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Abstract

In recent years, an increasing amount of data is collected in different
and often, not cooperative, databases. The problem of privacy-preserving,
distributed calculations over separated databases and, a relative to it, is-
sue of private data release were intensively investigated. However, despite
a considerable progress, computational complexity, due to an increasing
size of data, remains a limiting factor in real-world deployments, especially
in case of privacy-preserving computations.

In this paper, we present a general method for trade off between perfor-
mance and accuracy of distributed calculations by performing data sam-
pling. Sampling was a topic of extensive research that recently received
a boost of interest. We provide a sampling method targeted at separate,
non-collaborating, vertically partitioned datasets. The method is exem-
plified and tested on approximation of intersection set both without and
with privacy-preserving mechanism. An analysis of the bound on error
as a function of the sample size is discussed and heuristic algorithm is
suggested to further improve the performance. The algorithms were im-
plemented and experimental results confirm the validity of the approach.

1 Introduction

Consider different data providers holding vertically partitioned data. Each data
provider holds different information about the same set of individuals and there
is a common identifier (social security number, or any other sort of ID) that
allows one to cross-reference individuals across data providers. For example,
the data providers contain a data of a set of individuals: gene “banks” hold
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genetic information, police departments hold criminal records, financial institu-
tions keep record of credit history, hospitals record health history of patience
for future diagnosis, etc. Those data providers might be geographically spread,
belong to different organizations and have their specific privacy and security
requirements. For instance, a data provider of genetic information might not
allow a public access to its data while allowing access for medical doctors to
their patients data, or police departments that allow data access for interna-
tional law enforcements, but deny access to anyone outside the departments. In
such cases, it is usually impossible to gather all the data in one place, either due
to the size of the data or due to privacy restrictions on data sharing. A client
issuing a query to a different data providers in public cloud settings, might be
required to pay for utilized CPU time and network traffic. In many cases, such
client will be willing to trade performance (in other words, cost) for accuracy
of the answer. Especially, if the trade off is controlled by the client, which can
define the accepted error in the received answer.

In this paper we propose a method of trading off performance for accuracy
using sampling. We suggest a specific way to perform sampling in vertically
split datasets and calculate sample size given acceptable error. Performance
improvements of the method are shown on a calculation of intersection set car-
dinality, together with a proposed heuristic algorithm. We also discuss a case
of non-cooperative data providers and adaptation of the proposed algorithm for
differential privacy calculations.
Our goal: given a set of k data providers

DP = {D1, D2, . . . , Dk},

which data records share a common identifier w and a set of predicates P =
{p1, p2, . . . , pk}, find the size of intersection ∩ipi(Di) where pi(Di) is a set of all
records in Di that satisfy predicate pi.

We assume that the number of records that are not present in all datasets
is very small compared to the total number of records and thus, for the sake of
simplicity, the data providers in DP are assumed to contain the same records
with size denoted by N = |D|, i.e. vertical split of the data.

The size of the intersection might not be calculated precisely, but up to a
given accuracy ε provided by the client querying the data providers. For ex-
ample, the client that performs a query is interested in an integer percentage
of people from the entire population having both criminal record and specific
genetic mutation, i.e. the results can be rounded to a closest percentage. In-
tuitively, this relaxed requirement should result in more computationally and
network efficient algorithms. The optimization of computation time and network
traffic are important, as mentioned above, in the commonly used public-cloud
deployment; the user is charged for computation time (also called CPU time)
and network traffic. Thus, minimization of those parameters is a very attractive
algorithm property and present a trade-off with accuracy of the intersection set
size.
Related work and our contribution: Conjunctive queries over distributed
databases were extensively researched (see as an example [24, 26, 12, 3, 42]).
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Previous research has references both the aggregation techniques and perfor-
mance issues of such queries. However, those works are based on an assumption
that databases freely share the data, which does not hold in a settings of non-
cooperative data providers.

There were a number of works describing privacy preserving calculations of
intersection size, see [32, 18, 23, 8, 30, 37, 1]. Most of those works described a
protocol that performs an exact calculation of the intersection set using Secure
Multiparty Computations (MPC), first investigated by [43] and later generalized
to multiparty computation. Performing MPC protocols allows efficient calcu-
lation of the intersection size, however, when used by itself, it is also posssible
to leak information about specific items in the datasets. For instance, the user
can issue a query knowing with a single possible answer and check whether the
intersection set is empty or not. Such technique allow the user to identify the
presence or absence of a specific item in the datasets. A technique that can be
used to hide a presence of individual items in the dataset is differential privacy
([16]).

While some of the above works ([32]) performed inexact calculations of the
intersection set, the source of approximation was to preserve differential privacy
of the results. For instance, [18] applied Oblivious Transfer (OT) protocol to
approximate the size of the intersection of two databases, where OT has lead
to the inexact result. Our approach is to utilize the relaxed requirement of
providing inexact result to improve the computational complexity of queries.

Sampling as a way to cope with huge volumes of data or to increase computa-
tion performance were considered in a number of different contexts. ([19, 20, 36])
and Section 4.2 of [26] discussed sampling as a means to cope with massive
datasets by creation of a histogram-based estimators. Once the estimator is
created, when possible, the database performed estimation calculations on the
histogram. Reservoir stream sampling algorithms ([41, 17, 39]) were developed
to provide a sample of online data. The techniques fill in the sample (“reser-
voir”) by knocking out existing sample items from the sample with reducing
probability as the sample begins to fill. ([6, 7]) initiated usage of document
sampling for document similarity comparison on Internet scale. Ideas were later
developed into min-wise sampling techniques ([34, 9, 11, 10]), which appear to
be more suited for horizontal split datasets. In addition, a considerable cor-
pus of work exists on concentration inequalities in scope of Machine Learning.
Concentration inequalities investigate the relation between the size of the sam-
ple and its statistical similarity to the entire dataset. PAC-Bayes bounds on
hypothesis error as a function of sample size were provided in [28, 29, 25].

