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Abstract—In this paper, we study the topical behavior in a
large scale. We use the network logs where each entry contains
the entity ID, the timestamp, and the meta data about the activity.
Both the temporal and the spatial relationships of the behavior
are explored with the deep learning architectures combing the
recurrent neural network (RNN) and the convolutional neural
network (CNN). To make the behavioral data appropriate for the
spatial learning in the CNN, we propose several reduction steps
to form the topical metrics and to place them homogeneously
like pixels in the images. The experimental result shows both
temporal and spatial gains when compared against a multilayer
perceptron (MLP) network. A new learning framework called the
spatially connected convolutional networks (SCCN) is introduced
to predict the topical metrics more efficiently.

I. INTRODUCTION

Understanding and predicting the behavior of an entity over
a large domain of different actions is a challenging problem.
The problem is even more difficult when the behavioral data
is massively collected with lots of noise. For example, the
network activity log from nodes within a network domain, the
check-ins from users of a social media site, the visited geo-
locations from players within a augmented reality game, or the
shipment destinations of all items sold at an ecommerce site.
Among the data, each entity behaves differently, over different
periods of time. What can we learn from the behavioral data?

There are various studies in using behavioral data as a
global indicator. For instance, large scale user activity data
from Google is used to measure and track the user experience
such as happiness and engagement [1]. The web behavioral
data including searches and page views is used by Microsoft
to decide the advertisement delivered to the user [2]. Similarly,
Yahoo also conducts study on how education and other factors
can affect the web browsing behavior, which can also be
applied to improve advertisement targeting [3]. The predictor
to track stock index can be composed from the categorized
moods based on the overall Twitter activities [4]. It is also
possible to aim on lots of different business intelligence targets
with the behavioral data at hand [5].

However, the aforementioned large scale behavioral ana-
lytics use cases have one aspect in common: they heavily
simplified the response domain to have one or few learnable
targets. If we use the behavior domain as the response domain,
can we answer the "what’s next" question? For example, if a
user checked in at a Starbucks store this month and six months
ago, will he checked in at a Starbucks store next month? We
may not have enough historical data about this user. But the
data from other users can help.

In this paper, we attempt to tackle the "what’s next" problem
using the historical behavioral data, not only from the target
entity itself, but also from the peer entities. First, we organize
the activities into topics. The number of topics is chosen
according to the desirable size and granularity of the response
domain. The topical activities on each topic is then quantified
and measured for each entity. Over several periods of time, we
observe the topical behavior over the same set of topics for
all entities in the experiment. The historical topical activities
is used to train the models that predict topical activities in the
next time period.

Several combinations of deep neural network (DNN) are
explored to predict topical behavior. Specifically, the long
short-term memory units (LSTM) [6] and other types of RNN
[7] are employed to learn the temporal variation patterns of
the topical behavior. The CNN [8] and the locally-connected
network (LCN) [9] are used to learn the spatial composition
of the topical behavior. The relationship between topics needs
to be abstracted and evenly distributed like pixels for the
CNN and the LCN to learn [10]. The experiment result is
compared against the benchmark result from the multilayer
perceptron (MLP) that does not exploit either temporal or
spatial relationship.

The main contribution is not combinining CNN and RNN.
Instead, this work is the first attempt in applying the CNN
and the RNN to predict topically summarized behavior. It is
innovative in using both the spatial topic-to-topic relationship
and the topic-over-time temporal trend for such task. The
remaining of the paper is organized as follows. The proposed
learning architectures to explore the temporal and spatial
relationship on topics are presented in Section II. Experiment
setups and performance evaluation are covered in Section III.
The result and comparison are discussed in Section IV. Finally,
the conclusion and extension applications are provided in
Section V.

