
Fast Botnet Detection From Streaming Logs Using Online Lanczos Method

Zheng Chen2, Xinli Yu3, Chi Zhang4, Jin Zhang1, Cui Lin1,

Bo Song2, Jianliang Gao2, Xiaohua Hu2, Wei-Shih Yang3, Erjia Yan2

1CA Technologies, Inc.
2 College of Computing & Informatics, Drexel University

3Department of Mathematics, Temple University
4Department of Computer Science, Maryland University at Baltimore County

Abstract — Botnet, a group of coordinated bots, is becoming the

main platform of malicious Internet activities like DDOS, click

fraud, web scraping, spam/rumor distribution, etc. This paper

focuses on design and experiment of a new approach for botnet

detection from streaming web server logs, motivated by its wide

applicability, real-time protection capability, ease of use and

better security of sensitive data. Our algorithm is inspired by a

Principal Component Analysis (PCA) to capture correlation in

data, and we are first to recognize and adapt Lanczos method to

improve the time complexity of PCA-based botnet detection

from cubic to sub-cubic, which enables us to more accurately

and sensitively detect botnets with sliding time windows rather

than fixed time windows. We contribute a generalized online

correlation matrix update formula, and a new termination

condition for Lanczos iteration for our purpose based on error

bound and non-decreasing eigenvalues of symmetric matrices.

On our dataset of an ecommerce website logs, experiments show

the time cost of Lanczos method with different time windows are

consistently only 20% to 25% of PCA.

Keywords-bot detection; botnet; streaming logs; correlation

matrix; Lanczos iteration; online algorithm.

I. INTRODUCTION

A bot is a software application that runs automated scripts
over the Internet [1] to perform malicious tasks like DOS
attack, website statistics skew, click fraud, price/information
scraping, spam/rumor distribution, etc. Traditional single bots
usually execute their tasks at a rate much higher than average
human users to achieve their goal within a time limit. Recent
single-bot detection methods, like peak-finding [2], outlier
detection [3], threat propagation [4], more or less use this
property of single bots.

A botnet, as the name suggests, is a group of bots that work
in a coordinated fashion. In contrast to single bots, a botnet,
especially those large-scale botnets, they might request
resources at a human-like speed, but altogether they place a
heavy burden on the servers and collect large amount of
information. Because bots in a botnet behave human-like, they
are much harder to detect, and have become a key platform for
many Internet attacks.

Log data have been commonly leveraged for both bot and
botnet detection. Generally, we can say a log is a sequence of
data entries order by timestamp, where each data entry carries
several fields that record the properties of an activity at a
specific time. The main objective of this paper is to develop
an efficient botnet detection from large-scale streaming web
server logs with host identifier, request identifier, and time

stamp; for example, in this paper we will experiment on
Apache HTTP access logs. A host identifier could be an IP
addresses or a MAC addresses, or anything similar; a request
identifier could be an URL or an IP address, or web API name,
or anything similar; the concrete forms of those identifiers
depend on the type of stream-in logs. For Apache HTTP
access log, a host identifier could be an IP address, or a host
name, and a request identifier is a URL pointing to some
resource on the server. Although we focus on sever logs,
however, the approach can be used to monitor any streaming
log data with similar information for coordinated behavior.

The method developed in this paper is the key part of a
larger bot/botnet detection system prototype overviewed in
section II. The above objective is motivated by our research
concerns, business goal and system requirements [5]. First is
wider applicability. As far as we know, there still lacks
researches on a generally applicable botnet detection method
for web servers. Most recent botnet detection methods involve
a particular type of non-log data. For example, [6] uses
captcha test results to discover search engine bots, [7] takes
advantage of an emulator to interact with the botnet, [8] is
based on knowledge of protocol and DNS traffic, [9] needs to
construct a user-user graph based on login activities. These
methods typically intend for a special purpose and need
additional efforts to collect and pre-process information not
readily available on the server and sometimes need the
modeler to understand advanced Internet structure. In
contrast, our approach is quite “lightweight”, which only
relies on above-mentioned basic information present in
various access/activity logs of computer systems/software that
host network services. Secondly, the time complexity. Users
stream in their log data to our system; the system monitors the
streaming log data and in turn provide real-time warning on
potential malicious hosts. Such real-time feedback has
requirement on method complexity as well as sensitivity to
coordinated attack from botnet. Logs usually come in a large
volume. Users of a medium-scale ecommerce website can
generate 100,000 log entries in 30 minutes. More popular
website could have a much bigger number. As far as we know,
all previous papers mentioned here do not meet our
requirement. For example, method like in [9] needs hundreds
of computers to run hours to figure out the botnet. Thirdly, we
believe our approach will be more secure in the sense that
users are not required to provide sensitive low-level hardware
information. Our method also does not need to intercept and
inspect Internet packets like [10] [11] [12], which could bring
additional security concerns. Log is the only data we need, and
our method even allows users to anonymize the identifiers

before they stream in. Last not the least, it is not possible for
one method to detect all sorts of bots, and therefore modern
industrial bot detection system is often an ensemble [13-15]
integrating heterogenous methods to enhance detection
capability. The simplicity and ease of use of our approach as
discussed above: less data preprocessing, less requirement on
specialized knowledge, less involvement with sensitive data,
makes for better integration with other methods.

The method we propose to adapt is Lanczos iteration [16,
17]. It is a method in numerical linear algebra to estimate
eigenvalues and eigenvectors, with rigorous theory on its error
and convergence. Detailed discussion is in section III. This
idea is inspired by Principal Component Analysis (PCA) that
captures data correlation by computing eigenvalues
eigenvectors of correlation matrix. The main contribution of
this paper can be summarized as the following, to the extent
of our knowledge: 1) we are the first to investigate PCA-based
botnet detection from streaming logs; 2) we are the first to
contribute an algorithm that updates correlation matrix for the
most general case of sliding window in section III.B; 3) we
are first to first to recognize and adapt Lanczos method for fast
botnet detection, and we innovate on the termination condition
in our setup using Theorem 1 and Theorem 2 that leads to
early termination of each iteration; our experiments in section
IV further shows its effectiveness.

II. BACKGROUND

A. Principal Component Analysis

Principal Component Analysis (PCA) is best known as a
dimension reduction technique, is also a popular method in
anomaly detection to detect outliers, for example, finding
cyber anomalies [18, 19]; those data points not well-
represented by the principal components are considered
outliers or anomalies. It is also applied for the converse
purpose to check if there is high-level coordination in the data,
which has been successfully applied to the monitoring of
industrial processes [20, 21]. PCA also has been combined
with KL-divergence to detect botnet from search engine logs
[22]; in that paper KL-divergence is used to filter users with
usual “click distribution”, but still full PCA with cubic
complexity is applied to detect correlation is the user is
deemed “unusual”. A similar basic idea can also be found in
[5].

Mathematically, PCA finds the eigenvalues and their
eigenvectors of the covariance or correlation matrix s.t. the
eigenvectors are orthonormal. Those orthonormal
eigenvectors are then sorted by their eigenvalues and form
rotated coordinate of the space and are called (first, second,
…) principal components. In future discussion, we call the
largest eigenvalue associated with the first principal
component as the principal weight.

The major problem of PCA, or in particular the calculation
of the principal weight from the correlation matrix, is its cubic
time complexity. The technical purpose of this paper is to use
Lanczos method to reduce this time complexity. We discuss
more about this in section III.C.