In this paper, we consider the case of approximate calculations in distributed
databases where the data is split vertically. We suggest an algorithm that
takes advantage of a lack of accuracy in a distributed answer to considerably
speed up the queries. We show a use-case of an algorithm on intersection set
cardinality calculations both with and without privacy considerations. The
algorithm adopts sampling techniques from ([19, 20]) and uses techniques similar
to PAC-Bayes bounds from ([28, 29, 25]) to decide on a mimimal, representative
sample size. Performance improvement might be especially significant in privacy
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preserving setting, where the calculations take considerable time. Specifically
our contributions are:

• Suggested efficient method for approximate, distributed calculations with
vertical-split datasets.

• Proposed a method of choosing sampling size given a required error level
and provided simulation results of comparing the error level of different
sample sizes.

• Suggested a heuristic algorithm of speeding up the intersection set size
calculation based on bounds convergence and showed its adoptation for
privacy preserving intersection set size calculation.

The rest of the article is structured in the following way. Section 2 defines
a näıve algorithm for calculation of exact intersection set size, Section 3 relaxes
the requirement to calculate the exact size of intersection set and defines theo-
retical bounds for inexact intersection. Section 4 presents results of experiments
that validate the proposed sampling method. Section 5 describes a heuristic al-
gorithm for calculation of intersection based on the bounds of intersection size.
Finally, Section 6 discusses privacy issues in the described algorithms. The
paper is concluded in Section 7.

2 Näıve Algorithm

The idea of the Näıve Algorithm is simple: iterate over data providers DP =
{D1, D2, . . . , Dk} and exchange a monotonously decreasing set of keys that sat-
isfy all predicates up to the current iteration. The data provider then checks
which of the received keys answer the corresponding predicate and returns a
new list to the client. The client continues the process until all data providers
were queried and the intersection set is found. In this way, the client calculates
the intersection set iteratively. Denote this set by Li where i is the iteration
number. In other words, L1 = p1(D1) where pi(Di) is a set of records in Di

that satisfy predicate pi, and Li = Li−1 ∩ pi(Di).
The Näıve Algorithm can also be performed in a parallel way, where the

client receives a set of records that satisfy the corresponding predicate from
each data provider. The client then calculates the intersection set. Comparing
the sequential and parallel näıve algorithms, sequential algorithm optimizes the
network load and also improves CPU time, but not a wall-clock time of the
algorithm (i.e., the time between the beginning of the operation and the time
the client gets the final answer). Unless stated otherwise, in the rest of the
section we consider only the sequential version of the algorithm.

Despite its virtue of being simple, the näıve algorithm has a few drawbacks.

• The amount of information transferred between the client and the data
providers is relatively large, as the entire set of keys in the intersection set
is sent.
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• The first data providers evaluate the given predicate over their entire
dataset, which is expensive.

• The wall-clock time of the sequential algorithm is linear in a number of
data providers and the size of the data.

• The algorithm completely exposes information both between data providers
and between data providers to the client.

As mentioned above, those drawbacks are even more extreme in a current com-
mon practice, where a public cloud infrastructure is used for calculations, as in
a public cloud infrastructure the client is charged for computation time (CPU
time) and for network traffic. Thus, there is a monetary incentive to minimize
those two values.

Both the sequential and the parallel näıve algorithms described above calcu-
late the intersection set exactly, thus having a relatively high network traffic and
CPU time demands. The next section discusses a way to reduce computation
and network complexity by calculation of an estimation of the intersection size.

3 Reducing Data Size by Sampling

Relaxing the requirement for exact calculation of the intersection, this section
discusses a way to calculate a smaller intersection set whose size can be extrap-
olated to the intersection size of the entire population. Instead of calculating
the intersection of the entire datasets, perform a sample and calculate the in-
tersection of the sample. Then, scale up the size of the sample intersection to
the size of the intersection for the entire population. The results of scale up will
be an estimate for the intersection size.

The requirements from the sample are clear: the sample should be as small as
possible while truthfully representing the entire population (given the definition
and the error of representation). Those two requirements present a trade-off
between sample size and the accuracy of algorithm results. A number of different
sampling techniques were developed over the years: on-line (reservoir) stream
sampling algorithms ([41, 17, 39]), Histogram-based estimators ([20, 19, 36])
and min-wise sampling techniques ([6, 7, 34, 9, 11, 10]) which are more suited
for horizontal split datasets. In our settings, it seems natural to choose hash
function based technique, which in a sense a randomized version of histogram.

To provide sufficient improvements in performance, the size of the sample
(denoted by m) should be much smaller than the average size of the datasets
(| D̂P |): m <<| D̂P |. Therefore, if each data provider performs its own
sampling, the overlap between the samples will be very small. In other words,
the probability of the data record (person in our example) appearing in the
sample is low. For every data provider i

∀x ∈ Di : P (x ∈ Si) =
m

| D̂P |
,
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where Si is a sample from the dataset of the data provider i. Leading to the
probability of the item appearing in all samples being (assuming that all data
providers contain the same records):

P (x ∈ ∩kj=iSi) =

k∏
l=1

ml

| Dl |
,

where nl and | Dl | are a sample size and a dataset size of a data provider l.
Assuming, for simplicity, that the sample size and dataset size are equal for all
data providers, the probability becomes:

P (x ∈ ∩ki=1Si) =

(
m

| D̂P |

)k
.