II. METHOD

A. Topical Metrics

To keep the behavior prediction within a trackable scope,
we summarize the input behavioral data into topics. Starting
from the activity log of all entities in the system, the descriptor
vector of each activity entry is generated in a high dimension
space. Clustering algorithm such as kmeans or latent latent
Dirichlet allocation (LDA) [11] finds the topics (cluster cen-
ters) in this space. For each entity, the vectorized log entries
are summarized on these topics to form quantitative metrics.
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(a) (b) (c) (d)

Figure 1. Topical behavior. (a) data points in high dimensional space; (b) cluster centers (topics) after dimension reduction; (c) topics after homogeneous
mapping; (d) topical metrics for an entity

Figure 2. Predicting the topical behavior of a single entity

For example, the topical volume over topic t of entity e can
be measured as

V
(Be,T )
t = log(

∑
a∈Be,T

ra + 1)), (1)

where ra is the relevancy for activity a to topic t, and B is
the set of activities defined by the unique content documents
of all activities logged within the time period T . Similarly, to
capture the trend in each topic, the topical drift between time
periods T1 and T2 over topic t for the same entity e can be
measured as

R
(Be,T1

,Be,T2
)

t = log(
∑

a∈Be,T2

ra + 1)

− log(
∑

a∈Be,T1

ra + 1).
(2)

There are other types of topical quantifiers based on differ-
ent business needs, such as topical risk, topical cost, or topical
’authority’-ness. Our goal in this paper is to track and predict
the topical metrics over time, while leaving the topical metrics
open to the downstream application. In the following sections,
the topical volume similar to Eq 1 is applied without further
mentioning.

B. Spatial Reduction over Topics

To better explored the intra-topic relationship in the behav-
ioral data, we want to capture the co-occurrence detail between
any pair of topics. Furthermore, we want to learn the detail
in the order of the distance between the topic pair - the co-
occurrence means more when the two topics are closer to each
other.

CNN [8] is a type of neural network that can learn the
relationship at the finest pixel level, summarize (or pool) at
the next level of granularity, then goes on to learn the element-
wise relationship at that next level, until the top level. CNN
has shown great success in classifying images [12], text [13],
videos [14], as well as other tasks in machine learning. It
has the capability we want to learn the topical relationship in
various detail at the same time.

However, the CNN generally extracts pixel-wise relation-
ship in the 2D or the 3D space, where the data points are
distributed evenly. It cannot handle the topic-wise relationship
directly in the word vector space. Therefore, the topical
metrics need to be mapped into a space that the CNN can
be applied. The same concept has been adopted for sentiment
classification in [?], where the n-dimensional word embedding
is applied to the k-word tweet and generates the n by k input
array for the CNN.

In order to arrange the topical metrics in the format similar



(a) MLP (b) TDRN

(c) LRCN (d) SCCN

Figure 3. Different learning architecture for topical behavior prediction. (a) MLP tracks all topical behavior of any entity over all time periods as cascaded
1D vector; (b) TDRN uses the first layer of LSTMs to track the 1D topical behavior within each time period, then the second layer LSTM to track the states
of the first layer LSTMs; (c) LRCNs are similar to TDRN while the behavioral relationship between topics is abstracted 2-dimensional and being learned by
the CNN, before being tracked by the two LSTM layers; (d) SCCN replaces the CNNs in LRCN with the LCNs, whose vocabulary filters are not shared
across different positions.

to the pixels in an image, the topical metrics need to go
through the following two steps.

1) Dimension reduction: this step maps the topical metrics
into a 2-dimensional (2D) or 3-dimensional (3D) space,
while maintaining the spatial relationship on topics
according to different criteria of the dimension reduction
algorithms. Some popular methods include principal
component analysis (PCA) [15], multi dimensional scal-
ing (MDS) [16], and stochastic neighbor embedding (t-
SNE) [17].

2) Homogeneous mapping: on the visualization space that
the CNN can digest, the topical metrics also need to
be placed evenly. As in the dimension reduction step,
the spatial relationship among the topics needs to be
maintained after the mapping. One way to achieve this
goal is the split-diffuse (SD) algorithm [10].

