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ABSTRACT

Over one billion cars interact with each other on the road ev-
ery day. Each driver has his own driving style, which could
impact safety, fuel economy and road congestion. Knowl-
edge about the driving style of the driver could be used
to encourage “better” driving behaviour through immediate
feedback while driving, or by scaling auto insurance rates
based on the aggressiveness of the driving style.

In this work we report on our study of driving behaviour
profiling based on unsupervised data mining methods. The
main goal is to detect the different driving behaviours, and
thus to cluster drivers with similar behaviour. This paves
the way to new business models related to the driving sec-
tor, such as Pay-How-You-Drive insurance policies and car
rentals.

Driver behavioral characteristics are studied by collecting
information from GPS sensors on the cars and by apply-
ing three different analysis approaches (DP-means, Hidden
Markov Models, and Behavioural Topic Extraction) to the
contextual scene detection problems on car trips, in order
to detect different behaviour along each trip. Subsequently,
drivers are clustered in similar profiles based on that and the
results are compared with a human-defined groundtruth on
drivers classification. The proposed framework is tested on
a real dataset containing sampled car signals. While the dif-
ferent approaches show relevant differences in trip segment
classification, the coherence of the final driver clustering re-
sults is surprisingly high.

1. INTRODUCTION

According to the global status report on road safety con-
ducted by the World Health Organisation (WHO) in 2013,
1.24 million traffic-related fatalities occur annually world-
wide, currently the leading cause of death for people aged
between 15 and 29 years. In the majority of the cases acci-
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dents are caused by risky driving behavior!. Driving is es-
sentially a multi-factor cognitive task based on the underly-
ing road layout, traffic, weather, and social context. Drivers
modeling is based on on-road behavior analysis and it al-
lows users’ segmentation into categories based upon their
driving style [8]. Exploiting this segmentation can bring a
great impact in road safety and on business models related
to driving, such as Pay-How-You-Drive insurance policies
and car rentals.

Current driver characterization methods are mainly based
on the process of identification and recognition of patterns
defined by prior research studies and adapted to a specific
context through supervised learning techniques [7]. How-
ever, this kind of analysis lacks in generalization, misses the
selection phase of the best set of features to consider, and
implies complex human labeling of multivariate time series
for the definition of classes or sets of rules for the automatic
identification.

In this work we propose an approach aimed to the iden-
tification of patterns characterizing driving behaviours in-
dependently from prior knowledge concerning the driving
process. In this way the relation between features (e.g.
cognitive, operational and contextual) can be fully inves-
tigated. Hence we propose three unsupervised approaches:
a clustering based segmentation, a sequences analysis seg-
mentation, and a behavior characterization obtained with
a soft-clustering technique. Through these techniques we
classify trip segments, and based on this we apply a second
clustering step on trips (and thus drivers). We compare the
different techniques and we assess the correctness of drivers
clustering against a human-defined ground truth.

The paper is structured as follows: Section 2 describes the
applied methods, Section 3 reports on our experiments and
discussion, Section 4 describes the related work and finally
Section 5 concludes.

2. CONTEXTUAL SCENE EXTRACTION

In this section we describe three different unsupervised ap-
proaches, namely clustering methods, to extract observed re-
current patterns (named conteztual scenes) in the behaviour
of different drivers. This allows the extraction of a reduced

"http:/ /www.who.int/gho/publications/world_health_
statistics /2016 /whs2016_AnnexA_RoadTraffic.pdf?7ua=1&
ua=1



representation of the original multivariate time series de-
scribing the trips of drivers.

2.1 DP-Means for Contextual Scenes Cluster-
ing

The first method is the DP-Means algorithm, a Bayesian
non-parametric clustering approach [4]. We apply this al-
gorithm with the aim to group observation points into con-
textual scenes representing a behavioral pattern in driving
trips. This algorithm infers the number of groups consid-
ering data similarity based on euclidean distance measured
between processed points. In fact, a new cluster is formed
whenever a point is farther than A away from every existing
cluster centroid. The parameter A controls the trade-off be-
tween traditional k-means objective function and the cluster
penalty term introduced by DP-means formulation. Higher
values of A discourage the creation of more clusters.

