, it was
most adequate for correctly labelling patients who will not
need any repetitions and patients who will need to repeat
the implant placement. For class 2 (patients who will need

a replacement of the denture) the results are quite similar
for all classifiers. However, the F1 scores produced by the
DT classifier and the SVM One-versus-All (OvA) classifier
are slightly higher. With respect to class 3 (patients who will
need to repeat both the implant and the denture placement),
the DT classifier and the SVM OvA classifier yielded the
highest F1 scores. Nevertheless, it is necessary to emphasize
that the prediction accuracy for this group of patients is poor
for all classifiers.

Based on these results, we chose the SVM OvO classifier
as the best classifier because it produced the best F1 scores
for the minority classes 1, 2, and 3. This type of SVM
implementation trains a separate classifier for each pair of
labels and, therefore, is less sensitive to problems associated
with imbalanced data sets.

V. RESULTS

To illustrate the results for the selected SVM OvO model
with SMOTE, we employ ROC curves and the corresponding
AUC (area under the curve) values. ROC curves are a
graphical representation of the proportion of true positives
(TPR = True Positive Rate) versus the proportion of false
positives (FPR = False Positive Rate) and often used to
illustrate the diagnostic capabilities of a binary classifier.
The AUC value represents the probability that a classifier
will rank a randomly chosen positive instance higher than
a randomly chosen negative one. The AUC value varies
between 0 and 1. An uninformative classifier would yield
an AUC value of 0.5, a perfect classifier would respectively
yield an AUC value of 1.0. Figure 2 shows the ROC curves
with the selected SVM OvO classifier. Since we address a
multi-class classification problem, we binarized the output.
Figure 2a shows the micro-average and the macro-average
values for all classes. Figure 2b shows the results for each
class separately.

Looking into the details, Figure 2a shows that the AUC
value for the macro-average is considerably lower than the
AUC value for the micro-average (0.52 versus 0.69). This
is the case because the micro-average takes into account
the TPR and FPR from a global point of view, while the
macro-average takes into account the TPR and FPR values
of each class first and then calculates the average. This
again emphasizes that the results for the majority class (class
0) are significantly higher than the results obtained for the
minority classes (1, 2, and 3). If the results for class 0 are not
weighted based on the size of the class (as done in the micro-
average), the resulting AUC value is considerably lower.

Figure 2b also shows the ROC curves and AUC values for
each class separately. We calculated the ROC curves for each
class by interpreting the output of our technique from the
perspective of a binary classifier. That means the ROC curve
for class O only differentiates whether a patient belonged to
class O (positive) or not (negative). The disaggregated results
show that the highest AUC value was obtained for class 1
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Figure 2: ROC curves for the selected SVM Classifier (OvA) using SMOTE

(0.57). However, the AUC values obtained for class 0 and
class 3 are quite close (0.54 and 0.53 respectively). The
AUC value for class 2, by contrast, was much lower (0.45),
showing that the probability of obtaining false positives for
this class is higher than the probability of obtaining true
positives.

From a general perspective, these results show that our
multi-class classifier is able to successfully predict treatment
repetitions for a patient with a probability of 69%. However,
the ability of our classifier to correctly do so depends on
the specific class a patient belongs to. Patients who will not
require an implant repetition or denture replacement (class
0), patients who will only need an implant repetition (class
1), and patients who will need both an implant repetition and
a denture replacement (class 3) were correctly predicted in
more than half of the cases. Patients who will only need
a denture replacement are only correctly predicted with
a probability of 45%. This highlights the trade-off in the
context of building a multi-class classifier based on data
with high variability. One the one hand, it is valuable to be
able to predict different types of problems that can occur.
On the other hand, the overall accuracy can be expected to
turn out lower than for binary prediction models.

VI. DISCUSSION

The work presented in this paper has implications for
research as well as for practice.

From a research perspective, we showed that leveraging
features resulting from a process view is a promising strategy
to deal with the variability in a data set. Features such as
the number of treatments taken before the implant or process
compliance have the advantage of abstracting from the large
variability in the process flow and having discriminating

power even though hardly any patient undergoes the exact
same series of treatments like another patient. What is more,
we showed that the data resampling method SMOTE is a
viable choice to deal with imbalanced data. As pointed out
earlier, more than 90% of all cases progressed satisfactorily
over time, without the need for additional interventions after
the implant or denture placement. Despite this considerable
imbalance, SMOTE enabled us to develop a model yielding
an AUC value of 0.69. Comparing this value to results
obtained in similar settings, this represents a competitive
outcome.

From a practice perspective, our work has especially
implications for the medical domain. Analyzing the role
of the individual features in our model revealed a number
of interesting findings with potentially considerable impact.
First, we observed that the gender of a patient influences
the likelihood of a successful treatment without repetitions.
We found that male patients are much more likely to
experience implant repetitions or denture replacements than
female patients. Second, we found that the executer plays an
important role. Under comparable circumstances, an implant
placed by a surgeon was much more likely to result in
treatment repetitions than an implant placed by a dentist.
While these findings cannot be generalized at this stage,
they provide interesting input for both investigating current
medical practices as well as for further studies.

VII. CONCLUSION

In this paper, we developed a technique for predicting
whether a patient will experience treatment repetitions in
the context of the implant denture therapy process. To this
end, we had to overcome two main challenges. First, we
had to deal with the high degree of variation in the data set,



resulting from the fact that there are hardly any cases where
two patients follow the exact same series of treatments.
Second, we had to deal with the imbalance in the data,
resulting from the fact that only a fraction of the patients
experience treatment repetitions.

In order to overcome these challenges, we exploited the
process perspective and, among others, defined process-
related prediction features such as process compliance. What
is more, we employed the resampling method SMOTE to
deal with the imbalance in the data. Our final multi-class
prediction model yielded an AUC value of 0.69, which
means that we can successfully predict treatment repetitions
in 69% of the cases. Given the multi-class setting and the
high degree of variation in the data, this can be considered a
satisfying result. Besides overcoming technical challenges,
our work also revealed a number of domain-specific insights.
Among others, we found that men are more likely to undergo
treatment repetitions and that the risk of treatment repetitions
is higher when an implant is placed by a surgeon than by a
dentist.

In future work, we plan to extend our technique and
predict additional aspects. For instance, we would like to
be able to differentiate between necessary and unnecessary
repetitions (from a medical perspective). What is more,
we want to test additional prediction methods. While our
analysis of related work indicated that particularly decision
trees, random forests, and SVMs are promising techniques,
we also believe that deep learning technique might represent
a viable choice in this setting. Finally, we would like to test
our technique on data sets from other (medical) domains.
In this way, we can learn about the generalizability of our
technique.
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