The whole topical reduction process is illustrated in Fig-
ure 1. In Figure 1(a) shows all data points (vectorized log en-
tries) in a high dimensional space, where color mean different
topics. After the dimension reduction step, the cluster centers,
representing the topics, are placed onto a visible space as in
Figure 1(b). Figure 1(c) shows the homogeneously mapped
topics. The topical metrics for an entity can be rendered like
Figure 1(d) to the CNN, or other learning architecture which
exploits the spatial relationship.

When utilizing both the temporal and the spatial relationship
among topics, the topical behavior prediction task for a single

entity is illustrated in Figure 2. The strategy on how to
utilize the relationship and how to evaluate the performance
is covered in the following.

C. Temporal and Spatial Learning

We adopt various DNN architectures to study how the
temporal and the spatial information can help learning and
predicting the topical metrics.

MLP with layers of neurons in Figure 3(a) serves as the
benchmark. In the MLP case, the topical metrics over different
time periods are cascaded into one single 1-dimensional (1D)
vector for each sample. The number of neurons gradually
reduces over layers, with the output layer matching the size
of the response space which is the number of topics.

In utilizing the temporal relationship among topics, we use
one layer of LSTMs to track the topical metrics as a sequence
for each time period, and then another layer of LSTM to
track the output states of the LSTMs from the previous layer.
The whole framework is called the time distributed recurrent
network (TDRN), as shown in Figure 3(b).

The long-term recurrent convolutional networks (LRCN)
is a family of architectures introduced to generate captions
for videos [18]. It combines the convolutional layers with
the long-range temporal recursion. We employ the LRCN to
exploit both the temporal and the spatial relationship among
topics. In our implementation, the uniformly distributed topical
metrics from Subsection II-B are spatially learned by CNN,



Table I
PERFORMANCE OF VARIOUS LEARNING ARCHITECTURES BASED ON RLE. ∆ MEANS THE GAIN VERSUS MLP.

ARCHITECTURE RLE ∆RLE RLE5 ∆RLE5 RLE1

MLP 0.1409 − 0.1364 − 0.1363
TDRN 0.1192 15.44% 0.1162 15.62% 0.1182
LRCN 0.1128 19.92% 0.1083 20.53% 0.1079
SCCN 0.1129 19.85% 0.1096 19.63% 0.1095

LRCNM 0.1125 20.13% 0.1073 21.28% 0.1076
SCCNM 0.1116 20.79% 0.1083 20.59% 0.1080

Table II
PERFORMANCE OF VARIOUS LEARNING ARCHITECTURES BASED ON R2LE. ∆ MEANS THE GAIN VERSUS MLP.

ARCHITECTURE R2LE ∆R2LE R2LE5 ∆R2LE5 R2LE1

MLP 0.3225 − 0.3105 − 0.3100
TDRN 0.2858 11.39% 0.2836 10.03% 0.2809
LRCN 0.2782 13.73% 0.2649 14.70% 0.2617
SCCN 0.2746 14.84% 0.2664 14.20% 0.2667

LRCNM 0.2813 12.77% 0.2586 16.72% 0.2559
SCCNM 0.2737 15.12% 0.2624 15.50% 0.2623

then the LSTM layers track the variation among the spatial
patterns over time, as in Figure 3(c).

However, the CNNs are computationally expensive. LCN is
another option to explore spatially while being time efficient.
In the context of speaker recognition, LCN performs compa-
rably well versus CNN [5]. In the framework called spatially
connected convolutional networks (SCCN) as in Figure 3(d),
the convolutional units in LRCN are replaced by the locally
connected units. The locally connected units do not share the
trained weights between different position. Instead, the same
set of weights is applied to the same position of different
samples. The regulation is more effective on the locally
customized patch dictionaries in the LCN, compared to that
on a global dictionary in the CNN.

