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Automated Extraction of Personal Knowledge
from Smartphone Push Notifications

Yuanchun Li, Ziyue Yang, Yao Guo, Xiangqun Chen, Yuvraj Agarwal, Jason I. Hong

Abstract—Personalized services are in need of a rich and powerful personal knowledge base, i.e. a knowledge base containing
information about the user. This paper proposes an approach to extracting personal knowledge from smartphone push notifications,
which are used by mobile systems and apps to inform users of a rich range of information. Our solution is based on the insight that
most notifications are formatted using templates, while knowledge entities can be usually found within the parameters to the templates.
As defining all the notification templates and their semantic rules are impractical due to the huge number of notification templates used
by potentially millions of apps, we propose an automated approach for personal knowledge extraction from push notifications. We first
discover notification templates through pattern mining, then use machine learning to understand the template semantics. Based on the
templates and their semantics, we are able to translate notification text into knowledge facts automatically. Users’ privacy is preserved
as we only need to upload the templates to the server for model training, which do not contain any personal information. According to
our experiments with about 120 million push notifications from 100,000 smartphone users, our system is able to extract personal
knowledge accurately and efficiently.

Index Terms—Personal data; knowledge base; knowledge extraction; push notifications; privacy
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1 INTRODUCTION

PUSH notifications are widely used on mobile devices
such as iPhone or Android smartphones. A push no-

tification is a message that pops up on a mobile device and
can be used for multiple purposes, such as SMS or social
networking updates (e.g. your friend Alice sent you a mes-
sage), travel schedule changes (e.g. your flight to Pittsburgh
is canceled), and shopping order delivery messages (e.g. the
clothes you purchased has been shipped), just to name a
few. Each user receives about 63.5 notifications per day on
his/her smartphone [1].

This paper proposes an approach to extracting personal
knowledge (<user, relation, entity> triples) from
smartphone push notifications. Personal knowledge is a
structured form of data that contains information about
users’ profile, behaviors, interests, etc. Such knowledge is
important and useful for various mobile applications and
mobile services, such as recommender systems [2], [3], vir-
tual personal assistants [4], and authentication systems [5].
Researchers have also proposed methods for extracting per-
sonal knowledge from various other kinds of data sources
such as user utterances [6] and communication logs [7].
In fact, many companies, especially smartphone vendors,
have already started to make use of the personal knowledge
extracted from different sources on smartphones to provide
better services (e.g., emails, SMS messages and calendars).
For example, Google1 extracts and summarizes flight and
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hotel reservation information from emails with markup [8].
Apple Siri2 reads users’ calendar events to answer ques-
tions like “when is my next appointment”. However, these
approaches only deal with specific categories of personal
knowledge, where the information is well-structured or
programmatically available. Compared to them, push no-
tifications are a more natural source of personal knowledge
as they act like a proxy to many other data sources.

Extracting personal knowledge in general on smart-
phones is a difficult task. On one hand, there exists abun-
dant personal information on smartphones, which can be
exploited for many apps to provide better services to end
users. On the other hand, it is not desirable to obtain
full permissions to access personal information directly as
protecting user privacy has also become a first-order priority
for mobile apps [9].

In contrast, using push notifications as sources for per-
sonal knowledge offers several key benefits. First, push
notifications contain and summarize a rich range of im-
portant personal information, such as user profiles, social
relationships and information on everyday life. Second,
push notifications are well-structured, as most of them are
generated automatically using fixed templates, thus simpli-
fying the task of extracting useful information from them.
Third, notifications offer a uniform way of accessing data
siloed across many apps.

Similar to the general knowledge base population (KBP),
extracting personal knowledge from push notifications can
be viewed as a slot filling task [10]. The entities related to
the user (e.g. the Twitter accounts that the user follows,
the products that the user purchases, etc.) are reserved as
slots, and the goal of personal knowledge extraction is to
collect entity values (slot fillers) from the large-scale push

2. https://www.apple.com/ios/siri/
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notifications. The state-of-the-art approaches [11], [12] for
slot filling model the problem as a sequence labeling task
and use RNNs to find both the boundaries and labels of
slot fillers. However, the entity values of personal knowl-
edge in push notifications are often arbitrary phrases (e.g.
@realDonaldTrump, iPhone X 64G Silver, etc.), making it ex-
tremely hard to find the entity boundary through sequence
labeling.