Since this analysis is accomplished in an unsupervised set-
ting, to determine the best number of cluster we rely on an
well known evaluation metrics, namely the Silhouette sim-
ilarity coefficient, which computes how tightly grouped are
the points in each cluster. Assuming to have k clusters, for
each datum 14, let a(i) be the average dissimilarity of ¢ with
all other data in the same cluster and let b(:) be the low-
est dissimilarity of ¢ to any other cluster, of which ¢ is not
member. The silhouette index of i is defined as:

N b@)—a())
s(i) = max{a (i),b (i)}

If s (¢) is near to 1, object ¢ has been assigned to an appro-
priate cluster. Thus, the average s (i) consider the appro-
priateness of clustering of all data points. This allows to
determine the optimal number of clusters &, by running the
clustering algorithm several times with different parameter
values and choosing k which yields the highest silhouette.

—1<s@) <1 (1)

2.2 Hidden Markov Model based Segmenta-
tion

The second method is Hidden Markov Model (HMM), ap-
plied to extract contextual scenes. The proposed model is
a statistical latent process model which assumes that the
observed driving behaviour is governed by sequence of hid-
den (unobserved) activities. HMMs introduce the concept
of sequence and relationship between consequent observa-
tions and hidden states. We employ this models to perform
unsupervised segmentation of gathered trip points in order
to learn behavioral patterns described by their latent struc-
ture. In particular we used continuous emissions HMMs
where hidden states generative process is described by mul-
tivariate Gaussian distributions.

The overall process is composed mainly by three phases:
model initialization based on clustering results; model train-
ing aimed to estimate the model parameters; and sequence
decoding.

HMDMSs unsupervised training process requires knowledge of
the hidden structure; more specifically, the number of the
latent variables and the initialization parameters need to be
specified. We perform model initialization based results ob-

tained by DP-means algorithm. Starting from DP-clustering
results, Multivariate Gaussian Distribution parameters (means
and covariances) are estimated for every hidden state. Once
hidden state parameters and transition behavior are learnt,
we perform the tagging of each observed sequence to as-
sign each observed sample to the correspondent generative
hidden state. In particular, the model parameters are es-
timated making use of Baum-Welch algorithm that uses a
Expectation Maximization (EM) algorithm to find the max-
imum likelihood of the parameters of the HMM given a set
of feature vectors.

Once the HMM'’s parameter are estimated by the learning
algorithm, our goal is to tag each observation point accord-
ing to the corresponding generative hidden state. To achieve
sequence labeling we used the Viterb: algorithm [19].

2.3 Hierarchical Dirichlet Processes for
Behavioural Topics Extraction

So far we analyzed methods producing an hard clustering as-
signment for each observed data point and the ulterior clus-
ters’ distribution has been used to characterize trip belong-
ing to different users. Now we apply a Hierarchical Dirichlet
Processes to model topical concepts belonging to a set of
documents.

Straub et al. in [15] proved that HDPs are able to obtain
descriptive topics about road-states considering a small set
of car signals. Starting from this points we used the same
approach to compare driver models belonging to different
drivers to allow a clustering based on their driving behaviour
and habits.

Most of the time, the number of topics for a corpus is un-
known. In that case, a non-parametric model is a good
choice since the number of parameters (such as the number
of topics) is not set a priori, but learned from data. This
model can adapt the number of topics based on the data.
The overall process is composed mainly by three phases: (1)
data discretization, (2) documents and corpus creation, and
finally (3) topic extraction phase.

2.3.1 Data Discretization

The first step consists in discretizing the continuous features
into categorical ones. Our goal is to represent each observa-
tion point with a string of length D where D is the number of
features. Each symbol in the string represents a discretized
feature value. In this transformation the number of features
taken into account is fundamental because defines the length
of each word of ghe corpus and may affect the model perfor-
mance. Furthermore, it is essential to define the number of
categorical values associated to each signal.

Two methods can be used for feature discretization: (i) Clus-
tering: in this technique each features is grouped using clus-
tering algorithm; or (2) Binning: in this alternative each sig-
nal spanning range is divided in categorical bins: Each bin is
defined by two threshold values: starting point and ending
point. The size of each bin may be of different length based
on signal’s distribution (equal frequencies) or it may be con-
stant (equal intervals) in order to easily recognize outliers.
In our case we opted for binning with equal intervals.



2.3.2  Corpus Creation

Once each observation signal has been quantized, we built a
text corpus on which to train our model. Quantized observa-
tions representation (which we will call words), are grouped
into documents based on their trip membership.