As this probability is low, the size of the intersection will be essentially zero for
most of the samples. The solution is to make all data providers create the same
sample. In order to do that, we will use a sampling technique based on hashing
([19]). The technique works in the following way:

1. The client defines an accuracy threshold for the calculation.

2. Using techniques described below, the size of the sample is determined:
m.

3. The number of hash buckets is b =
⌈
|D̂P |
m

⌉
.

4. Pick a hash function H that will distribute datasets of data providers Di

into b buckets. H hashes only the ID of the records and not the entire
data, as the ID is the shared information across different data providers.

5. The client sends each data provider 3 parameters: H, the number of the
bucket that was chosen randomly and predicate pi.

1 This will ensure that
all data providers use the same sample.

6. Each data provider evaluates its predicate on the records in a given bucket
(pi(Di)) and sends the results to the client.

7. The client performs the intersection calculation on the received results.

As client acceptable error defines sample size, which is the bucket size, it
is possible to pre-calculate a number of buckets for different error value. This
will eliminate the need for sequential scan of the entire database on each query.
However, it will also mean that the client will get approximately the required
error.

Notice that just like the Näıve algorithm sampling can be done both in par-
allel and sequential ways. Following the similar idea of the Näıve algorithm,

1It is possible to always use a predefined bucket with a downside that for a given size, there
is a single representative sample.
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in the parallel version of sampling algorithm each data provider evaluates the
predicate over the entire given bucket, where in the sequential version, the client
sends the current intersection set (which is a subset of the given bucket) to the
next data provider, which evaluates the given predicate only over the received
subset. However, in contrast to the Näıve algorithm, where the sequential vari-
ant significantly reduces the network load and CPU time, in sampling algorithm
the reduction is much smaller, as the core underlying idea of the sampling algo-
rithm is minimization of the amount of records participating in the intersection
calculation. Importantly, the accuracy of the intersection size estimation is the
same in both sequential and parallel versions of the sampling algorithm.

Sampling improves both the computation time and network traffic over the
Näıve algorithm by the factor of m

|D̂P | . Thus, one important question still re-

mains unanswered: what should be the size of the sample given an accuracy
threshold? The following sections define bounds on the sample size such that
with high probability it will represent behavior similar to the entire dataset. Two
different cases are considered: sample size is small compared to the dataset size
(Section 3.1.1) and sample size is comparable to dataset size (Section 3.1.2).
Notice that in both cases the sampling is performed in the same way as ex-
plained above. However the bound used to calculate the sample size is different
for those two cases.

3.1 Selecting a Sample Size

Selection of the sample size is driven by the trade-off between the accuracy of the
sample and the performance of calculations. The bigger the sample, the more
accurate it is, but also the larger the computation time required to calculate the
intersection. Using a bound on the error as a function of the sample size, it is
possible, given a limit on an acceptable error, to choose the size of the sample
set.

3.1.1 Bound for Small Sample from Large Dataset

When a sample size is very small compared to the dataset size, the sampling can
be approximated by independent sampling of the same size with replacement.
The approximation can be done, as the probability of any record being a part of
the sample goes from 1

N for the first pick to 1
N−m for the last pick. If N >> m

then N −m ≈ N , and therefore, the probability is approximately ( 1
N ), which is

the same probability for a record to be picked when sampling with replacement.
The reason to perform such approximation is due to a fact that it is simpler
to provide a bound for independent samples with replacement rather than for
sampling without replacement.

The size of the sample should be big enough that the sample will be a good
representative of the entire dataset for the intersection calculations. How can
the size be estimated?

Let us consider a sampling from the dataset Di according to the uniform
distribution. Notice that even though the sampling is done according to uniform
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distribution, as described in the sampling algorithm (Section 3), the datasets
themselves might be drawn from other distributions. The provided bounds still
hold, as the sample “similarity” to the entire dataset depends only on its size.
If a different, non-uniform sampling technique is used, the bound might be
changed to use more general Bernstein inequalities ([4]).

Define Xi to be a random variable that the sampled item wi satisfies condi-
tion L. Then, the average value of the sample, denoted by X̂, should be close
to the mean value, µ, of the entire dataset. Notice that in the binary case,
the average is simply the number of data records that satisfy a given predicate
divided by the data size. In order to bound the difference between the average
value of the sample and the mean value of the dataset, we can use concentra-
tion inequalities. Namely using results by Hoeffding ([21]) if X1, X2, . . . , Xm

are independent and i = 1, 2, . . . ,m : 0 ≤ Xi ≤ 1, then:

Pr(X̄ − µ ≥ ε) ≤
(

µ

µ+ ε

)(µ+ε)(
1− µ

1− µ− ε

)(1−µ−ε)n

≤ e−2mε
2

. (1)

For simplicity, for now we will consider only the right-side of the equation,
i.e.

Pr(X̄ − µ ≥ ε) ≤ e−2mε
2

, (2)

where m is the size of the sample and ε measures the “resemblance” of the
sample to the mean of the dataset. Notice that the equation does not depend
on the size of the dataset, as it is considered much larger than the sample. The
bound in Equation 2 is used by the client when it issues queries to the data
providers by defining both the acceptable error (ε) and the target probability
of exceeding the acceptable error.