A more straightforward solution is to define a template
for each kind of push notifications manually, one that
captures the semantics embodied in the notification. Once
we have these templates, it becomes very easy to identify
the relevant notifications and extract the related components
to form a database of personal knowledge about the user.
For example, here is a typical notification template: “Dear
$param1, here are some $param2 job opportunities for
you”. Besides the structure, we can easily understand that
$param1 is the name of the user, $param2 is the user’s
profession, and the user is hunting for jobs. Applying this
rule to a specific push notification “Dear David, here are
some software engineer job opportunities for you”, we
are able to extract the parameters (David and software
engineer) and generate knowledge triples: <user,
name, David>, <user, profession, software
engineer>, and <user, status, job_hunting>.

However, the above mentioned solution require defin-
ing the patterns or templates manually, and as such does
not scale well, especially as the number of apps increases.
Each of these apps might use a different template to con-
struct their notifications. To solve this challenge, this paper
proposes an automated approach to identify notification
templates and to learn their semantics. Specifically, our
proposed approach includes the following steps: it first
discovers the notification templates on the device, then
uploads the templates to the server for offline learning to
train a model to understand the semantic meaning of each
template, and finally, it is able to extract personal knowledge
based on the server-trained model.

We achieve the following goals with the proposed ap-
proach: (1) we are able to automatically identify the tem-
plates for different types of notifications, including formerly
unseen new templates; (2) we can also understand the
meaning of each new template through an offline learning
phase; (3) because we only need the templates (without
specific user information) to train the model, we do not need
to send sensitive user information out of the devices, thus
helping preserve user privacy during the whole process.

To evaluate our approach, we conducted experiments on
around 120 million real notifications from 100,000 smart-
phone users. The results show that our system is able to
discover notification templates with a precision of 86.8%
and understand the semantics of unseen templates accu-
rately (around 83% F1-score for templates of new apps and
91% F1-score for new templates of existing apps). We also
demonstrate that the discovered templates and the semantic
model can be directly used to extract personal knowledge
from push notifications.

This paper makes the following main contributions:

• To the best of our knowledge, this is the first work to
propose that push notifications can be used as a data

source for personal knowledge extraction on mobile
devices such as smartphones. We also introduce an
automated and privacy-preserving method to extract
personal knowledge from push notifications, based
on the insight that notification templates can be
learned offline and used locally on one’s device to
extract personal knowledge facts.

• We implement a prototype system for personal
knowledge extraction on Android. The system can
run on smartphones to support personalized services
such as recommender systems and virtual personal
assistants.

• We evaluate our approach on around 120 million
real-world push notifications from 100,000 users.
The results show that there are around 5.7% of
notifications containing various types of personal
knowledge, and our method is able to extract these
personal knowledge with high accuracy.

2 BACKGROUND

2.1 Push Notifications

Push notifications serve as a core feature for mobile devices
such as smartphones and tablets. They are mainly used by
the operating system and smartphone apps to inform users
of various of events, such as the availability of a software
update, the arrival of a message, the status update of an
online purchase, the recommendation of news and articles,
etc. As notifications can be displayed without activating
the apps’ normal UI, they are a preferable way used by
app developers to deliver information to users promptly.
As a result, push notifications sometimes contain valuable
information.

The content of smartphone push notifications can be
generated either locally or remotely. Most operating systems
provide APIs for apps to display notifications locally. For
example, Android allows apps to define a Notification
instance, set a title and a text body, and send it as an
Intent to display. Most notifications of system events such
as alarms and device status updates are generated with
this method. Many systems and third-party services also
provide a way for developers to construct notifications on
the server, then push them to the client devices. Remotely-
generated push notifications are more dynamic and less
structured as compared to local notifications, since any
online-service notifications such as messages, news, and
advertisements can be generated remotely.

Most push notifications are automatically generated
with templates. However, because each push notification
typically contains personalized content, an app can cus-
tomize the template parameter for each user to achieve this
goal, while the templates remain the same across different
users. Thus, it is possible to extract the personal information
from push notifications once we know the templates.