B. Bot Detection System Prototype

Our algorithm plays a key role in a bot detection prototype
system, which has been filed for patent [5, 23, 24]. The
general work flow of this system is illustrated in Figure 1,
working side by side with a Markov chain-based behavior
model [24]. The latter views bots from a different perspective
and detects them by their strange activities on the sever. For
example, a human visiting an ecommerce website usually first
browse products, make several searches, log in, add product
to carts, and check out. However, it is hard for bots to follow
this routine. Such routine can be modelled by Markov chain
transitions, and bot visit sequence will have low probability in
this Markov chain. However, this behavior model can only
detect single bots or botnet-bots individually, lacking the
ability to discover a botnet as a whole. As mentioned earlier,
we favor a lightweight botnet detection algorithm, so it can be
more easily integrated with the workflow.

Figure 1 The workflow of our bot/botnet detection prototype system.

III. PROBLEM & APPROACH

A. Problem Formulation

For botnet detection of streaming log data, PCA provides
a good start point, and a straightforward solution could be as
the following: 1) split the streaming logs into time windows
according to a specified interval; 2) for each time window,
convert the log entries within a specified time interval to a
host-request matrix 𝐗 with the integer value at 𝑖th row and 𝑗th
column, denoted by 𝐗(𝑖, 𝑗), represents the number of times
host 𝑗 makes request 𝑖; 3) run PCA on each time window, and
PCA can be applied on 𝐗 to check if the principal weight
exceeds certain threshold. Above procedure can detect either

single bots with a large volume of traffic, or a botnet where
each bot might not make many requests but they correlate with
each other and altogether still produce a high volume of
traffic. An example is illustrated in Figure 2.

(a) (b)

Figure 2 (a) Two single bots, each of which has clearly higher visit rates that

non-bot hosts. Although their visit counts are not correlated, they dominate

non-bot visits, leading to a high principal weight of 0.779. (b) A botnet with
correlated visit counts, with a high principal weight of 0.843.

Nonetheless, questions arise in the adaptation of PCA to
our application. First, the time complexity of full PCA used
in [22] is cubic, which easily breaks down when a large
number of logs come in. In our application, we are probably
interested in only the largest eigenvalue and its eigenvector. It
is obviously not necessary for a full PCA. Secondly, division
into time windows seems not suitable for monitor of streaming
data. We are facing an accuracy-sensitivity dilemma: a small
window will weaken the algorithm’s ability to find bots, since
fewer data might not provide sufficient evidence for PCA; a
larger window will slow down the algorithm’s sensitivity, e.g.
in a massive attack the sever might already be brought down
before the algorithm starts to analyze the last 30-min window.
There is no universal criterion for good window length, and it
is difficult to conduct experiments for different server logs. A
more professional practice is sliding window, as in industrial
process monitor [21, 25, 26], but this makes computation even
more intense. In process control, the “features” as columns of
data matrix is usually at most hundreds of columns, while in
our application, the “features” are tens of thousands of host
identifiers.

From above discussion, reducing time complexity is the
top priority if we desire to use sliding window. Our research
problem can thus be summarized as constructing a fast
algorithm suitable for using sliding window to monitor large-
scale streaming logs for potential bots/botnets.

B. Correlation Matrix Update

Consider the request-host matrix introduced in previous
section. We evaluate the principal weight from the correlation
matrix between hosts. After each window slide, this matrix
will change, so does the correlation matrix. Our first problem
is how to update the correlation matrix after every time
window slide before updating the principal weight. The time
complexity for computing correlation matrix of a 𝑛 × 𝑚
request-host matrix is 𝑂(𝑛𝑚2), so it is highly uneconomic
and undesirable to re-compute entire correlation matrix. [21]
calculated the updates for adding new rows and deleting old
rows. Our case is more complicated: after every window slide,
some rows and columns might be removed, some new rows

and columns might be appended, and other rows and columns
might have value change.

Let 𝐗𝑡
o ∈ ℝ𝑛𝑡×𝑚𝑡 be the request-host matrix before the 𝑡th

window slide, 𝑡 ∈ ℕ+. Then the mean of each column is given
in the vector

𝐛𝑡 =
1

𝑛𝑡
(𝐗𝑡

o)T𝟏𝑛𝑡 (1)

where 𝟏𝑛𝑡 = [1,… ,1]
T ∈ ℝ𝑛𝑡 is a column vector of length 𝑛𝑡

with all components being 1. Then we call the following as

the centralize request-host matrix, because each of its column

has zero mean

𝐗𝑡 = 𝐗𝑡
o − 𝟏𝑛𝑡𝐛𝑡

T (2)

where 𝚺𝑡 = diag(𝜎𝑡,1, … , 𝜎𝑡,𝑚𝑡) is a diagonal matrix with the

𝑗th diagonal element 𝜎𝑡,𝑗 being the standard deviation of the

𝑗th column of 𝐗𝑡
o. The correlation matrix for 𝐗𝑡

o is thus

𝐑𝑡 =
1

𝑛𝑡 − 1
𝚺𝑡
−1𝐗𝑡

T𝐗𝑡𝚺𝑡
−1 (3)

Our goal is to find the update formula for 𝐑𝑡+1 using

information from 𝐗𝑡
o, 𝐛𝑡 , 𝐗𝑡 and 𝐑𝑡 . For simplicity, we can

assume that the hosts are the same before and after the

window slide, without loss of generality, i.e. column changes

can be disregarded when calculating the updates. This is

because, if there are any added columns or removed columns

caused by window slide, we can simply add corresponding

columns (and rows if necessary) into 𝐛𝑡 , 𝐗𝑡 , 𝐑𝑡, and use the

modified ones for our future inferences.

Also note correlation is not dependent on row order,

therefore rows of 𝐗𝑡 can be arbitrarily arranged for our

convenience. Suppose after the 𝑡th slide,

1) 𝑛𝑡+1
+ new rows 𝐗

𝑛𝑡+1
+
o are appended to the bottom of 𝐗𝑡

o,

each row representing a new request-host vector not

currently in 𝐗𝑡
o;

2) 𝑛𝑡+1
− rows 𝐗𝑛𝑡+1−

o on top of 𝐗𝑡
o are removed, meaning

those requests disappear after the window slide;

3) other rows have value change denoted by matrix 𝐗𝑐𝑡+1
o ,

where only the top 𝑐𝑡+1 of 𝐗𝑐𝑡+1
o are non-zero.

Since every window slide is small and of fixed distance,

thus 𝑛𝑡+1
+ + 𝑛𝑡+1

− + 𝑐𝑡+1 is usually small and can be treated

as a constant. In future discussion, we also write 𝐗𝑡
o =

[
𝐗𝑛𝑡+1−
o

𝐗𝑛𝑡−𝑛𝑡+1−
o] where 𝐗𝑛𝑡−𝑛𝑡+1−

o is the last 𝑛𝑡 − 𝑛𝑡+1
− rows of 𝐗𝑡

o;

likewise, 𝐗𝑡 = [
𝐗𝑛𝑡+1−

𝐗𝑛𝑡−𝑛𝑡+1−
] where 𝐗𝑛𝑡+1− and 𝐗𝑛𝑡−𝑛𝑡+1− are

centralized data of 𝐗𝑛𝑡+1−
o and 𝐗𝑛𝑡−𝑛𝑡+1−

o respectively like in

(2). We have the following relation for 𝐗
𝑛𝑡+1
+
o , 𝐗𝑛𝑡+1−

o , and

𝐗𝑐𝑡+1
o , where 𝟎𝑛𝑡+1− ×𝑚𝑡 denotes a 𝑛𝑡+1

− ×𝑚𝑡 zero matrix, and

𝐗𝑡+1
∗o is equivalent to 𝐗𝑡+1

o except for the remove rows are

replaced by zeros.