2.3.3 Topic Analysis

The topics are analyzed using a Hierarchical Dirichlet Pro-
cess (HDP) which applies Sethuraman’ s stick breaking con-
struction twice, as described in [14]. This kind of construc-
tion, unlike the original ones derived by Teh et al. [17],
allows the derivation of an efficient and scalable stochastic
variational inference, as proposed by Wang et al. [20].
These approximation assumes that all the variables involved
in the process are independent and it truncates the stick-
breaks to T" on the corpus level and to K on the document
level. This fact does not affect the results since truncation
level can be set high enough to allow the HDP to adapt to
the complexity of the data.

3. EXPERIMENT

In this section we describe how we performed the analysis
described in the previous sections on a real world dataset.

3.1 Dataset Description

In this work we used the XSens? dataset, a collection of ob-
servations retrieved during an evaluation study of a driving
behavior collection system. Each observation represents an
observed driving trip and each sample represents a set of
signals’ observation.

3.1.1 Data Collection

The data have been preprocessed by the collection device
Xsens MTi-G-710, a 3D motion tracking device, which per-
forms an initial filtering process including speed estimation
based on GPS positioning. The used coordinate system used
is known as ENU and is the standard in inertial navigation
for aviation and geodetic applications.

3.1.2  Sampling Frequency and Down-Sampling

The retrieved signals have their own sampling frequency
that can vary from one device and sensor to another. For
instance, there is a different sampling frequency between
GPS positioning (1Hz) and inertial measurements (100Hz).
To overcome this problem observations are grouped using a
temporal window size of 1 seconds, decision based on the
slower sampling frequency. In subsampling, for the inertial
features we consider the mean value, while for the GPS co-
ordinates we consider the median (to avoid generating “fake”
mean GPS positions).

3.1.3 Features Selection

The features used in the experiments have been chosen rely-
ing on prior knowledge regarding their relevance in Driving
Behavior Modeling [10, 6]. Besides the ones already avail-
able, a few others have been computed, such as the difference
in orientation (yaw) with respect to the previous instant.

Zhttp:/ /selfracingcars.com/blog/2016/8/22/
xsensfairchild-data-available

Table 1: Silhouette Coefficients depending on clustering pa-
rameters

Parameter | Number of Clusters SC

A =b 36 0.182
A =7 18 0.198
A =10 9 0.270
A =12 7 0.250
A =13 2 0.927

{‘l

(a) SC for A = 10 (b) SC for A =12
Figure 1: Silhouette Coefficient representation. The vertical
dashed red line represents average SC.

The selected features are: acceleration (on Y and X axes),
speed (on Y and X axes) and the difference in yaw.

3.2 DP-Means for Contextual Scenes Cluster-
ing

We run DP-means algorithm over the dataset to assign to
each observed trip point the corresponding Contextual Scene.
In the datasets data points belonging to each trip are ordered
according to the timestamp and trips are ordered by collec-
tion sequence. It is important to highlight this structural
ordering of clustering dataset because DP-means algorithm
results depend on the order in which data points are pro-
cessed. A different ordering of data points or driving trip
may produce different clustering results.

We performed Silhouette Coefficient (SC) Analysis to tune
the clustering parameters when applying DP-means. The
results are summarized in Table 1 and Figure 1. The opti-
mal SC values correspond to values of A equal to 10 or 12 (we
discard A=13 because it yields only 2 clusters, with all trips
but one in the same cluster). We decided to use A=12 since
the corresponding SC is very similar to the one for A=10
and it generates less clusters. The centroids are represented
in Table 2: for instance Cluster 1 identifies straight-line pro-
ceeding at low speed while Cluster 7 groups points of harsh
maneuvers with high lateral and longitudinal accelerations.

To support the visual exploration of clusters and centroids,
Figure 2 reports a graphical representation of the features
distribution within each cluster allowing one to understand
what kind of behavior or Contextual Scene can be associated
to each cluster, based on the values of the features and the
allocation of clustered points. The visualization makes use
of histograms where each graph represents the distribution
of a feature across the clusters.

Furthermore, each trip and consequently each driver can be
characterized by the distribution of the points belonging to



Table 2: DP-Means clustering centroids with A = 12.