3.1.2 Sample Size is Comparable to a Dataset Size

In cases where sampling size is comparable to the dataset size, it is possible to
develop bounds directly for sampling without replacement. In the rest of the
section, we show two bounds on sampling without replacement, one is based on
a reduction of “randomness” of the data and the second one is based on a direct
counting technique. Those bounds can be expected to be tighter than those
based on reduction to independence or bounds for sampling with replacement.
The reason for this as follows. Assume that k points were sampled out of
N points without replacement. The next point is to be sampled from a set
of N − k rather than N points, which would be the case in sampling with
replacement. The successive reduction in the size of the sampled set reduces
the “randomness” of the newly sampled point as compared to the independent
case, and also introduces dependency between samples. Whereas, the bound
provided in Equation 2 does not depend on the dataset size and does not take
the reduction in population size into consideration. This intuition is at the
heart of Serfling’s improved bound ([38]) which is stated next. The result holds
for general bounded loss functions and is established by a careful utilization of
martingale techniques combined with Chernoff’s bounding method.
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Theorem 1 (Serfling) Let C = c1, c2, . . . , cN be a finite set of non-negative
bounded real numbers, |ci| ≤ B. Let Z1, Z2, . . . , Zm be a random variables ob-
taining their values by sampling C uniformly at random without replacement.
Set Z = (1/m)

∑m
i=1 Zi. Then,

Pr(Z −EZ ≥ ε) ≤ exp

{
−
(

2mε2

B2

)(
N

N −m+ 1

)}
. (3)

Similar bounds hold for Pr(EZ − Z ≥ ε).

Compared to the bound in Equation 2, the above bound is always tighter when
N/(N −m+ 1) > 1, i.e. when m > 1.

In our case ci’s are binary variables and the bound could be improved further
by using a proof based on a counting argument ([13]).

3.1.3 Using Bounds to Calculate Sample Size

Figure 1 presents a single example of comparison between the above bounds (2
and 3). As expected, the Serfling bound is tighter than the Hoeffding bound
and thus, using this bound for calculation of sample size will result in a smaller
sample set.

Figure 1: A comparison of Hoeffding and Serfling bounds, where ε = 0.01,
N = 100000. The error value is preset and then the sample size that fits this
value is picked. In tighter bounds, the sample size will be smaller.

Now we can briefly describe the process of using those bounds. We assume
that the client attempts to minimize the size of the sampling sets, as this also
minimizes the network load and CPU time, both of which are chargeable in
public cloud environments. The client defines a value of an acceptable error
for the combined distributed query (E) and a “confidence” of the error.2 The
bounds defined in (2) or (3) provide a “confidence” that the error will be smaller
than ε given a sample size. Now the client uses the bound from (2) or (3) to

2In a very similar way to PAC bounds ([40]) in Machine Learning.
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determine the minimum sampling size that allow the required error with “high
enough” confidence. Using a predefined confidence and a chosen bound, the
client can find the minimum value of sample size that will provide the required
error with the required confidence. For example, consider Figure 1, where for
dataset size of 100, 000 the client choose ε = 0.01 and confidence of 0.01. Thus,
using the simplified Hoeffding bound (2) the minimal sample size is 23, 026 and
using the Serfling bound (3) the minimal sample size is 18716.3

After the intersection of sample sets is calculated, there is a need to estimate
the size of the intersection of the entire datasets. As mentioned above, the mean
of the binary random variable is also the number of records that belong to a set
defined by the predicate divided by the size of the sample. Thus, the ratio of
the records in a sample that satisfy a given predicate is close to the ratio of the
records that satisfy the predicate in the entire dataset of a given data provider.
This leads to the conclusion that the ratio of the sample intersection set size to
the sample size should be the same as the ratio of the intersection set size to
the size of entire dataset. Let Ŝi be a sample of Di of size m, then

| ∩ki=1 Di| = | ∩ki=1 Ŝi|
|D̂P |
m

. (4)

Notice that even though the absolute error in the intersection estimation
of the entire dataset is proportionally larger than the error in estimation of a
sample, the relative error will remain the same. The reason for the error to
remain the same in a process of intersection calculation is due to the sampling
method. Even though the sample from each data provider has the same (po-
tential) relative error, the error is unique for the sample and thus, it does not
accumulates when the intersection is calculated.

As ε in the above bounds (Equation 2 and 3) is a bound on difference in
estimation, it is a relative error. Therefore, if the client defines an acceptable
error (E) as an absolute error, it can be easily translated: ε = E

D̂
.

4 Experiments

We have performed a number of experiments to show the utility and error
resulted from sampling. The experiments were performed on simulated data
and validated on the Adult dataset ([27]). The described sampling technique is
targeted at large datasets with many records, such that calculation of predicates
over the entire dataset is wasteful. For such datasets, it is much more practical
to test the algorithm on simulated data, which can be generated on any required
scale.

3This example also shows the advantage of tigher bounds, which in this case is 23% of a
sample size.
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4.1 Experiments on Simulated Data

For experiments on simulated data, a number of datasets were generated with
random values of the predicates and then the intersection size was calculated
according to each algorithm. The methodology works as follows.

• Generate a dataset of a given size. All data providers assumed to share
the same set of records with possibly a different data per record.

• For each data provider generate a set of predicate values randomly, such
that the frequency of “true” values is as defined.

• Calculate the intersection iteratively, i.e. by addition of a single datasets
at a time. This is a both a simpler way of implementation (as opposite
to parallel calculation) and also allows observation of convergence rate of
the intersection size.

All experiments were averaged over 10 runs, standard deviation was calculated
and drawn on the resulting graphs.

Figure 2 shows the intersection size as calculated by the sequential näıve
algorithm and estimation by sampling of various sizes. The graph provides a
high-level, visual practical validity of the approach. Even a relatively small
sample sizes (1% of the dataset size) estimate intersection size close to the real
value.