2.2 Knowledge representation

Existing knowledge bases such as YAGO [13], Freebase [14]
and Google Knowledge Graph [15] use relational knowl-
edge representations. Information is modeled in the form of
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TABLE 1: The ontology of the personal knowledge considered in this paper. We considered 11 types of knowledge relations
(column 2) in 4 categories (column 1). For each relation, we show several examples of entities (column 3) and a sample
notification text (column 4). Note that the examples are simplified (and translated) for better presentation.

Category Relation Example entities Example notification

User profile

name Alice, Bob1997, ... Hi Alice, here are some recommended reads for you.
gender male, female, ... Dear Mr. Li, please review your receipt.
profession doctor, software engineering, ... 7 software engineer positions for you: ...
status in college, job hunt, ... Facebook: found 9 classmates in Stanford University.

Social follows Justin Bieber, @realDonaldTrump, etc. Justin Bieber posted a new photo.
isFriendOf Candy’s Mother, David, etc. David sent you a message: ...

Location livesNear Beijing, MIT campus, etc. Beijing weather today: 6 C, sunny.
travelsTo Sweden, Tokyo, etc. Flight CU1234 from Beijing to Tokyo is going to take off.

Shopping
purchases iPhone X 64G Silver, milk powder, etc. Your order iPhone X 64G Silver has been shipped.
wantsToBuy NIKE Men’s Roshe Run Size 10, beer, etc. The beers in your shopping cart is on sale.
visitsMerchant Walmart, Wendy’s, etc. Thank you for shopping at Walmart.

entities and relations between them. Such kind of represen-
tation has been widely used in the area of logic and artificial
intelligence [16].

The W3C Resource Description Framework (RDF) [17]
defines an abstract syntax for relational information rep-
resentation. The core structure of the abstract syntax is a
set of subject, predicate, object (SPO) triples, where subjects
and objects are entities, while predicates are defined as the
relations between them. All existing knowledge bases can
be represented with such SPO triples.

Similar to the world’s general knowledge bases, the
facts in personal knowledge bases can also be represented
as SPO triples. Li et al. [6] represent personal knowl-
edge as a user-centered graph, in which the subjects
of all knowledge triples are the user. They follow the
Freebase semantic knowledge graph schema, including 18
types of <user, relation, entity> triples, such as
<user, place_of_birth, New York City>, <user,
parents, Rosa>, etc. We follow the definition of Li et al.,
but we use a different set of relations that frequently appear
in push notifications.

The ontology of the personal knowledge considered in
this paper is shown in Table 1. we consider four common
categories of personal knowledge, including user profile,
social relationship, location and shopping. Other categories
of knowledge can be easily added in the future.

3 PERSONAL KNOWLEDGE EXTRACTION FROM
PUSH NOTIFICATIONS

We propose an automated approach to extract personal
knowledge facts from push notifications on smartphones.
The problem is defined as follows. Suppose there are a set of
smartphone users, each with a list of push notifications. Our
goal is to extract knowledge triples (<user, relation,
entity>) from the notification content for each user, with
little-to-none manual efforts.

Of course, developers can always define templates man-
ually. However, because there are too many notifications,
it takes a lot of efforts to manually identify and define all
the different templates for all apps. Moreover, there are
always new templates, which cannot be covered by existing
templates defined manually. In contrast, we expect that an
automated approach can identify new notification templates
automatically, as well as the meaning for each notification.

Our approach is mainly based on the observation that
knowledge is formatted into notifications with templates.
The templates can then help identify knowledge entities and
understand their meanings as well. We aim to identify the
notification templates automatically, and then understand
their structure and meanings through machine learning.

3.1 Approach Overview
Figure 1 shows an overview of our proposed approach
in extracting personal knowledge from push notifications.
The approach consists of three phases: template learning,
template understanding, and knowledge extraction. The
template learning phase runs on the server and the other
two phases run on users’ devices. The main purpose of
template learning is to train a machine learning model to
understand the semantics of notification templates. Then in
the template understanding phase, the trained model can
be used to infer what types of personal knowledge triples
that each notification template may express. The discovered
templates and the inferred semantics are then used to iden-
tify template parameters (i.e. entities) from notification text
and generate personal knowledge triples.

Consider an example notification with order shipping
information: “Your order iPhone X has been shipped”. For
each type of notification, we assume that there are other
similar notifications on the device, such as “Your order
Nike Running Shoes has been shipped”. By mining patterns
from all notifications, we can discover the template for
this notification: “Your order $param has been shipped”,
where $param is a parameter to the template. The template
parameters are potentially personal knowledge entities, as
they are usually customized for different users.