[
𝟎𝑛𝑡+1− ×𝑚𝑡

𝐗𝑡+1
o] = [

𝐗𝑡
o − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o]

𝐗𝑛𝑡+1+
o

] ≔ 𝐗𝑡+1
∗o (4)

The update of mean-value is now given by

(𝑛𝑡 + 𝑛𝑡+1
+ − 𝑛𝑡+1

−)𝐛𝑡+1

= 𝑛𝑡𝐛𝑡 + (𝐗𝑛𝑡+1+
o)

T

𝟏𝑛𝑡+1+ − (𝐗𝑛𝑡+1−
o)

T
𝟏𝑛𝑡+1− + (𝐗𝑐𝑡+1

o)
T
𝟏𝐶𝑡+1

(5)

Let Δ𝐛𝑡+1
𝑇 = 𝐛𝑡+1

𝑇 − 𝐛𝑡
𝑇 , and note 𝐗𝑛𝑡+1

+ = 𝐗
𝑛𝑡+1
+
o −

𝟏𝑛𝑡+1
+ 𝐛𝑡+1

𝑇 is data centralization like in (2), we then have

𝐗𝑡+1
∗ = [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝐗𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡+1𝐛𝑡+1
T]

= [
𝐗𝑡
o − 𝟏𝑛𝑡𝐛𝑡

T + 𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o]

𝐗𝑛𝑡+1+
o

] − [
𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡+1𝐛𝑡+1
T]

= [
𝐗𝑡
o − 𝟏𝑛𝑡𝐛𝑡

T + 𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T]

𝐗𝑛𝑡+1+
o − 𝟏𝑛𝑡+1+ 𝐛𝑡+1

𝑇

]

= [
𝐗𝑡 + (𝟏𝑛𝑡𝐛𝑡

T − [
𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

𝐗𝑛𝑡+1+

]

= [
𝐗𝑡 − [

𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡

𝑇

𝐗𝑐𝑡+1
o + 𝟏𝑛𝑡−𝑛𝑡+1− (𝐛𝑡+1

𝑇 − 𝐛𝑡
𝑇)
]

𝐗𝑛𝑡+1+

]

=

[

[

𝟎𝑛𝑡+1− ×𝑚𝑡

𝐗𝑛𝑡−𝑛𝑡+1− − 𝐗𝑐𝑡+1
o − 𝟏𝑛𝑡−𝑛𝑡+1− Δ𝐛𝑡+1

𝑇⏞

𝑂(𝑚𝑡(𝑛𝑡−𝑛𝑡+1
−))]

𝐗𝑛𝑡+1+⏞

𝑂(𝑚𝑡𝑛𝑡+1
+)

]

(6)

where we note the top 𝑛𝑡+1
− rows of 𝐗𝑡+1

∗ must all be zero, and

thus the time complexity of 𝐗𝑡+1
∗ is 𝑂(𝑚𝑡(𝑛𝑡 − 𝑛𝑡+1

− +

𝑛𝑡+1
+)) = 𝑂(𝑚𝑡𝑛𝑡+1). We now start calculating the update for

the standard deviations in 𝚺𝑡+1.

𝜎𝑡+1,𝑗
2 =

‖[
𝐗𝑡
o(: , 𝑗) − [

𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

]

𝐗
𝑛𝑡+1
+
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1
]‖

2

𝑛𝑡+1 − 1

=

‖
𝐗𝑡
o(: , 𝑗) − 𝟏𝑛𝑡𝐛𝑡

T(𝑗) + 𝟏𝑛𝑡𝐛𝑡
T(𝑗) − [

𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]

𝐗
𝑛𝑡+1
+
o (: , 𝑗) − 𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1+

‖

2

𝑛𝑡+1 − 1

 (7)

We can simplify (7) piece by piece. First expand,

‖𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡 + 𝐛𝑡(𝑗)𝟏𝑛𝑡 − [

𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]‖

= ‖𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡‖

2
+ ‖𝐛𝑡(𝑗)𝟏𝑛𝑡 − [

𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]‖

2

+ 2 [𝐛𝑡(𝑗)𝟏𝑛𝑡 − [
𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]]

T

[𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡]

 (8)

where

‖𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡‖

2
= (𝑛𝑡 − 1)𝜎𝑡,𝑗

2 (9)

𝐛𝑡(𝑗)𝟏𝑛𝑡 − [
𝐗𝑛𝑡+1−
o (: , 𝑗)

𝐗𝑐𝑡+1
o (: , 𝑗)

] − [
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]

= [
𝐛𝑡(𝑗)𝟏𝑛𝑡 − 𝐗𝑛𝑡+1−

o (: , 𝑗)

−Δ𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1− − 𝐗𝑐𝑡+1
o (: , 𝑗)

]

 (10)

𝟏𝑛𝑡
T 𝐗𝑡

o(: , 𝑗) − 𝟏𝑛𝑡
T 𝐛𝑡(𝑗)𝟏𝑛𝑡 = 0

⇒ [𝐛𝑡(𝑗)𝟏𝑛𝑡]
T
[𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡] = 0

 (11)

Using (11), we have the following important simplification.

[
𝟎𝑛𝑡+1−

𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1−
]

T

[𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡]

= (𝐛𝑡+1(𝑗)𝟏𝑛𝑡
𝑇 − [

𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1−

𝟎𝑛𝑡−𝑛𝑡+1−
]

T

) [𝐗𝑡
o(: , 𝑗) − 𝐛𝑡(𝑗)𝟏𝑛𝑡]

= −[
𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1−

𝟎𝑛𝑡−𝑛𝑡+1−
]

T

𝐗𝑡(: , 𝑗)

 (12)

Plug (9)~(12) back to (8) and then (7), we have

(𝑛𝑡+1 − 1)𝜎𝑡+1,𝑗
2

= (𝑛𝑡 − 1)𝜎𝑡,𝑗
2 +‖

‖
𝐛𝑡(𝑗)𝟏𝑛𝑡 − 𝐗𝑛𝑡+1−

o (: , 𝑗)⏞
𝑂(𝑛𝑡+1

−)

Δ𝐛𝑡+1(𝑗)𝟏𝑛𝑡−𝑛𝑡+1− + 𝐗𝑐𝑡+1
o (: , 𝑗)⏞

𝑂(𝑐𝑡+1) ‖
‖

2

− 2 [
𝐗𝑛𝑡+1−
o (: , 𝑗) + 𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1−

𝐗𝑐𝑡+1
o (: , 𝑗)

]

T

𝐗𝑡(: , 𝑗)

⏞

𝑂(𝑛𝑡+1
− +𝑐𝑡+1)

+ ‖𝐗𝑛𝑡+1+
o (: , 𝑗) − 𝐛𝑡+1(𝑗)𝟏𝑛𝑡+1+⏞

𝑂(𝑛𝑡+1
+)

‖

2

 (13)

Recall the top 𝑐𝑡+1 rows of 𝐗𝑐𝑡+1
o are non-zero, thus from

(13) the time complexity for updating each standard deviation

is 𝑂(𝑛𝑡+1
− + 𝑐𝑡+1 + 𝑛𝑡+1

+), linear to the number of rows that

are affected by the window slide. The total complexity for

updating all standard deviations is 𝑂(𝑚𝑡(𝑛𝑡+1
− + 𝑐𝑡+1 +

𝑛𝑡+1
+)). At last we update the correlation matrix. Using the

fourth identity of (6) and a technique like (12), we have

(𝑛𝑡+1 − 1)𝐑𝑡+1 = (𝐗𝑡+1
∗ 𝚺𝑡+1

−1)T(𝐗𝑡+1
∗ 𝚺𝑡+1

−1)