Acc.X AccY Speed X SpeedY Diff Yaw
Cluster 1 | -0.2509 -0.0401 1.6041 1.2607 1.4984
Cluster 2 | 0.0699 -1.3350 5.4737 0.7912 224.8210
Cluster 3 | -0.0219 1.0751 7.0265 0.7751 200.4068
Cluster 4 | -0.0505 -0.0417 7.8803 9.2362 0.0483
Cluster 5 | -0.0218 0.4173 9.7849 3.0444 0.7412
Cluster 6 | 0.7957 -0.3374 4.0299 4.0781 1.3649
Cluster 7 | 2.3836 -4.0015 5.2456 4.5716 -2.3374

each cluster. The percentage of each cluster’s points within
each trip can be used as characterizing feature of individual
driving style. These information about cluster distribution
in each trip are summarized in Table 3.

Table 3: The percentage of points belonging to each cluster
have been computed considering every observed driving trip.
Similar trips present a similar clusters distribution.

Trip_ID Clusterl Cluster2 Cluster3  Cluster4  Clusterb Cluster6 Cluster7

tl 0.17 0.01 0.00 0.48 0.27 0.08 0.00
t2 0.49 0.01 0.01 0.15 0.20 0.15 0.00
t3 0.51 0.01 0.01 0.15 0.21 0.12 0.00
t4 0.31 0.01 0.00 0.34 0.17 0.15 0.01
t5 0.43 0.01 0.00 0.18 0.25 0.13 0.00
t6 0.41 0.01 0.01 0.18 0.24 0.15 0.00
t7 0.36 0.01 0.01 0.31 0.16 0.14 0.02
t8 0.33 0.02 0.01 0.32 0.17 0.14 0.01
t9 0.44 0.01 0.01 0.20 0.22 0.13 0.00
t10 0.39 0.01 0.01 0.21 0.24 0.13 0.00
t11 0.45 0.01 0.01 0.17 0.24 0.12 0.00
t12 0.46 0.01 0.01 0.14 0.20 0.18 0.00
t13 0.43 0.01 0.01 0.18 0.24 0.13 0.00
t14 0.34 0.02 0.01 0.32 0.16 0.14 0.02
t15 0.17 0.00 0.00 0.52 0.24 0.06 0.00
t16 0.49 0.01 0.01 0.16 0.20 0.14 0.00
t17 0.48 0.01 0.01 0.15 0.23 0.12 0.00
t18 0.47 0.01 0.01 0.16 0.21 0.13 0.00
t19 0.48 0.01 0.00 0.14 0.22 0.14 0.00
20 0.30 0.02 0.00 0.33 0.18 0.15 0.01
t21 0.50 0.01 0.01 0.14 0.21 0.13 0.00
t22 0.48 0.01 0.01 0.16 0.21 0.13 0.00
23 0.35 0.01 0.00 0.31 0.16 0.15 0.02
24 0.56 0.01 0.00 0.13 0.18 0.12 0.00
25 0.43 0.01 0.01 0.18 0.25 0.12 0.00
26 0.53 0.00 0.00 0.15 0.15 0.16 0.00

27 0.50 0.01 0.00 0.16 0.20 0.13 0.00

3.3 Hidden Markov Models Based Segmenta-
tion

HMM is trained using the dataset and each trip’s observa-
tion have been tagged to assign the corresponding hidden
state. The result is similar to clustering process, where each
point is assigned to the nearest cluster, but HMM has in-
trinsic information about the probability of all the possible
state changes. This property of the system is expressed by
the transition matrix as described in Table 5 where it has
been computed considering an HMM model initialized with
seven hidden states.

High values of self transition represent behaviors that tend
to last in time for long period and instead lower values of
self-transition probability characterize behavioral patterns
that have short term.

Similarly to clusters’ centroids, in the extracted HMM we
evaluated mean and covariance of Multivariate Gaussian dis-
tributions belonging to latent states. In Table 4 are repre-
sented means vector of Multivariate Gaussian Distribution
belonging to each latent state. Furthermore we computed

the distribution of each hidden state within each observed
driving trip as described in Table 6. Similar trips present a
similar clusters distribution.

An example of clustering is shown in Figure 3, where the
colors represents the points belonging to different clusters.

Table 4: HMM Gaussian emission means with k=7. In the
Table are represented Multivariate Gaussian features’ means
associated to the identified hidden state.

Acc X AccY Speed_ X  Speed.Y  Diff Yaw
Cluster 1 0.0002 -0.0061 0.0779 0.0803 0.0034
Cluster 2 0.2071 -1.4373 4.8023 2.3062 -69.1111
Cluster 3 | -0.5347 1.0825 5.4776 1.3215 68.0753
Cluster 4 0.0054 -0.01035 8.5401 6.9008 0.0125
Cluster 5 | -0.1031 0.4770 7.9902 2.9251 -0.0544
Cluster 6 0.1472 -0.3185 5.0797 6.3760 1.3183
Cluster 7 | -0.0218 -0.0479 1.5448 1.7622 3.8423

Table 5: Standard-HMM Transitions Matrix initialized with
k=T.