In order to focus on the error caused by sampling and show the difference in
sample size more clearly, we have performed a number of experiments showing
relative error between estimation and the real intersection size. The Näıve al-
gorithm calculated was taken as a baseline for error calculations. The Sampling
algorithm was executed with a number of sample sizes, each one showing the
relative error from the Näıve algorithm results. Figures 3, 4, 6, and 5 show
the relative error of the sampling algorithm with various sample sizes. The Y
axis shows the error of the sampling, i.e. —sampled estimation - intersection
size— / (intersection size),4 while the X axis is the number of datasets in the
intersection. The graphs compare datasets sizes of 100,000 (Figures 3 and 6)
and 1,000,000 (Figures 4 and 5) records with predicate satisfaction frequency
of 0.7 and 0.5, i.e. in each data provider, 70% or 50% of the records satisfy the
corresponding predicate. As mentioned above, each graph is an average of 10
different runs and standard deviation is depicted by error bars on the graph.

The graphs show that, as expected, larger samples result both in smaller
error and smaller standard deviation. However, it also can be seen, that the
error quickly converges as a function of sample size. In some cases, even for
sample of 1% from entire dataset, it is possible to achieve reasonable error.
Overall, sampling 1/10 or 1/5 of the dataset resulted in errors of approximately
0.01 from the intersection size, which is an order of a single percent. Thus,

4The error is relative but not normalized. It is possible to multiple the error by 100 to
translate it into percentages from the intersection size. Notice that as the intersection might
be relatively small, the error in percentage might be large. Comparing it to the dataset size
will result in a much smaller error values.
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queries of a type: “What is the approximate percentage of people ... ?” can be
answered using only tenth of a data.

Figure 2: A comparison of the Näıve and the Sampling algorithms. Dataset
size was set to N = 100, 000, number of datasets is k = 10, ratio of predicate
satisfaction in each dataset is 0.7. The Y axis shows the size the intersection
estimation. The X axis show the number of the data sets that participated in the
intersection. Error bars show standard deviation over 10 different executions.

Figure 3: A comparison of errors of different sample sizes. Dataset size was set
to N = 100, 000, number of datasets is k = 10, ratio of predicate satisfaction
in each dataset is 0.7. Error bars show standard deviation over 10 different
executions.

4.2 Experiment on a Real Dataset

In addition to experiments on simulated datasets, we have tested the method-
ology on Adult dataset from UCI Machine Learning Repository ([27]). The
dataset contains data from census bureau, where each record has data about
different person. This fits a description of the setup we have described. The
dataset contains 32,562 instances. As a test case we have used an intersection of

12



Figure 4: A comparison of errors of different sample sizes. Dataset size was set
to N = 1, 000, 000, number of datasets is k = 10, ratio of predicate satisfaction
in each dataset is 0.7. Error bars show standard deviation over 10 different
executions.

the following predicates: age ≥ 30, marital status: Never-married, Sex: Female
or Male in two different tests and income > 50K. The exact intersection set size
is 252 for males and 139 for females. Since the dataset was not used for classi-
fication task, it allowed us to use income as one of the predicates. In addition,
the intersection was of 4 predicates, as addition of more predicates resulted in
a small or empty intersection set due to a limited dataset size.

Samples of different sizes were drawn with sample size ratio going from 0.1
to 0.5. The intersection set size was calculated from the drawn sample. Figure 7
depicts the results of the testing. While the accuracy of the estimation does not
necessary improves by taking larger samples, the standard deviation becomes
smaller. The accuracy improvement is most probably caused by the small size
of the intersection, while improvement in standard deviation fits the results
shown in simulated datasets. Overall, the accuracy of the intersection set size
calculation verify the validity of the approach.

5 Heuristic Algorithm for Bounded Estimation

Previous sections described exact and approximate ways of calculating the size
of the intersection. This section presents a heuristic algorithm that attempts to
optimize the calculation of the intersection by not performing the calculations
for all datasets. The simplest case of heuristic is when the intersection is cal-
culated iteratively and at some point the intersection set is empty. Clearly, the
calculation can be stopped at this stage. Following is a heuristic algorithm for
the intersection calculation that attempts to stop at the earliest possible point.

The size of the intersection depends on the sizes of the sets from each data
provider that answer the corresponding predicate and on the correlation be-
tween those sizes. Below we suggest a heuristic algorithm for estimation of the
intersection set size. The algorithm starts with an accuracy parameter, the ratio
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Figure 5: A comparison of errors of different sample sizes. Dataset size was set
to N = 100, 000, number of datasets is k = 10, ratio of predicate satisfaction
in each dataset is 0.5. Error bars show standard deviation over 10 different
executions.

of records that satisfy the relevant predicate in each data set, and the lower and
the upper bounds on the intersection size. The algorithm iteratively tightens
the bounds until the difference between the bounds is smaller or equal to the
accuracy parameter. Then the algorithm stops and returns the middle value of
the range between the lower and the upper bound.

5.1 Upper and Lower Bounds on the Intersection Size

Let pi be the predicate that is associated with a data provider Di. Then, pi(Di)
is the set of members in Di that satisfy pi. Also, p̂i will denote the fraction

of the members that satisfy pi in Di, i.e. p̂i = |pi(Di)|
|Di| . Now, let us define

the bounds on the size of the intersection set J for the sake of the algorithm
iterations. For simplicity, we assume that data provider datasets D1, D2, . . . , Dk

contain exactly the same records. The bounds will hold when the difference in
members between datasets is small.

As the intersection size is at most the size of the smallest predicate set, the
size of the intersection is bounded from above by the following bound:

| J |≤ mini | pi(Di) | . (5)

The lower bound on the intersection of two sets D1 and D2 is ([2])

| D1 ∩D2 |≤

{
(p̂1 + p̂2 − 1) |D1|+|D2|

2 , if p̂1 + p̂2 ≥ 1.

0, otherwise.

In case of 3 sets, the lower bound becomes:

(p̂1 + p̂2 − 1) + p̂3 − 1,
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Figure 6: A comparison of errors of different sample sizes. Dataset size was set
to N = 1, 000, 000, number of datasets is k = 10, ratio of predicate satisfaction
in each dataset is 0.5. Error bars show standard deviation over 10 different
executions.