= (
𝐗𝑡𝚺𝑡+1

−1 + (𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])𝚺𝑡+1

−1

𝐗𝑛𝑡+1+ 𝚺𝑡+1
−1

)

T

× (
𝐗𝑡𝚺𝑡+1

−1 + (𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])𝚺𝑡+1

−1

𝐗𝑛𝑡+1+ 𝚺𝑡+1
−1

)

= 𝚺𝑡+1
−1 𝐗𝑡

T𝐗𝑡𝚺𝑡+1
−1 + 𝚺𝑡+1

−1 𝐘𝑡+1𝚺𝑡+1
−1

= (𝑛𝑡 − 1)𝚺𝑡+1
−1 𝚺𝑡𝐑𝑡𝚺𝑡𝚺𝑡+1

−1⏞

𝑂(𝑚𝑡
2)

+ 𝚺𝑡+1
−1 𝐘𝑡+1𝚺𝑡+1

−1⏞

𝑂(𝑚𝑡
2)

(14)

where

𝐘𝑡+1 = 2𝐗𝑡
T (𝟏𝑛𝑡𝐛𝑡

T − [
𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

+ (𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

T

(𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

+ 𝐗𝑛𝑡+1+
T 𝐗𝑛𝑡+1+

 (15)

We then use the following identities multiple times

𝐗𝑡
T𝟏𝑛𝑡 = 𝟎 ⇒ 𝐗𝑡

T𝐗𝑡
o = 𝐗𝑡

T(𝐗𝑡
o − 𝟏𝑛𝑡𝐛𝑡

T + 𝟏𝑛𝑡𝐛𝑡
T)

= 𝐗𝑡
T𝐗𝑡 + 𝐗𝑡

T𝟏𝑛𝑡𝐛𝑡
T = 𝐗𝑡

T𝐗𝑡
 (16)

[
𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T] = 𝟏𝑛𝑡𝐛𝑡+1

T − [
𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝟎(𝑛𝑡−𝑛𝑡+1−)×𝑚𝑡

] (17)

Δ𝐛𝑡+1𝟏𝑛𝑡
T 𝟏𝑛𝑡Δ𝐛𝑡+1

T = 𝑛𝑡Δ𝐛𝑡+1Δ𝐛𝑡+1
T (18)

to arrive at

2𝐗𝑡
T ([

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] + [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

= 2𝐗𝑡
T (𝟏𝑛𝑡𝐛𝑡+1

T + [
𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟏𝑛𝑡+1− 𝐛𝑡+1
T

𝟎(𝑛𝑡−𝑛𝑡+1−)×𝑚𝑡

])

= 2𝐗𝑡
T [
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

= 2(𝐗𝑛𝑡+1−
T 𝐗𝑛𝑡+1− + 𝐗𝑛𝑡−𝑛𝑡+1−

T 𝐗𝑐𝑡+1
o)

(19)

and

(𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

T

(𝟏𝑛𝑡𝐛𝑡
T − [

𝐗𝑛𝑡+1−
o

𝐗𝑐𝑡+1
o] − [

𝟎𝑛𝑡+1− ×𝑚𝑡

𝟏𝑛𝑡−𝑛𝑡+1− 𝐛𝑡+1
T])

= (𝟏𝑛𝑡Δ𝐛𝑡+1
T + [

𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o])

T

(𝟏𝑛𝑡Δ𝐛𝑡+1
T + [

𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o])

= 𝑛𝑡Δ𝐛𝑡+1Δ𝐛𝑡+1
T + 2Δ𝐛𝑡+1𝟏𝑛𝑡

T [
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o] 𝚺𝑡+1

−1

+ [
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

T

[
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

 (20)

Continue the simplification (sketch calculation, some steps

are long and hence omitted, but they are not hard to verify).

Δ𝐛𝑡+1𝟏𝑛𝑡
T [
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

= Δ𝐛𝑡+1(𝟏𝑛𝑡+1−
T 𝐗𝑛𝑡+1−

o − 𝟏𝑛𝑡+1−
T 𝟏𝑛𝑡+1− 𝐛𝑡+1

T + 𝟏𝑛𝑡−𝑛𝑡+1−
T 𝐗𝑐𝑡+1

o)

= Δ𝐛𝑡+1(𝟏𝑛𝑡+1−
T 𝐗𝑛𝑡+1−

o + 𝟏𝑛𝑡−𝑛𝑡+1−
T 𝐗𝑐𝑡+1

o − 𝑛𝑡+1
− 𝐛𝑡+1

T)

(21)

[
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

T

[
𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T

𝐗𝑐𝑡+1
o]

= (𝐗𝑛𝑡+1−
o − 𝟏𝑛𝑡+1− 𝐛𝑡+1

T)
T
(𝐗𝑛𝑡+1−

o − 𝟏𝑛𝑡+1− 𝐛𝑡+1
T) + (𝐗𝑐𝑡+1

o)
T
(𝐗𝑐𝑡+1

o)

= 𝐗𝑛𝑡+1−
T 𝐗𝑛𝑡+1− + (𝐗𝑐𝑡+1

o)
T
(𝐗𝑐𝑡+1

o) + 𝑛𝑡+1
− Δ𝐛𝑡+1Δ𝐛𝑡+1

T

(22)

Finally, plug (21) and (22) back to (20), and then plug (19)

and (20) back to (15), and after certain rearrangement, we

will have

𝐘𝑡+1 = (𝑛𝑡 − 𝑛𝑡+1
−)Δ𝐛𝑡+1Δ𝐛𝑡+1

T⏞

𝑂(𝑚𝑡
2)

+ 𝐗
𝑛𝑡+1
+
T 𝐗𝑛𝑡+1+
⏞

𝑂(𝑚𝑡
2𝑛𝑡+1
+)

+ 2Δ𝐛𝑡+1𝟏𝑛𝑡+1−
T 𝐗𝑛𝑡+1−

T − 𝐗𝑛𝑡+1−
T 𝐗𝑛𝑡+1−

⏞

𝑂(𝑚𝑡
2𝑛𝑡+1
−)

− (2𝐗𝑛𝑡−𝑛𝑡+1− − 𝐗𝑐𝑡+1
o − 2𝟏𝑛𝑡−𝑛𝑡+1− Δ𝐛𝑡+1

T)
T
𝐗𝑐𝑡+1
o⏞

𝑂(𝑚𝑡
2𝑐𝑡+1)

 (23)

For the last addend of (23), we can further use of the last
identity of (6) to reuse the result of 𝐗𝑡+1.

2𝐗𝑛𝑡−𝑛𝑡+1− − 𝐗𝑐𝑡+1
o − 2𝟏𝑛𝑡−𝑛𝑡+1− Δ𝐛𝑡+1

T

= 2𝐗𝑡+1(1: 𝑛𝑡+1 − 𝑛𝑡+1
+ , :) + 𝐗𝑐𝑡+1

o

(24)

The time complexity for update of correlation matrix 𝐑𝑡+1 is

clearly 𝑂(𝑚𝑡
2(𝑛𝑡+1

+ + 𝑛𝑡+1
− + 𝑐𝑡+1)) by (14) and (23).

All updates are summarized in Algorithm 1. Combining
(6) and (13) the total complexity for correlation matrix update
is 𝑂(min{𝑚𝑡𝑛𝑡+1, 𝑚𝑡

2(𝑛𝑡+1
+ + 𝑛𝑡+1

− + 𝑐𝑡+1)}), which can be
considered as quadratic if 𝑛𝑡+1

+ + 𝑛𝑡+1
− + 𝑐𝑡+1 is treated as a

small constant. This complexity is theoretically down from
straightforward complete re-evaluation by power of 1. In
practice, we sometimes could expect even better acceleration,

as Δ𝐛𝑡+1
T , 𝐗𝑐𝑡+1

o etc. are very often sparse.