State 1  State 2 State 3 State 4 State 5 State 6 State 7
State 1 0.9501 ~0 ~0 ~0 ~0 ~0 0.0499
State 2 ~0 0.6176 0.0375 ~0 0.0940 0.1509 0.1000
State 3 ~0 ~0 0.6101 ~0 0.1972 0.0199 0.1728
State 4 0.0001 0.0006 ~0 0.9217 0.0348 0.0392 0.0036
State 5 ~0 0.0021 0.0492 0.0759 0.8491 0.0164 0.0073
State 6 ~0 0.0524 ~0 0.1123 0.0123 0.7943 0.0286
State 7 0.0515 0.0365 0.0079 0.0020 0.0045 0.0320 0.8645

Table 6: Hidden States assignments distribution in trips.

Trip_ID Statel State2 State3 Stated Stateb State6 State7

t1 0.06 0.01 0.01 0.59 0.11 0.14 0.07
t2 0.10 0.02 0.02 0.40 0.15 0.16 0.15
t3 0.27 0.02 0.02 0.32 0.12 0.12 0.13
t4 0.11 0.06 0.03 0.31 0.20 0.10 0.19
t5 0.17 0.02 0.02 0.32 0.15 0.14 0.17
t6 0.13 0.02 0.02 0.37 0.13 0.13 0.19
t7 0.13 0.05 0.04 0.28 0.19 0.09 0.21
t8 0.10 0.06 0.04 0.28 0.19 0.11 0.22
t9 0.22 0.03 0.02 0.34 0.11 0.15 0.13
t10 0.21 0.02 0.02 0.32 0.12 0.15 0.13
t11 0.17 0.02 0.02 0.31 0.13 0.13 0.20
t12 0.22 0.02 0.02 0.24 0.12 0.16 0.20
t13 0.26 0.02 0.02 0.29 0.12 0.14 0.14
t14 0.06 0.05 0.03 0.28 0.20 0.12 0.26
t15 0.09 0.00 0.01 0.64 0.07 0.12 0.08
t16 0.24 0.02 0.02 0.27 0.14 0.12 0.18
t17 0.26 0.02 0.02 0.31 0.13 0.15 0.11
t18 0.25 0.02 0.02 0.28 0.13 0.14 0.16
t19 0.18 0.02 0.02 0.37 0.12 0.14 0.16
t20 0.11 0.09 0.03 0.26 0.20 0.14 0.18
t21 0.28 0.02 0.02 0.25 0.14 0.16 0.12
t22 0.26 0.02 0.02 0.30 0.13 0.11 0.16
t24 0.33 0.02 0.02 0.21 0.10 0.12 0.21
t23 0.09 0.05 0.03 0.28 0.19 0.11 0.25
t25 0.20 0.03 0.02 0.31 0.13 0.14 0.17
t26 0.20 0.02 0.01 0.24 0.10 0.20 0.23
27 0.27 0.02 0.02 0.25 0.14 0.13 0.17

3.4 Hierarchical Dirichlet Processes for
Behavioural Topic Extraction

For topic extraction we used an already provided implemen-

tation of HDP model provided by Gensim library [11]. Gen-

sim is licensed under the OSI-approved GNU LGPL license.

We discretized the dataset using a binning method (Binning
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Figure 2: Features distribution on the identified clusters: each graph represents a feature used for clustering and each color
represents a cluster. One can appreciate how elements of each cluster are spread across each feature values.

Table 7: Thresholds values defined in binning process.

a b c d e
Acc X < —2.55 —2.55 <v < -0.14 —0.14 < v <227 2.27T < v < 4.67 > 4.67
AccY < —6.02 —6.02 < v < —-3.57 =357 <v<—1.12 —1.12<v<1.33 > 1.33
Speed_X <6.75 6.75 < v <13.50 13.50 < v < 20.25 20.25 < v < 26.70 > 26.70
Speed_Y <6.10 6.10 < v <12.20 12.20 < v < 18.30 18.30 < v < 24.40 > 24.40
Diff Yaw < —206.10 —206.10 < v < —66.97 —66.97 < v < 72.17 72.17 < v <211.30 > 211.30
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Figure 3: Geo-referenced representation of segmentation
based on HMM for an example trip.

intervals are described in Table 7). Our goal is to obtain a
soft clustering based on which similar trips can be identified
analyzing topics distribution over each trip document.