In our experiments, we also consider the multi-resolution
approach to learn the spatial and temporal relationship. For
the LRCN case, four subsystems as Figure 3(c) with different
vocabulary filter sizes are fed with the same tensor input. In the
final stage, the outputs from all four subsystems are collected
to generate the response metrics. The same multi-resolution
approach is carried over to the SCCN as well.

III. PERFORMANCE

A. Measuring Losses

The common way to measure the prediction result is the
mean squared error (MSE) between the predicted values and
true values, over all topical metrics of all samples. However,
the cost of the decision based on the behavioral prediction
result usually is not equally weighted across each predicted
value. For example, in predicting the trending or risky topic,
the cost of missed future trend is higher than the cost of false
positives. Therefore, we use the following weighted losses to
evaluate the behavioral predictions.

The risk loss error (RLE) weighs the squared error linearly
according to the true target value, such as the V

(Be,T )
t in Eq 1.

RLE =
1

|V|
∑
∀v∈V

v(v̂ − v)2, (3)

where V is the set of all target values, which are the non-
negative and scaled topical metrics. We further emphasize the
missed prediction error in another loss called risk square loss
error (R2LE) defined as

R2LE =
1

|V|
∑
∀v∈V

v2(v̂ − v)2. (4)

The entity usually are active on few topics out of many. To
better regulate the learning, both RLE and R2LE encourage
the learning architecture to predict boldly on high potential
topics, instead of passively assigning zeros to optimize MSE.

We want to leave the metric open according to the down-
stream applications. In our example of topical risk, RLE
and R2LE are designed to penalize the prediction error on
highly active topics, such as the orange grids in Figure 2.
Meanwhile, the error with low-activity topics is tolerated. The
same metric also works for predicting the topical sales volume
on a ecommerce site. However, to predict the shopper’s change
in flavor, the error can be measured on the binary difference
of each shopping topic.

B. Experiment Setup

The data set comes from 151, 783, 806 entries in the activity
logs of 98, 881 samples. Each entry contains the identifier
of the acting entity, the access timestamp, and the meta
information about the accessed resource. The meta information
of each entry is punctuated into words and vectorized, called
the content document. The the content documents of the first
six months are used to train the LDA and extract 96 topics.



(a) RLE on training (b) RLE on validation (c) RLE on testing

(d) R2LE on training (e) R2LE on validation (f) R2LE on testing

Figure 4. Performance on various learning architectures; x-axis indicates the number of epochs.

The trained LDA is then fixed and provides the relevancy for
each log entry on each topic.

A sample comes from a single entity. Over each time period,
the topical relevancy of each sample is quantified by Equation
(1) for every topic. Figure 2 illustrated what a sample looks
like with the help from the Topic Grids [10]. Each sample
contains the topical relevancy on each of all 96 topics, from
all historical periods up to the current period. Each sample also
contains the prediction target which is the topical relevancy of
these 96 topics in the next (future) period.

The samples are split into 69, 407 training samples, 7, 712
validation samples, and 21, 762 testing samples. The prediction
target values in the testing samples are from the time periods
that are later then all the training time periods. That means,
with May being the last time period to train the architecture,
the earliest possible test set prediction happens in June of
the same year. However, overlaps in the time periods where
the historical topical metrics were generated are allowed
between training data and testing data. This setup simulates
the behavioral prediction for the future.

The learning architectures in our implementation are built
with Keras [19] with Theano [20] backend. Both dropout [21]
and L2 regulation [22] are applied to all the architectures to
keep the learned models generalized enough.

C. Result
Tables I and II show the experimental result on loss metrics

RLE and R2LE over all the learning architectures discussed

above. The epochs when the validation data has the best
five RLEs are chosen to form the RLE5 by averaging the
corresponding RLEs from the testing data. R2LE5 is derived
in the same fashion. The prediction gain comparing against the
benchmark MLP result is denoted with the ∆ prefix. LRCNM
and SCCNM are the multi-resolution setups for LRCN and
SCCN, respectively.