C. Lanczos Method

In future discussion, for convenience of mathematical

analysis, we assume the correlation matrix is normalized to

unit total variance by dividing every element by the number

of columns, so that the sun of all eigenvalues is 1, the largest

eigenvalue, i.e. the principal weight is between range [0,1],
and an eigenvalue larger than 0.5 must be the largest

eigenvalue. In implementation, we should instead normalize

the computed eigenvalue to the range of [0,1] for better

numerical stability.

With updated correlation matrix 𝐑𝑘+1 , our task is to

determine if 𝐑𝑘+1 has a large eigenvalue, i.e. the principal

weight, is larger than a threshold. If so, we consider there

exists potential bot visits in the current time window, and

continue to find those hosts that have high correlation with the

principal component. Several methods suit for this task,

including singular value decomposition, which computes the

full PCA in cubic time, or Rayleigh quotient iteration, which

finds the exact eigenvalue and eigenvector in cubic time [27].

For our purpose, we discussed in III.A that an accurate

evaluation of eigenvalue is not necessary. We will investigate

Lanczos method [17, 28], a numerical method to approximate

the eigenvalues, for its use in our application.

Given any symmetric matrix 𝐑 ∈ ℝ𝑚×𝑚 (the correlation

matrix is symmetric) and any non-zero initial vector 𝐱 ∈ ℝ𝑚,

the Lanczos iteration is expressed as the following process,

𝐯0 = 𝟎, 𝐯1 =
𝐱

‖𝐱‖

⇒ {

𝐯̃𝑗 = 𝐑𝐯𝑗−1 − 〈𝐑𝐯𝑗−1, 𝐯𝑗−1⟩𝐯𝑗−1 − ‖𝐯̃𝑗−1‖𝐯𝑗−2

𝐯𝑗 =
𝐯̃𝑗

‖𝐯̂𝑗‖

, 𝑗 = 2,3,…

 (25)

The iteration is guaranteed to terminate at 𝑗 = 𝑘0 + 2 when it

founds 𝐯̃𝑘0+2 = 𝟎, where 𝑘0 is the smallest positive integer

s.t. 𝐑𝑘0+1𝐱 ∈ span{𝐱, 𝐑𝐱, … , 𝐑𝑘0𝐱}, and is guaranteed to be

well-defined, i.e. ‖𝐯̃𝑗‖ ≠ 0, for 𝑗 = 1,… , 𝑘0. It can be proved

that 𝐕𝑘0+1 = [𝐯1, … , 𝐯𝑘0+1] is an orthonormal basis of

span{𝐱, 𝐑𝐱, … , 𝐑𝑘0𝐱} . Let 〈⟩ denote the standard inner

product, and let 𝐕𝑘 = [𝐯1, … , 𝐯𝑘], 1 ≤ 𝑘 ≤ 𝑘0 + 1, then the

Lanczos decomposition gives

𝐑𝐕𝑘 = 𝐕𝑘𝐓𝑘 + 𝐯̃𝑘+1𝐞𝑘
T, ∀𝑘 = 1,… , 𝑘0 + 1 (26)

where 𝐞𝑘 ∈ ℝ
𝑘 is a vector with only the 𝑘th component being

1 and all other components being 0, and

𝐓𝑘 =

(

〈𝐑𝐯1, 𝐯1⟩ ‖𝐯̃2‖

‖𝐯̃2‖ 〈𝐑𝐯2, 𝐯2⟩ ⋱

⋱ ⋱ ‖𝐯̃𝑘‖

‖𝐯̃𝑘‖ 〈𝐑𝐯𝑘, 𝐯𝑘⟩)

(27)

is a symmetric tridiagonal matrix. Since 𝐯̃𝑘+1 is orthogonal to

every column of 𝐕𝑘, then (26) is equivalent to

𝐕𝑘
T𝐑𝐕𝑘 = 𝐓𝑘 , ∀𝑘 = 1,… , 𝑘0 + 1 (28)

One can choose to use either (26) or (28) for their own

convenience. The more crucial point here for our purpose is

that the eigenvalues and eigenvectors of 𝐓𝑘 can estimate those

of 𝐑 . The eigenvalues and eigenvectors of a symmetric

tridiagonal matrix is a basic task in numerical linear algebra,

[16, 21, 29-32]. They take advantage of the special form of

symmetric tridiagonal matrices to run faster and more

accurate than algorithms for general matrices. The eigenvalue

approximation is robust because the error can be shown

bounded by the following important theorem,

• Theorem 1. For any eigenvalue 𝜆̂ of 𝐓𝑘, there exists an

eigenvalue 𝜆 of 𝐑 s.t |𝜆 − 𝜆̂| ≤ ‖𝐯̃𝑘+1‖; or equivalently if

𝐑 has 𝑚 eigenvalues {𝜆1, … , 𝜆𝑚} , then we have

min
1≤𝑖≤𝑚

|𝜆𝑖 − 𝜆̂| ≤ ‖𝐯̃𝑘+1‖. Further, if 𝛍̃ is an eigenvector of

eigenvalue 𝜆̂ of 𝐓𝑘, then there exists an eigenvalue 𝜆 of 𝐑

s.t |𝜆 − 𝜆̂| ≤
‖𝐯̃𝑘+1‖|〈𝐞𝑘 ,𝛍̃⟩|

‖𝛍̃‖
.

The theorem is stated with a short proof sketch in [17].

Since 𝐓𝑘 ∈ ℝ
𝑘×𝑘 , 𝛍̃ ∈ ℝ𝑘, thus |〈𝐞𝑘 , 𝛍̃⟩| is the absolute value

of the last component of eigenvector 𝛍̃ , and
|〈𝐞𝑘,𝛍̃⟩|

‖𝛍̃‖
≤ 1 ,

meaning the second error bound is equal or tighter. Since

computation of 𝛍̃ only takes linear time for a tridiagonal

matrix, we will use the second bound.
|〈𝐞𝑘,𝛍̃⟩|

‖𝛍̃‖
 is usually a small

value and it decreases with 𝑘 [17, 33].

The approximation can also conveniently run in an

“online” style due to another useful theorem, which implies

the maximum eigenvalue of 𝐓𝑘 is non-decreasing with 𝑘 .

Thus, if we are not satisfied with the error bound 𝑑, we can

increase 𝑘 for better result.

• Theorem 2. For any symmetric matrix, the maximum

eigenvalues of its leading principal submatrices are

always non-decreasing.

Based on above, we propose the following to terminate the

iteration early for our application. Suppose we use a threshold

𝜔 > 0.5 for principal weight, and let 𝑑 =
‖𝐯̃𝑘+1‖|〈𝐞𝑘 ,𝛍̃⟩|

‖𝛍̃‖
, then the

practical meaning of Theorem 1 is: if we find a large

eigenvalue 𝜆̂ of 𝐓𝑘 , then if 𝜆̂ − 𝑑 ≥ 𝜔 , then the largest

eigenvalue of the “normalized” correlation matrix 𝐑 must

exceed 𝜔 , and a warning can be immediately raised; in

contrast, if 𝜆̂ + 𝑑 < 𝜔 and 𝜆̂ − 𝑑 ≥ 0.5 , then the largest

eigenvalue of 𝐑 must not exceed 𝜔, and we can simply wait

for next window slide. For 𝜆̂ − 𝑑 < 0.5, we setup as threshold

𝑐, and if 𝜆̂ − 𝑑 stays below 0.5 for 𝑐 rounds, then the largest

eigenvalue of 𝐑 is not likely to exceed 𝜔, and we can continue

to next window slide. This is because the largest eigenvalue

of 𝐓𝑘 approaches the largest eigenvalue of 𝐑 from below,

therefore when the estimated eigenvalue plus the error bound

stays below 0.5 for many iterations, it becomes increasingly

unlikely for the eigenvalue to exceed a threshold 𝜔 > 0.5.