Figure 7: Comparison of intersection set size to the estimated size for different
sample ratio. The experiments were performed 10 times with different samples.
Average value is shown on the graph together with standard deviation results.

which in general is

| ∩ki=1Di |≥ max

{(
k∑
i=1

p̂i − (k − 1)

)
| D |, 0

}
, (6)

where | D | is the average size of the datasets (as they contain the same set of
records).

5.2 The Heuristic Algorithm

As described above, the iterative step of the algorithm is to tighten the bounds
on the intersection size. The algorithm will then stop once the difference between
bounds is smaller than the required accuracy. As the upper bound (Equation 5)
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is the minimal predicate set, an iteration step will attempt to make the minimum
value smaller by calculating the intersection between the two smallest predicate
sets. The intersection of two sets will be smaller or of the same size as minimal
predicate set and will replace those two sets in the bound.

Calculating the intersection of two minimal predicate sets is also a good
technique for increasing the lower bound (Equation 6) as well.5 Notice that each
iteration step of the algorithm also decreases the value of k and thus removes
the subtractive member of the lower bound.

The algorithm steps are as follows.

1. Define a required accuracy threshold: δ ≥ 0. As δ is a relative error, the
iterations continue until an absolute error is smaller than δ|D̂P |. When
the iterations stop, the middle of the bounds range is returned, therefore,
the iterations stop when the distance between the bounds is less or equal

to
(δ|D̂P |)

2 .

2. Calculate pi(Di) for every data provider i.

3. Calculate the lower (Bl) and the upper bounds (Bu), given pi.

4. While Bu −Bl >
(δ|D̂P |)

2 and the number of sets is larger than 1:

(a) Let pj = minipi(Di) and p` = mini6=jpi(Di). In other words, pick
two minimal predicate sets: j and `.

(b) Calculate the intersection between those two sets.

(c) Replace pj(Dj) and p`(D`) with the new predicate set: pjl(Djl) =
pj(Dj) ∩ p`(D`).

(d) Update new values of Bu and Bl.

5. If only one set remains p′ (p′ = p1,2,...,k), then the size of its predicate set,
p′(D′) = p′(D1,2,...,l), is the size of the intersection set.

6. If there is more than one set and Bu − Bl < δ|DP |, then the size of the
intersection set to the middle value of [Bl, Bu] range: Bu−Bl

2 .

The algorithm clearly converges, as the iterations stop when the intersection
size is calculated exactly. At this point the lower bound is equal to the upper
bound and thus, the accuracy requirement will be satisfied. Notice that if step 4b
results in an empty set, the algorithms also stops, as the lower and the upper
bounds will be equal and zero.

Example: As an example of the algorithm execution, assume k = 4, equal
size of all data sets N and the required accuracy of 10%. Let the respective
ratios be p1 = 0.8, p2 = 0.9, p3 = 0.5 and p4 = 0.4. In this case, the upper
bound on the intersection set size will be Np4 = 0.4N , whereas the lower bound
will be 0, as the sum of all ratios is 2.6 less than k − 1 = 3.

5This can be seen especially in cases where there are two or more predicate sets that are
smaller than 0.5. In this case the lower bound of their intersection is 0.
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The first iteration of the algorithm will be to find the intersection of D4 and
D3. Let us assume that their intersection results in p3,4 = 0.31. Now, the upper
bound of the intersection becomes 0.31N , whereas the lower bound increases
to 0.8 + 0.9 + 0.31− (3 − 1) = 0.1N . The iterations continue until the bounds
converge to within 0.1N .

In general, the Heuristic Algorithm will work fine in cases where the ratio
of records that satisfy the predicate is high across most data providers, but
the intersection size might decrease relatively fast. See Figure 8 for example of
convergence of the algorithm bounds on simulated data.

Figure 8: Convergence of the Heuristic Algorithm bounds. Dataset size was set
to N = 100, 000, number of datasets is k = 10, ratio of predicate satisfaction in
each dataset is 0.9 (the high ratio is required for the lower bound to be larger
than zero for k = 10). Notice that in simulated case, the intersection size is
co-located with the upper bound of the intersection.

5.3 The Heuristic Algorithm Combined with Sampling

Clearly, both the computation time and network traffic depend heavily on the
calculation of the intersection between the two sets in step 4b of the Heuristic
Algorithm. To improve the performance of this step it is possible to use the
sampling technique from Section 3. Instead of performing intersection between
two sets i and j, the algorithm will calculate the intersection of two samples
of those sets. However, sampling introduces an error into calculation of the
intersection, which has to be related to the accuracy threshold δ of the heuristic
algorithm.

Assuming that the error in sampling distributes proportionally among datasets
and noting that each iteration “eliminates” one dataset, we can define the fol-
lowing changes to the algorithm. Every sample introduces error of δ′ = δ

k−1 .
To accommodate this error, the algorithm will decrease the required accuracy
threshold by this amount on each iteration. This will ensure that required by
user accuracy threshold will be honored. Two steps are changed in the algo-
rithm:
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1. Step 4 then becomes:

While Bu−Bl > (δ− δ
k−1 i)

|DP |
2 , where i is the iteration number, and the

number of sets is larger than 1.

2. Step 4b becomes:
Calculate the intersection between those two sets: j and l by sampling with
error threshold δ

k−1 .

The rest of the algorithm remains the same, including required accuracy thresh-
old value.