The TDRN explores only the temporal relationship with
LSTM over topics. It provides prediction gain ranging from
11.32% to 16.73% depending on the loss metric and the
evaluation scenario. The LRCN explores both temporal re-
lationship and spatial relationship over topics. It tracks the
temporal relationship with layers of LSTMs, exactly the same
approach used in TDRN. The additional spatial information
among topics tracked by CNN further improve the prediction
gain from 13.73% to 19.92%. Replacing the CNN spatial
tracking with the LCNs, the SCCN provides a comparable
14.20% to 19.85% prediction gain to the LRCN.

In the multi-resolution setups, four subsystems with vocab-
ulary filters sizing 4-, 9-, 16- and 25-topics are combined to
learn the behavioral metrics. The LRCNM yields a wider range
of gain from 12.77% to 21.28%, which can be substantial
when guided properly by the validation data. The SCCNM,
on the other hand, provides a more stable gain ranging from
15.12% to 20.79%.

In our experiments, both RLE and R2LE are measured at
the level of the predicted values, not at the sample level. The



benefit on this approach is that the loss is accurately measured
at the level where the prediction is made. The detail learning
curves for all architectures are shown in Figure 4. To match the
other learning architectures in terms of learning capability, the
benchmark MLP is implemented with five layers of neurons,
including input and output layers, and three dense neuron
layers in absence of the LSTM and spatial learning layers
in other architectures in Figure 3.

The L2 regulation is applied to all learning architectures
shortly after the input. For the MLP, it is applied to the first
dense neuron layer after the input neurons. For the TDRN,
the L2 regulation works on the time distributed dense layer
after the input at each time period. In a similar fashion, L2

is applied to the LRCN and the SCCN at the CNN and the
LCN layer of each time period, respectively. Each subsystem
in the LRCNM and the SCCNM architectures also employ the
same L2 as the corresponding single resolution architecture.
The dropouts are used in the same layers in each architecture.

IV. DISCUSSION

A. Spatial Gain

The spatial gain comes from asking the CNN neurons or the
LCN neurons to learn the pixel-wise relationship locally, and
summarize the learned knowledge across layers, whose defini-
tion on ’localness’ becomes larger and larger, up to the whole
image. However, the topical metrics fed into the convolutional
neurons are not truly pixels of a natural image. Instead, the
relationship between topics are reduced significantly to map
the topical metrics uniformly like the pixels.

When being generated in a high dimensional space from
the sampled data points by the generative models [23], the
topics close to each other indicate that their context may have
overlap. It also means that a data point is more likely to belong
to the topics which are nearby spatially than the topics that
are not. If the topically related metrics are still close by after
the heavy reduction into pixels, the convolutional neurons can
systemically learn the pixel-wise relationship into meaningful
vocabulary filters.

Even after the series of reductions, the result from both
the LCRN and the SCCN confirms the spatial gain when
compared against the TDRN. The redefined neighborhood at
the pixel level provides an overall 1.21% to 3.41% on top of
the temporal gain.

B. Temporal Gain

The temporal gain is observed by inspecting the prediction
difference between the MLP and the TDRN. Depending on
the loss metrics being evaluated, the temporal gain ranges
from 12.52% to 16.51% overall. In our experiments, both the
temporal and the spatial gains show up on RLE and R2LE
across the topical metric on the quantity defined in Eq 1.
Different loss metrics on different topical metrics may vary the
gain range. The learning architectures can be another factor,
while efforts are made to keep the architectures comparable
to each other.

C. CNN versus LCN

As the convolutional neurons try to pick up the recurrent
founding components spatially, the difference between the
CNN and the LCN lies in whether the learned vocabulary
filters are shared across different positions when filtering the
pixels. The result in Tables I and II show similar performance
between the CNN and the LCN.

Theoretically, the patterns on topical metrics carry the
information about how the specific topics within the filter
are related to each other. If one considers that each topic is
unique in its own contextual meaning, then each relationship
is also uniquely defined, for example, the relationship between
the topic ’baseball’ and the topic ’reggae music’. The locally
connected convolutional neurons make more sense when each
topic is uniquely presented in a single position, which is the
case of ours. On the other hand, the neurons in the CNN are
designed to keep track of the spatially recurrent patterns, for
example, a wheel at different positions of the images.