Once the largest eigenvalue 𝜆̂ of 𝐓𝑘 is estimated, its

eigenvector 𝛍̃ can be found trivially, because we can set

𝛍̃(1) to any positive number if ‖𝐯2‖ ≠ 𝜆̂ , and 𝛍̃(1) = 0

otherwise, then other components of 𝛍̃ can be solved

iteratively by 𝐓𝑘𝛍̃ = 𝜆̂𝛍̃ , and 𝛍̂ =
𝐕𝑘𝛍̃

‖𝐕𝑘𝛍̃‖
 is the estimated

principal component of 𝐑 . The correlation between host 𝑗

and 𝛍̂ can be computed by 𝜌𝑗 = 𝛍̂(𝑗)√𝜆̂. We recommend

finding the first knee point of the descendingly sorted list of

all 𝜌𝑗 , e.g. the point before the first sharp slope, which is

inspired by the scree plot of PCA; meanwhile we can

disregard hosts with 𝜌𝑗 < 𝜔 in case the knee point is too low.

Hosts satisfying both criteria are considered as potential bots.

Finally, we give some more facts that will be used in the

algorithm. First a loose bound of eigenvalues of 𝐓𝑘 are given

by 𝜆𝑙 ≤ 𝜆 ≤ 𝜆𝑢 where

𝜆𝑙 = max{min{〈𝐑𝐯1, 𝐯1⟩ − ‖𝐯̃2‖, 〈𝐑𝐯𝑖 , 𝐯𝑖⟩ − ‖𝐯̃𝑖+1‖ − ‖𝐯̃𝑖‖}, 0}

𝜆𝑢 = min{max{〈𝐑𝐯1, 𝐯1⟩ + ‖𝐯̃2‖, 〈𝐑𝐯𝑖 , 𝐯𝑖⟩ + ‖𝐯̃𝑖+1‖ + ‖𝐯̃𝑖‖}, trace 𝐓𝑘}

𝑖 = 2, … , 𝑘

(29)

Secondly, the 𝑖th leading principal minor 𝑝𝑖(𝜆) of 𝐓𝑘 − 𝜆𝐈
can be computed as

𝑝𝑖(𝜆) = {

1 𝑖 = 0
〈𝐑𝐯1, 𝐯1⟩ − 𝜆 𝑖 = 1

(〈𝐑𝐯𝑖 , 𝐯𝑖⟩ − 𝜆)𝑝𝑖−1(𝜆) − ‖𝐯̃𝑖‖
2𝑝𝑖−2(𝜆) 𝑖 = 2,… , 𝑘

 (30)

and we use 𝑠𝑘(𝜆) to denote the number of sign changes in

𝑝0, … , 𝑝𝑘. A complete Lanczos method based bot detection

algorithm is now as below, based on tridiagonal-matrix

eigenvalue estimation algorithm in [16, 21], where we

innovate on the termination condition for our particular

application using Theorem 1 and Theorem 2.

The total time complexity of Algorithm 2 for one window

slide is 𝑂(𝑘∗𝑚2) where 𝑘∗ is the value of 𝑘 when the

computation for the current window slide ends, and 𝑚 is the

number of distinct hosts. In practice, the average complexity

scales near quadratic as the average number of 𝑘∗ grows

slowly with 𝑚.

For detection of multiple botnets, the part in marked by ⋆

in Algorithm 2 can be modified to compute more eigenvalues

of 𝐓𝑘 by nesting a loop the same as the do-while loop except

for the total variance is 1 minus the principal weight, and

termination conditions need corresponding adjustment. We

omit the detail for space.

IV. EXPERIMENT & EVALUATION

We simulated both single bots and botnet on an
ecommerce web server and collected about four months’ log
data, totaling 315,688,764 Apache access log entries for our
experiments, with 3,075,108 distinct request identifiers (URL
to website resources) and distinct 2,519,022 host identifiers
(IP addresses or hostname). The human-like visit rate is
estimated by average interval between two requests of HTML
web pages, which is 39 secs for this dataset.

Some of the hosts in the dataset mark themselves as bots.
They are mostly search engines, like google-bots, bing-bots,
yahoo-bots. However, they cannot be used as gold standard
because they are very well-behaved even though they are bots
and hard to detect. Thus, we have to run simulation. The
simulation is real on the website server so the generated logs
are realistic, and it is guaranteed that it is absolutely harmless
for the target server. The simulation is done in four modes to
mimic different types of bots.

1) Single request: the simulator randomly choose a link
from a fixed list and keeps repeatedly visiting the link
for two hours, then the simulator picks the next link.

2) Random list: for every visit, the simulator randomly
chooses a link from a list to visit.

3) Fixed list: the simulator visits links of a fixed list in its
original order.

4) Focused random walk: the simulator works like a
crawler – it downloads a webpage, extracts links of
particular pattern from it, and then randomly picks the
next link to visit.

The four modes can mimic different types of bots. For
example, DOS/DDOS might take the form of any of the first
three types; click fraud or statistic skewer are usually the
second and the third form, visiting a list of desired target links;
price scraper or web crawler could be any of the last three
types. We have several further comments: 1) multiple log
entries could be generated for a single visit; 2) for all modes,
the simulator requests at a Gaussian distributed human-like
random rate estimated by the true human visits; 3) only one
computer with a distinct IP is used to simulate each mode,
therefore the simulation is harmless for a website that handles
tens of thousands of customers each day.

The simulated logs for each visit are identified, and then
duplicated with new host ids and mixed as desired for various
experiment purposes. For example, we can mimic single-bots
of high visit rate of each type by duplicating them several
times in a time window without changing their host id; we can
mimic a massive bot net of human-like visit rate by choosing
logs of several different visits, duplicate them many times
with distinct host ids, and randomly mixed them with existing
logs in several consecutive windows. The simulated logs are
used as gold standard for performance analysis.

A. Performance Analysis

This section presents comparison of accuracy, runtime and
sensitivity between PCA and our Lanczos-based algorithm.
We run PCA with fixed window and Lanczos with both fixed
window (denoted by Lanczos-B) and sliding window (denoted
by Lanczos-S). All experiments are restricted to one thread for
fairness. Both methods have researches on parallelism as
mentioned in section II.A. For this paper, we focus on
experiments with one thread.

For our purpose, we define the accuracy as the percentage
of known bot visits that can be correctly marked by the
algorithm. We compare the Lanczos-method based algorithm
with the full PCA on our dataset and measure both running
time, accuracy and sensitivity. We experiment on both fixed
windows and sliding windows of length from 10 mins to 50
mins. Logs for 2100 single bot visits are placed at random time
points with 30 times to 50 times faster visit rate than humans;
100 botnets of 10 to 100 hosts are placed at randomly chosen
time points with 1 to 5 times human-like visit rate, and for
simplicity, we let bots in a botnet start working simultaneously
at the chosen time point, and their visits do not overlap. Each
bot/botnet visit lasts from 10 mins to 2hrs. Window slide step
is 10% of the window length. For parameters of Algorithm 2,
we let 𝜔 = 0.65, 𝜖1 = 10

−10, 𝜖2 = 0.01, 𝑘𝑙 , 𝑘𝑢 , 𝑘𝑠 are set to
10%, 80% and 1% of the number of hosts in the window, and

𝑐 = 25. The value of 𝜖1 is given by [16, 21]. The choice of
𝜔, 𝜖2, 𝑐 will be experimented in next section. The results for
time and accuracy are shown in Table 1, and it provides clear
evidence for the advantage of our algorithm against PCA.