For building the model we set T, top level truncation value,
to 50; and K, second level truncation value, to 15.

In particular we retrieved two kinds of information: terms
relevance in each identified topic (shown in Table 9), and
the topic distribution over each document (see Table 8).

3.5 Validation and Discussion

So far our objective was to extract recurrent driving patterns
from the trips in order to detect different behaviors along
them. In this section we aim to categorize the whole trip
using the information retrieved with the previous methods.

3.5.1 Comparison of the Methods

First, we compared the results of the different segmentation
methods to understand how stable is the coherence of the
obtained clusters across method. In order to do so we run k-
Means clustering algorithm on the trips data obtained by the
three methods. Each trip is characterized by its distribution
of points among the identified clusters or topics. Using the
Elbow method we set k equal to 6 for all the three methods.



Table 9: Terms relevance in top 7 extracted topics.

Terms Distribution
Topic cdaac | bdaac | cdbbc | cdbac | cdabc | cccab | bdede | bdbbe | cdaad | cdaaa | ecabc | bdbac | cdcac | bdaac | bdaae | cdadc
Topic 1 | 0.315 | 0.111 0.095 | 0.048 0.047
Topic 2 | 0.259 | 0.113 | 0.087 0.089 0.044
Topic 3 | 0.201 | 0.077 | 0.040 0.032 0.029
Topic 4 | 0.074 0.112 | 0.077 0.035 0.033
Topic 5 | 0.101 | 0.023 0.031 0.030 0.026
Topic 6 | 0.128 | 0.047 0.034 0.023 0.021
Topic 7 | 0.032 | 0.026 0.024 0.024 0.022

Table 8: Topic relevance for observed driving trips.

Topic Distribution

t1 ( Topic 0, 0.0782), ( Topic 1, 0.3130), ( Topic 3, 0.6087)
t2 | ( Topic 0, 0.8662), ( Topic 1, 0.1335)
t3 ( Topic 0, 0.9751), ( Topic 1, 0.0246)
t4 | ( Topic 1, 0.9989)

t5 | ( Topic 0, 0.7893), ( Topic 1, 0.2104)
t6 ( Topic 0, 0.8888), ( Topic 1, 0.1109)
t7 ( Topic 1, 0.9920)

t8 | ( Topic 1, 0.9992)

t9 | ( Topic 0, 0.6667), ( Topic 1, 0.3330)
t10 ( Topic 0, 0.6366), ( Topic 1, 0.3631)
t11 | ( Topic 0, 0.9242), ( Topic 1, 0.0755)
t12 | ( Topic 0, 0.6056), ( Topic 1, 0.3941)
t13 | ( Topic 0, 0.7981), ( Topic 1, 0.2016)
t14 | ( Topic 1, 0.9992)

t15 | ( Topic 0, 0.3015), ( Topic 3, 0.0621), ( Topic 6, 0.6358)
t16 | ( Topic 0, 0.6458), ( Topic 1, 0.3539)
t17 ( Topic 0, 0.9455), ( Topic 1, 0.0543)
t18 | ( Topic 0, 0.7748), ( Topic 1, 0.2249)
t19 ( Topic 0, 0.9848), ( Topic 1, 0.0149)
t20 | ( Topic 1, 0.9992)

t21 | ( Topic 0, 0.8960), ( Topic 1, 0.1038)
t22 | ( Topic 0, 0.9142), ( Topic 1, 0.0856)
t23 | ( Topic 1, 0.9988)

t24 | ( Topic 0, 0.9013), ( Topic 1, 0.0985)
t25 | ( Topic 0, 0.8620), ( Topic 1, 0.1377)
t26 | ( Topic 0, 0.7431), ( Topic 1, 0.2568)
t27 | ( Topic 0, 0.8139), ( Topic 1, 0.1859)

Thus we obtain trips clustered in 6 groups for each method
(notice however that the 6 clusters may be different in the
three methods).