6 Privacy of Intersection Calculations

In the described setting there are 2 different types of actors: data providers and
client. There are different privacy concerns between those actors. One privacy
concern is preserving the privacy of data providers. The client querying the
data providers should not learn the identity of the records that are part of the
intersection set or the number of records that satisfy a specific predicate in any
single data provider. Notice that the client should be limited to a reasonable
number of queries (sub-linear in a data size), as it is not possible to answer a
large number of arbitrary queries while preserving privacy ([14, 5]). Another
privacy concern is in keeping a privacy of records in a specific data provider
from other data providers. For instance, a data provider might be interested in
hiding the presence of specific record from other data providers.

First, it is imperative to note that the sampling (see Section 3) provides a
very näıve form of privacy. As every data set record has a 1− m

N chance of not
being included in sample, the presence of the specific record in the data set is
not immediately observable. Yet, the fact that the client gets record identifiers
of each data provider is undesirable. Data providers can encrypt the sampling
indices to hide the identity of the records that are sent to the client. Even
though an additional encryption will obscure the identity of those items from
the client, it still will expose the presence of individual records to other data
providers. In addition, using an additional knowledge, the client can easily learn
the presence of a specific record in the data providers.

6.1 Secure Multi-Party Computation (MPC)

One way to preserve privacy is to use secure multiparty computations to cal-
culate the intersection set ([32, 18, 23, 8, 30, 37]) A simple method that uses
commutative cryptography (another approach is to use secret sharing) is de-
scribed in [22]. Each data provider encrypts record identifiers using its own
commutative key and passes the key to other data providers. Once all data
providers have encrypted all keys, it is possible to find the intersection using
encrypted identifiers utilizing commutativity of the encryption and calculate its
size.

18



There are a few downsides to using secure multi party computations. First,
performance is heavily impacted by performing secure computations using these
methods. It is possible to aleviate the performance issues by using the sampling
to reduce a number of records in the calculated intersection, as described in
Section 3. Thus, the idea is to perform the sampling algorithm and then cal-
culate the intersection in a secure way using the MPC computations between
the data providers. This method however, will still require calculation of the
sampled intersection exactly, without the ability to halt when required accuracy
was reached, as it is possible in heuristic algorithm. The second drawback is
specific for the described use-case where the data is kept in different organiza-
tions. Secure multi party computations require direct communication between
data providers, which in some cases is very challenging in a real-world deploy-
ments due to both security and technological reasons. While it is still possible
for the client to act as an intermediary between different data providers, such
setup also doubles the network traffic. A different approach is only to allow
communication between client and data provider with adopted algorithms.

However, the most significant drawback of MPC is that the exact intersection
size is calculated. This might allow the client to use additional information to
infer a presence of a specific record in the dataset.

6.2 Differential Privacy

The current de-facto privacy standard is differential privacy ([16]). Informally,
the idea of differential privacy is to protect the privacy of individual records in
the dataset without any assumption on the additional knowledge. Differential
privacy is preserved if it is practically impossible to identify whether the record
is present or absent in the dataset from the result of database queries. The
most common methods of ensuring differential privacy rely either on addition
of a carefully chosen amount of noise to the result or by using an exponen-
tial mechanism that chooses the output according to some specific probability
distribution.

The protocols that are based on secure multiparty computations perform the
exact calculation of the set, which is impossible in differential-privacy settings.
This led to several works describing differential-privacy-preserving calculations
of the intersection size, see [32, 30]. Even though those algorithms preserve
differential privacy, the requirement to provide an approximate answer in our
case allows our scheme to optimize the algorithm for performance by perform-
ing secure computations on as little number of the records as possible due to
sampling.

The most common method of ensuring differential privacy is an addition of a
specifically crafted random noise to the released data ([16, 15]). Moreover, there
are two different approaches for the private data release: interactive ([14])and
non-interactive ([31]). Interactive data release is when the client sends data
query to a data provider. The data provider then releases the data to the client
while ensuring differential privacy of records in its database. The data provider
might decide not to answer a specific queries or to stop answering queries from
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a given client, as this might impact the privacy. In non-interactive data release,
the noise is applied only once and then the data is released to the client. The
client can perform any number and any type of queries on the data. Intuitively,
non-interactive release requires to add more noise to the released data, as it has
to be ready for any query, while interactive release can adopt added noise to
the results of each query ([16]).

6.2.1 Where To Add Noise in Heuristic Algorithm

In the described above sampling algorithm (Section 3), there are two intuitive
locations to add random noise. First, it is possible to add noise in hashing
function that assigns records to buckets. Such noise will preserve privacy of
individual records, as it will be impossible to distinguish whether a specific
record is within the bucket or not present at all in the dataset. A second
location to add the noise is during a query processing. Since the data provider
exposes only the number of records that satisfy a given predicate, the noise can
be added to the output after the predicate was evaluated or to the predicate
itself [[Ehud: this is not clear, the noise should be fake IDs]].

The difference between those two locations is exactly the difference between
interactive and non-interactive data release. Adding noise to the hashing func-
tion is a one-time operation and has no relationship to the result of the specific
predicate. Thus, this noise addition can be seen as non-interactive data release6.
On the other hand, if the noise is added after the predicate is evaluated over
records in a bucket, then the noise value can be adapted to the results of predi-
cate evaluation. Thus, the amount of noise can be directly related to the results
of a specific query, like in interactive data release settings.

Due to the above reasoning, the next section describes an addition of a noise
to the predicate function results.

6.2.2 Adding Noise to an Output of Predicate Evaluation

Differentially private calculation of a counting function (referred in the paper as
“noisy sum”), i.e. counting a number of records that satisfy a given predicate,
was considered previously in ([33, 5]). ([16]) showed that adding a Laplacian
noise Y ≈ Lap(1/ε) to the sum query output:

∑
i xi +Y , ensures ε−differential

private function. Notice that the sensitivity of counting function is S(f) = 1
and thus, the distribution standard deviation is S(f)/ε = 1/ε.