 Single Bots Botnets(3) Run Time(3)

10m

PCA 70.5% 52.4% 12s(1)/213s(2)

Lanczos-B 70.1% 50.3% 3.6s/20s

Lanczos-S 73.5% 63.2% 5.5s/44s

20m

PCA 59.0% 65.6% 44s/622s

Lanczos-B 58.2% 64.0% 12s/81s

Lanczos-S 63.4% 78.9% 15s/121s

30m

PCA 53.7% 79.6% 89s/1473s

Lanczos-B 52.6% 78.1% 21s/134s

Lanczos-S 59.8% 87.9% 23s/184s

40m

PCA 48.1% 80.9% 131s/1959s

Lanczos-B 47.5% 79.1% 27s/177s

Lanczos-S 54.1% 88.2% 30s/214s

50m

PCA 42.1% 77.8% 163s/2607s
Lanczos-B 41.6% 76.1% 32s/218s
Lanczos-S 50.3% 85.5% 35s/282s

Table 1 Accuracy & runtime comparison of PCA with fixed time

window, Lanczos with fixed time window (Lanczos-B) and Lanczos

with sliding time window (Lanczos-S). Results in bold are better. (1)

Average runtime of the algorithm on all time windows; (2) maximum

runtime; (3) detection of botnets with better accuracy and less running

time is the main technical purpose of this research.

Overall, we have several conclusions from Table 1: 1) It is
not possible to run PCA with sliding window of length longer
than 20m, as its computation time will generally exceed the
sliding step; 2) Lanczos-B has competitive performance in
comparison to PCA for bot detection; 3) Lanczos has much
better running time, and on average it grows almost linearly
with the window length; 4) Lanczos with sliding window
consistently has higher accuracy than fixed window.

A subtler implication of above results is about choice of
window length. For single bots, longer window length
damages performance, which is the weakness of all
correlation-based botnet detection algorithms. This is because
if there exists more than one “not-so-correlated” single bots in
a time window, the principal weight will plunge, and longer
time window length increases the probability of this situation.
For botnet, within a range, accuracy increases with window
length, because more data provide more statistical evidence of
correlation if the botnet exists, especially when botnets
include randomness in their visit pattern, like the random walk
and random list in our simulation. However, longer time
window usually makes the algorithm less capable of detecting
bots with shorter visit duration. For example, for 50-min
window length, botnet visits of less than 20 minutes become
less discoverable. Given the assumption that botnets often
have to maintain at least a request per 30 to 40 secs (the
human-like visit rate of our dataset) to achieve its goal at a
reasonable cost, 40 minutes’ data generally are sufficient for
exposing them. In practice, we would recommend running at
least two threads to monitor a log stream, one with short length
(like 10-min, 15-min) for discovery of single bots and short-
duration visits of botnets, and the other with medium length
(like 30-min, 40-min) for detection of other botnets. If
detection of slower botnet is desired, we can add one more
thread with longer window length.

We now present the sensitivity of both PCA and Lanczos-
S which is defined as how much time does the algorithm needs
to detect the bots since their initial requests. The experiments
are done for 10-min window length and 40-min window
length to test how what percentage of bots are detected within
a specified sensitivity. The results are shown in Figure 3 with
a point (𝑥, 𝑦) on a curve for algorithm 𝑧 means 𝑥% of the bots
detected by 𝑧 are detected within 𝑦 minutes of their initial
request. A higher curve implies better sensitivity. The overall
average sensitivity results are shown in Table 2. We can
observe a clear advantage of Lanczos-S from both Figure 3
and Table 2. The advantage comes from two sources: less
computation time of Lanczos, and the sliding window.
Ultimately, it is all due to the less time complexity of Lanczos,
which enables us to use sliding window rather than fixed
windows.

(a) 10-min window (b) 40-min window

Figure 3 Experiment results for the sensitivity of PCA and Lanczos-S. “-Bot”

suffix means results for single bots, “-Botnet” suffix means results for

botnet-bots. x-axis marks the time in minutes since initial request, y-axis

indicates among bots detected by the algorithm, what percentage is detected
within corresponding minutes since initial request. For example, a point at

(𝒙, 𝒚) on the curve for PCA-Botnet means 𝒙% of all detected botnet-bots are

detected within 𝒚 minutes since their initial request.

 10m-Bot 10m-Botnet 40m-Bot 40m-Botnet

PCA 9.85m 10.69m 38.20m 42.58m

Lanczos-S 4.94m 7.34m 25.25m 33.35m

Table 2 Results of average sensitivity (average time the algorithm needs

to detect the bots since their initial requests) for PCA and Lanczos-S

with 10-min and 40-min window lengths.

B. Experiment on Parameters

This section presents experiments on parameters 𝜔, 𝑐 and
𝜖2 and provides some insight into choice of their values. The
experiments is on the whole dataset with Lanczos-B, because
Lanczos-S takes too much time, and the results of Lanczos-B
should be good enough for our discussion. In the case of real
botnet detection, we can run the following experiments on
historical logs and decide good values for the parameters.

For choice of 𝜔, we first run Lanczos-B on the original
data (without simulation) over all fixed 40-min windows, and
then use the Markov chain behavior model in section II.B to
recognize and remove strangely-behaved suspicious hosts,
and then run the Lanczos-B over all windows again. The
principal weight distribution change is shown in Figure 4. The
histogram shows most suspicious hosts are in window with
principal weights higher than 0.5 quite possibly contain bots.
However, 1) our algorithm requires that 𝜔 > 0.5 ; 2) we
emphasize botnet detection, and mile principal weight is less
likely to imply existence of botnet; 3) the rate of false alarm

should be contained at a reasonable level. Considering all
these factors, we choose 𝜔 = 0.65 as our threshold.

Figure 4 Principal weight distribution change after using the Markov chain
behavior model to remove strangely-behaved hosts from the logs of all 40-
min fixed time windows.

For choice of 𝑐 , it affects the early termination for a
window where bots are not likely to exit, and a smaller 𝑐 will
decease runtime, but possibly introduce certain error. For
choice of 𝜖2 , it affects the early termination for a window
where bots are detected, and smaller 𝜖2 indicates a more
accurate principal component is desired. The results using
Lanczos-B with both 10-min window and 40-min window are
shown in Figure 5, and for the experiments in previous section
we choose parameter value at the “elbow” points in Figure 5
(b),(d). We in addition remark that: 1) for shorter time window,
larger 𝑐 may take larger value without hurting much accuracy,
thus if we run a second thread with short time window as
suggested in choice of window length in previous section, we
could specify a larger 𝑐 ; 2) 𝜖2 has stronger effect on
performance, thus we recommend setting it to a small value
even for short time window.

(a) 𝑐, 10-min window (b) 𝑐, 40-min window

(c) 𝜖2, 10-min window (d) 𝜖2, 40-min window

Figure 5 Relation between 𝒄, 𝝐𝟐 with average runtime and accuracy for
Lanczos method. Smaller 𝒄, 𝝐𝟐 improves accuracy at cost of more runtime.
For experiments in previous section, we choose 𝒄, 𝝐𝟐 at the elbow point 𝒄 =
𝟐𝟓 and 𝝐𝟐 = 𝟎. 𝟎𝟏 of (c) and (d).