At this point, we want to test the hypothesis that the trip
clusters generated by the different methods are consistent.
To check that, we need to identify the optimal mappings be-
tween clusters of the different methods. At this purpose, we
build a set of confusion matrices for each pair of methods,
where each cell contains the number of common elements be-
tween a cluster in a method and a cluster in the other. Since
we don’t know the optimal correspondence between clusters,
we actually generate a combinatorial set of matrices, cover-
ing all the possible mappings (basically by changing the rows
order according to all the possible combinations). We select
the optimal mapping by considering the matrix with highest
sum of elements on its main diagonal. This corresponds to
the best configuration for the mapping and its value repre-
sent the number of elements that keeps the same grouping

across the methods.

Considering DP-means and Hidden Markov Model, 74% of
trips are grouped in the same way. If we consider the com-
parison between the aforementioned methods with the Topic
Extraction method, the trips clustered in the same way is
respectively only 44% and 48%, which probably account for
the fact that, while DP-means and HMM are both cluster-
ing methods, Topics Extraction is a soft-clustering based on
a totally different approach.

3.5.2 Ground-truth based validation

In order to validate our results, we asked a set of experts
(knowledgeable about driving styles and driving paths recor-
ded) to identify possible groups of trips in the dataset (i.e.,
considering factors such as signal distribution and driving
routes). We were interested to see whether our method yield
a classification coherent to the ones provided by the experts.
The experts were able to highlight three clusters (shown in
first two columns of Table 10). This accounts for a smaller
set of clusters with respect to our analysis, but users weren’t
able to reach the level of details of six different categories of
drivers.

The comparison with our clustering solutions therefore im-
plied mapping our clusters the the human-generated ones
and verifying their coherency. Table 10 reports the human-
generated groundtruth in terms of clusters (first column:
clusters A, B, C) and corresponding trips (second column).
Then, the subsequent columns show, for every method, the
best allocation of automatically calculated clusters (and cor-
responding trips), together with the number of wrongly as-
signed trips. For instance, experts assigned trips t1, t15 and
t26 to Cluster B. For DP-means, the best correspondence is
cluster C4, that contained only t1 and t15. Correspondingly,
t26 results as one trip wrongly assigned.

The last row of the table shows the precision of each meth-
ods, computed as the ratio between the number of trips
placed in the correct cluster and the total number of trips.
Notice that we achieve the 96% of precision with all our ap-
proaches, thus demonstrate that the grouping defined by the
proposed methods is coherent with the classification defined
by the experts. The obtained results show the effectiveness
of the proposed framework in profiling observed trips based
on gathered information of vehicle status and driving behav-
ior.

4. RELATED WORK

Driving behavior has been studied from different perspec-



Table 10: Comparison between the clusters identified by human and the results of our methods

Human-identified

Groundtruth

P DP HMM Topic
Clusters (trips in clusters)

Clusters | Trips Errors | Clusters | Trips Errors | Clusters | Trips Errors

12,13,15,16,19,t10,T1T 12,13,15,16,19,t10, 12,13,15,16,19,t10, £2,13,15,16,19,t10,
Cluster A 2,t13,616,617,618, | C2,C6 t11,612,t13,616,617,  + 126 1| CL,C4,CH | t1112,613,416,617,  + 126 1] CLO3,C4 | t11412,413,416,617,  + t26 1

9,t21,t24,t25,627 £18,619,t21,t24,t25,t27 £18,619,621,t24,t25,t27 t18,619,t21,624,t25,t27

Cluster B ,68,614,£20,623 C1,C3,C5 | t4,t7,18,614,t20,t23 0] C2,C3 £4,47,18,614,20,t23 0]Cs £4,47,t8,614,t20,t23 0
Cluster C t1,t15,t26 C4 t1,t15 -1 | C6 t1,615 -1 | C2,C6 t1,t15 -1

Precision

96%

96%

96%

tives to reach different purposes such as: identification of
driving behavior model [21], analysis of behavior variables
impact in driving process, identification of driving maneu-
vers and driver’s status, user classification based on driving
behavior attitude and prediction of driver intentions.

Of particular importance are the studies regarding the iden-
tification of the driver’s status. For instance works such as
[22] and [13], use multiple sensors to provide intelligent in-
formation on the driver’s physiological signals, which can
include eye activity measures, the inclination of the driver’s
face, heart rate monitoring, skin electric potential, and elec-
troencephalographic (EEG) activities. In [2] is proposed a
novel and non-intrusive driver behaviour detection system
using a context-aware system combined with in-vehicle sen-
sors collecting information regarding to vehicle’s speed, ac-
celeration, the direction of driver’s eyes, the position in lane
and the level of alcohol in the driver’s blood.