The fast algorithm for privacy-preserving intersection calculation is described
below. Heuristic algorithm from Section 5 is used as a basis for privacy preserv-
ing algorithm.

6It is possible to execute hash function to divide records into buckets on every query. How-
ever, even in this case, there is no relationship between hash functions and the number of
records that answer a specific predicate. Therefore, the added noise is agnostic for the pro-
cessed query and there is also a performance penalty in constant calculation of hash function
over the entire database.
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1. Use a hash function H to divide data into buckets. In case only a single
bucket is used for all queries, only the agreed bucket is kept.

2. When a predicate is received from the client, evaluate the predicate over
the chosen bucket.

3. Add random noise according to Laplace distribution to the size of the
predicate set. The noisy set-size is shared with the client.

4. The client gathers results from all data providers and calculate upper and
lower bounds.

5. The client continues to execute heuristic algorithm and picks two data
providers, j and k, to perform intersection according to the algorithm
step 4b.

6. Perform privacy-preserving, secure intersection between two chosen providers
using the below algorithm.

7. Update the bounds and continue until the bounds are close enough.

6.2.3 Differentially Private Set Intersection

The algorithm used for privacy-preserving, secure intersection set calculation
is based on a work of ([32]), which allows a differentially private calculation
of an intersection over multiple databases. The algorithm provides computa-
tional differential privacy, as it relies on homomorphic encryption and makes
some assumptions on computational hardness. This section describes how the
algorithm from ([32]) can be used in our heuristic algorithm from Section 5 for
inexact computations.

The algorithm describes a basic operation private set-intersection cardinality
(PSI-CA) and then adds noise to ensure differential privacy, thus resulting in
BN-PSI-CA. PSI-CA operation is based on usage of homomorphic cryptosys-
tem that allows addition and multiplication by constant (for instance, Paillier’s
cryptosystem ([35])). When two data providers, i and j, attempt to calculate
intersection, i defines a polynomial whose roots are the members of its set, The
polynomial coefficients are then encrypted and transfered to j data provider,
which calculates Enc(rP (xi) + 0+). In other words, it evaluates the polynomial
on its set members, multiplies by a constant number r and adds a special string
of zeros 0+. When transfered back to the first data provider (i), it calculates the
number of zero string. In order to add differential privacy, a random number
of dummy values are added to the transfered set by both parties (for details
see ([32]) rounding the set size to the bucket size in our case. In the end, data
provider i learns the noised cardinality and data provider j knows the amount
of noise it added to the intersection set size.

Adopting this algorithm for our case, the client performs the following ac-
tions. Assume that two data providers are chosen for intersection in step 5: j
and k.
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1. Perform BN-PSI-CA algorithm to calculate a noisy intersection set. As-
sume that without loss of generality, j will hold the size of a noisy set,
where k will hold the amount of added noise.

2. j sends the size of a noisy set to the client.

In the following iterations of the heuristic algorithm, BN-PSI-CA might be in-
voked to find intersection size of j, k and r, and more additional data providers.
As due to privacy issues, no single data provider holds the intersection dataset,
it is necessary to perform intersection size calculations over again for any addi-
tional data provider.

Notice that in cases where data providers do not communicate directly, the
client acts as an intermediary for the protocol. In the end, the client has a
value of intersection size which is still preserving differential privacy. The client
also keeps record that k holds the amount of noise of the last intersection. As
described in ([32]), the noise added in one intersection, might be removed if
there is a need to calculate another intersection of j and k with additional data
provider.

([32]) performance results show approximately linear dependency of an al-
gorithm run-time in the number of records in the participating datasets. Using
results from Section 4, with a reasonable error, it is possible to reduce the num-
ber of records by a factor of 5-10 (according to acceptable error), thus tens of
minutes to single minutes. Such a reduction might make a difference between
practical and impractical system.

The algorithm accelerate approximate intersection calculation by:

• Computationally intensive calculations of intersection sizes are performed
on samples. Those calculations are demanding computationally, thus, any
reduce in the size of datasets is important. [[Ehud: we should try to find
a third-year student to implement this]]

• The intersection is not calculate exactly, but rather the algorithm stops
when the difference between bounds is close enough.

7 Concluding Remarks

A steady and rapid increase in the amount of data has resulted in an abundance
of various data providers. More data is kept for longer and in more places.
In parallel, the awareness of data privacy and security is also on a rise both
from government regulation and personal perspective. This trend requires new
algorithms and protocols for dealing with distributed data. Those new methods
should be both efficient and privacy preserving.

The main practical downside of the current privacy preserving computa-
tions is the run-time complexity. Both MPC, Oblivious-Transfer and Private-
Information-Retrieval methods that are used to perform distributed calcula-
tions in privacy-preserving manner significantly increase the running time of
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the query. While some advances in improving performance were made, the run-
ning time still remains a limiting factor. Our proposed method uses the ability
to provide an approximate answer to the supplied query and thus to reduce
considerably the dataset that is used for computations. This decouples the use
of sampling technique for reducing the size of the dataset used for calculations
from the protocols designed to preserve privacy of individual records or data
providers. As such, most of the above protocols can be used in conjunction
with sampling techniques to perform approximate calculations with improved
performance.

As showed in this work, when acceptable, calculating an approximate answer
can significantly improve computation time. In those cases we have suggested
a way to use this possibility for approximate answering by using sampling of
the datasets. The sampling leads to a dramatic reduction in the size of data
required for calculation: 5 − 10% of the data as observed in simulations. Such
reduction of the data size is much more significant when calculations are done
in a secure and privacy-preserving way.
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