C. Botnet Examples

We apply our algorithm on the original data without
simulated logs, and 4,557 distinct hosts are marked as
potential bots, with 3,417 of them recognized as botnet-bots
in 232 potential botnets. Botnets discovered in different time
windows are merged if they share two or more hosts. We use
an automatic program to compare the IPs with the Barracuda
IP reputation database and 88% of them have poor reputation.
Some of the botnets are search engine like “crawl-66-249-
xx.xxx.googlebot.com” that can be actually confirmed.
Besides that, we manually confirmed one of the top-rated
botnet that do not mark themselves as bots in the access log,
which comes from a website monitor company Anturis, as
shown in Figure 6. Some other botnets are demonstrated in
Figure 7, which clearly shows that one bot in the botnet might
play the role of a controller.

Figure 6 A top-rated botnet is manually confirmed from a company

providing website monitoring service. At the time our experiment, they do

not mark themselves as bots in the Apache access log.

Figure 7 Some other examples of recognized botnets, where we can see

usually one bot might play the role of a controller.

V. CONCLUSION & FUTURE WORK

The main objective of this paper is to recognize botnets
from streaming web server logs. We recognize and adapt
Lanczos method to the application of botnet detection. For

this purpose, we first develop the online correlation matrix
updates, and feed them to the Lanczos iterations. Making use
of Lanczos error bound the non-decreasing eigenvalues of
symmetric matrices, and the special properties of our
application, a method is proposed to terminate the iterations
early. Our approach improves time use of eigenvalue-based
botnet detection from cubic to sub-cubic, which enables us to
monitor the log stream by sliding windows, rather than batch-
based detection. Experiments show the time cost of Lanczos
method with different time windows are consistently only
20% to 25% of PCA. In the future, we could further the
research in two directions: 1) finding its good use in other
anomaly detection applications; 2) compensate its weakness
in single bot detection by the Markov-chain behavior model
as mentioned in section II.B.

REFERENCES

1. Dunham, K. and J. Melnick, Malicious bots: an inside look into

the cyber-criminal underground of the internet. 2008: CrC
Press.

2. Tegeler, F., et al. Botfinder: Finding bots in network traffic

without deep packet inspection. in Proceedings of the 8th
international conference on Emerging networking experiments

and technologies. 2012. ACM.

3. Kang, A.R., et al., Online game bot detection based on party-
play log analysis. Computers & Mathematics with Applications,

2013. 65(9): p. 1384-1395.

4. Carter, K.M., N. Idika, and W.W. Streilein. Probabilistic threat
propagation for malicious activity detection. in Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on. 2013. IEEE.
5. Jin Zhang, Z.C., Chi Zhang, Bot Detection Based on Divergence

and Variance, I. CA Technologies. Patent Application

US20170102US1. 2016: United States.

6. Kang, H., et al. Large-scale bot detection for search engines. in

Proceedings of the 19th international conference on World wide

web. 2010. ACM.
7. Thomas, K. and D.M. Nicol. The Koobface botnet and the rise

of social malware. in Malicious and Unwanted Software

(MALWARE), 2010 5th International Conference on. 2010.
IEEE.

8. Manasrah, A.M., et al., Detecting botnet activities based on

abnormal DNS traffic. arXiv preprint arXiv:0911.0487, 2009.
9. Zhao, Y., et al. BotGraph: Large Scale Spamming Botnet

Detection. in NSDI. 2009.

10. Goebel, J. and T. Holz, Rishi: Identify Bot Contaminated Hosts
by IRC Nickname Evaluation. HotBots, 2007. 7: p. 8-8.

11. Gu, G., et al. BotHunter: Detecting Malware Infection Through
IDS-Driven Dialog Correlation. in USENIX Security

Symposium. 2007.

12. Wurzinger, P., et al. Automatically generating models for botnet
detection. in European symposium on research in computer

security. 2009. Springer.

13. Bhatia, S., D. Schmidt, and G. Mohay. Ensemble-based ddos
detection and mitigation model. in Proceedings of the Fifth

International Conference on Security of Information and

Networks. 2012. ACM.

14. Rayana, S. and L. Akoglu, Less is more: Building selective
anomaly ensembles. ACM Transactions on Knowledge

Discovery from Data (TKDD), 2016. 10(4): p. 42.

15. Bot Detection and Mitigation. Available from:
https://www.distilnetworks.com/block-bot-detection/.

16. Golub, G.H. and C.F. Van Loan, Matrix computations. Vol. 3.

2012: JHU Press.
17. Allaire, G. and S.M. Kaber, Numerical linear algebra. Vol. 55.

2008: Springer.

18. Xie, M., S. Han, and B. Tian. Highly efficient distance-based
anomaly detection through univariate with PCA in wireless

sensor networks. in Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th
International Conference on. 2011. IEEE.

19. Pevny, T., M. Rehák, and M. Grill. Detecting anomalous

network hosts by means of pca. in Information Forensics and
Security (WIFS), 2012 IEEE International Workshop on. 2012.

IEEE.

20. Wise, B. and N. Ricker. Recent advances in multivariate
statistical process control: improving robustness and sensitivity.

in Proceedings of the IFAC. ADCHEM Symposium. 1991.

21. Li, W., et al., Recursive PCA for adaptive process monitoring.
Journal of process control, 2000. 10(5): p. 471-486.

22. Yu, F., Y. Xie, and Q. Ke. Sbotminer: large scale search bot

detection. in Proceedings of the third ACM international
conference on Web search and data mining. 2010. ACM.

23. Chi Zhang, Z.C., Jin Zhang, Bot Detection System Based On
Deep Learning, I. CA Technologies, Patent Application

20170109US1. 2016: United States.

24. Zheng Chen, J.Z., Chi Zhang, Bot Detection Based On Behavior
Analytics, I. CA Technologies, Patent Application

US20170131US1. 2016: United States.

25. Jeng, J.-C., Adaptive process monitoring using efficient
recursive PCA and moving window PCA algorithms. Journal of

the Taiwan Institute of Chemical Engineers, 2010. 41(4): p.

475-481.
26. Wang, X., U. Kruger, and G.W. Irwin, Process monitoring

approach using fast moving window PCA. Industrial &

Engineering Chemistry Research, 2005. 44(15): p. 5691-5702.
27. Rayleigh quotient iteration. Available from:

https://en.wikipedia.org/wiki/Rayleigh_quotient_iteration.

28. Cullum, J.K. and R.A. Willoughby, Lanczos algorithms for
large symmetric eigenvalue computations: Vol. I: Theory. 2002:

SIAM.

29. Da Fonseca, C., On the eigenvalues of some tridiagonal
matrices. Journal of Computational and Applied Mathematics,

2007. 200(1): p. 283-286.

30. Osipov, A., Evaluation of small elements of the eigenvectors of
certain symmetric tridiagonal matrices with high relative

accuracy. Applied and Computational Harmonic Analysis,

2015.
31. Kahan, W., Accurate eigenvalues of a symmetric tri-diagonal

matrix. 1966, STANFORD UNIV CA DEPT OF COMPUTER

SCIENCE.
32. Cuppen, J., A divide and conquer method for the symmetric

tridiagonal eigenproblem. Numerische Mathematik, 1980.

36(2): p. 177-195.
33. Xu, G. and T. Kailath, Fast estimation of principal eigenspace

using Lanczos algorithm. SIAM Journal on Matrix Analysis and

Applications, 1994. 15(3): p. 974-994.

https://www.distilnetworks.com/block-bot-detection/
https://en.wikipedia.org/wiki/Rayleigh_quotient_iteration