Another application of driver behavior modeling concern the
motor insurance sector, that is interested in calculating their
premiums based on statistical data through the evaluation
of factors that are believed to impact expected cost of future
claims. For instance [9] proposes to use of driver behaviour
patterns and driving style classification to improve assess-
ment of driver risk and insured risk using a smartphone as
sensing platform.

Driver behavior modeling was also used to detect aggres-
sive driving, a particular type of driving style, has long been
studied due to its strong correlation with accidents and traf-
fic safety hazards: by one estimate, it was influential in caus-
ing the majority of accidents in the United States from 2003
to 2007 [1]. In [18] has been proposed a theoretical frame-
work in which acceleration behavior can be analyzed in order
to detect aggressive behavior. The limits of these acceler-
ations are related to the edges of the friction circle (also
called ellipse of adherence), which depend on tire character-
istics and road surface condition.

State of the art approaches in the attempt to model the
driver behavior characteristics mainly employ models that

are inspired by advanced neural network (NN), Hidden Markov

Models (HMM), fuzzy control theory, Gaussian Mixture Mod-
els (GMM) and others models as stated by Meiring et. al. in
[7]. Particular attention is paid to time series analysis used
to mines behavioural data in order to achieve goals as driver
profiling or maneuvers detection. Promising algorithms ap-
ply techniques belonging to a different scope, belonging to
text processing and speech diarization with interesting and
useful results. Takano et al. in [16] propose a hierarchical
model with one HMM characterizing the short-term driving
behaviors in the lower layer, and the other HMM character-
izing the long term driving behaviors which are represented

in the HMM space.This structure makes the vehicles intel-
ligent by storing the knowledge of driving behaviors as the
symbols of driving intention through observing the driving
behavior given by expert drivers. Baum-Welch algorithm (a
maximum likelihood estimation method) which trains pa-
rameters of HMMs is applied to optimize three HMMs driv-
ing straight, normal steering, and emergency steering [5].
In [12] Sathyanarayana et al. proposed a Driver Behavior
Analysis and Route Recognition by Hidden Markov Mod-
els in two different approaches. The first (bottom-to-top)
approach takes isolated maneuver recognition with model
concatenation to construct a generic route, whereas the sec-
ond (top-to-bottom) approach models the entire route as a
phrase and refines the HMM to discover maneuvers. Only
left turn (LT), right turn (RT) and lane change maneuvers
are considered.

In [3] the authors present a new stochastic driver-behavior
model based on Gaussian mixture model (GMM) frame-
work. The proposed driver-behavior modeling is employed
to anticipate car-following behavior in terms of pedal con-
trol operations in response to the observable driving signals,
such as the own vehicle velocity and the following distance
to the leading vehicle.

S. CONCLUSIONS

In this work the main goal was to propose a solution for
driver behaviour modeling and driver profiling based on un-
supervised methods. The main idea is to identify recurrent
behaviours shared between drivers and characterize each
driver according to the distribution of these behavioural pat-
terns.

In order to achieve this goal we proposed three methods,
which differ in terms of assumptions and implementation.
However, they have in common the concept of identification
of an underlying hidden structures: in clustering based seg-
mentation this structure is identified in clusters grouping,
using HMM is described by latent states and at last apply-
ing Hierarchical Dirichlet Processes behavioral topics have
been extracted.

We applied these methods on a real world dataset and we
compared the results between each other and with a ground
truth built by experts from the car insurance industry. We
found out that, even though the methods present relevant
differences in clustering trips segment, they show high con-
sistency in classifying whole trips.

For future activities, considering the encountered challenges
and the critical tasks faced during this work, we propose to
extend this analysis to a much larger collection of driving
trips belonging to different drivers and different areas. In
fact the experimental dataset used in our work represents



just a small sample of a possible large scale data gathering
and analysis process. The increase in dataset size can pro-
duce better results especially on the topic extraction process
which requires a large collection of documents.

From a technical point of view we plan to relax our assump-
tion of independence between observations in HMMs that
can be too much restrictive. Regarding DP-means segmen-
tation techniques and its dependence on data ordering we
plan to investigate some reordering techniques to improve
identification performance. The discretization phase in topic
extraction process can be enhanced considering a variable
number of bins for each of the considered features. For more
precise evaluation, we plan to make use of camera recordings
that can be useful in human labeling of Contextual Scenes.
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