As shown in Figure 4, the CNN quickly learns the topical
relationship with the spatially shared neurons. However, it
begins to overfit even with the exact same regulations used
in the LCN. At this point, the spatial constraints enforced
in the LCN can be seen as a form of spatial regulation for
the convolutional neurons. With the better regulated learning
architecture, we do not need to reserve a portion of the training
data to validate and probe the best trained states. Thus LCN
can better utilize the data in our experiments. Nevertheless,
the run time for the LCRN is between 1.5 to 3 times that for
the SCCN. This is similar to the observation in [5] where the
CNN and the LCN are trained to recognize the speaker.

D. Multi-resolution

In a multi-resolution learning architecture, each subsystem
uses a fixed size of filter bank for its spatial convolutional
neurons. For SCCNM, the multi-resolution prediction gain
on top of the single-resolution SCCN ranges from 0.28% to
1.30%. The multi-resolution setup worsens the overfitting for
the LRCN. While the result guided by the validation data
gains from 0.52% to 1.65%, the overall performance is not
improved.

The combined subsystems in the multi-resolution setup
also significantly increase the model size (Table III) and the
computation time. In our experiments, the better regulated
SCCN is more appropriate for the multi-resolution type of
learning.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we formalize the behavior prediction over
topics, utilizing both the topic-wise relationship and the topical
variation in time. Several state-of-the-art learning architectures
are evaluated under the proposed behavior prediction frame-
work. The experiments are designed to incrementally add the
temporal and the spatial information into the learning. Our
result shows consistent gains on learning the temporal detail
and the spatial detail.



Table III
INCREASE IN ARCHITECTURE SIZE ON MULTI-RESOLUTION SETUPS. NUMBER OF FILTERS IS REGARDING TO THE FILTERS USED IN EACH SINGLE

SPATIALLY-CONVOLUTED NETWORK (CNN OR LCN).

ARCHITECTURE # FILTERS # NEURONS ARCHITECTURE # FILTERS # NEURONS
LRCN 16 480, 160 LRCNM 16 1, 798, 144
LRCN 32 848, 960 LRCNM 32 3, 113, 888
LRCN 64 1, 586, 560 LRCNM 64 5, 745, 376
SCCN 16 489, 600 SCCNM 16 1, 838, 528
SCCN 32 867, 840 SCCNM 32 3, 194, 656
SCCN 64 1, 624, 320 SCCNM 64 5, 906, 912

We present SCCN, a type of learning architecture to explore
deeply in both the spatial and the temporal domains. The
SCCN provides comparable result to another type of architec-
ture, LRCN, in the loss metrics tested. It is faster to train and
to make prediction. Meanwhile, it is better regulated, making
it more suitable for larger scale behavioral learning.

B. Extension

There are several aspects that may be further investigated
under the proposed framework.

Toward the homogeneous placement of the topics, it is
possible that the two dimension reduction steps in Section II-B
can be combined into one in a unified approach, by adding the
condition of homogeneous placement in the destination space
as the criteria during dimension reduction. If exists, the unified
approach may further improve the prediction performance.
However, since different dimension reduction algorithms have
different reduction objectives, the improvement on such uni-
fied approach may also depend on its use cases.

Each of the components in the learning architectures can be
further replaced by its alternatives or variants. For example,
it is also possible to use other types of recurrent units such
as the GRU [24] to track time, instead of the LSTM in this
paper.

On the application side, the proposed framework can predict
topical behavior for any logs with large amount of activities,
from which the topics can be extracted. The log can be on
network activities, financial transactions, social media posts,
visited places on car rides, among many others. It is not limited
to the unstructured data input. In fact, it is also applicable
to the structured data where topics or cluster centers can be
formed.
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