However, discovering the template of a notification is
only the first step. Once we extract the relevant elements
from a notification, we still need to understand the meaning
of each component from the notification. In order to infer
whether the template is a personal knowledge template and
what knowledge triples the template may have, we use a
server-trained semantic model to understand the template.
The semantic analysis is modeled as a multi-label classifi-
cation problem: given a notification template, predict what
kinds of personal knowledge triples it may express. Specif-
ically, given the template “Your order $param has been
shipped”, the semantic model will predict a purchases
relation for param, which leads to a knowledge triple tem-
plates <user, purchases, $param>. The model will
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On-device knowledge extraction

Entity identifying

On-device template understanding

Offine template learning

Notification templates

E.g. Hi $p1, your order $p2 

has been shipped.

Knowledge triple templates

E.g. <$user, name,  $p1>

        <$user, purchases, $p2>

Template discovering

Notification 
templates

Semantic rules

Template sharing 
statistics sharing 

(optional)

Labelling & 
Semantic analysis

Semantic analysis

Knowledge triple 
generating

Knowledge triples

E.g. <user, name, Alice>

        <user, purchases, iPhone X>

Notifications

E.g. Hi Alice, your order 

iPhone X has been shipped.

Knowledge entities

E.g. $p1 = Alice,

        $p2 = iPhone X

Notifications

E.g. Hi Alice, your order 

iPhone X has been shipped.

Fig. 1: An overview of our approach. We first identify templates from the notifications on each user device, then infer
template semantic rules using a server-trained semantic model. The templates are used to identify personal knowledge
entities, while the template semantic rules help generate knowledge triples.

also try to predict no-parameter knowledge triples (such as
<user, gender, male>) based on the whole template.

The mapping from the notification template to the
knowledge triple templates is referred to as a template se-
mantic rule in this paper. By applying the template semantic
rule to the original notification content, we are able to extract
the knowledge triples: <user, purchases, iPhone X>.

The whole process introduces two main challenges: dis-
covering notification templates and understanding template
semantics. The following sections describe how we solve
these problems through pattern mining and machine learn-
ing, respectively.

3.2 Template Discovering
The purpose of template discovering is to recover the tem-
plates that are used by app developers to generate notifi-
cations. Many notifications are generated by programs, and
typically use templates internally. However, there are two
main challenges in discovering the template for an arbi-
trary notification. The first challenge is that templates vary
quite a bit in terms of personal data used, across different
apps, and across different app versions. Altogether, these
differences make it impractical, if not impossible, to man-
ually summarize a complete list of templates. The second
challenge is that the notifications on users’ smartphones are
usually privacy-sensitive. Thus uploading all notifications
to a server for joint analysis is undesirable because it may
cause the leakage of personal information.

In our solution, the template discovering process runs
locally on each user’s smartphone. It aims to identify tem-
plates that have at least two instances (i.e. two notifications
generated from the same template) on a user device. The

whole process involves several steps including notification
filtering, notification clustering, and template extracting, as
illustrated in Figure 2.

Our insight is that the notifications generated from the
same template are close to each other in terms of edit
distance, while different from each other based on the pa-
rameters used. Thus, it is possible to cluster the notifications
such that notifications generated with the same template are
grouped together. Then the template part and the parameter
part of each notification can be differentiated by mining
common patterns in each cluster.

3.2.1 Notification Filtering

We first preprocess the notifications by filtering out dupli-
cated ones (such as system events, advertisements, etc.) and
unstructured ones (such as text messages, emails, etc.). Such
notifications usually do not contain personal knowledge
and may introduce unnecessary computational load and
inaccuracy to the clustering step.

There are two types of duplicated notifications, includ-
ing local duplicates that appear multiple times on each user
device and global duplicates that appear on multiple user
devices. Local duplicates are mainly repeated system event
notifications such as “Low battery”, “Searching for GPS”,
etc. They can be removed by simply comparing all local no-
tifications. Global duplicates are typically non-personalized
promoting notifications sent to many users unchanged, such
as “Best sales!”, “A new version is available.”, etc. The
global duplicates are identified by counting the total occur-
rences of each unique notification sentence among all users.
To keep users’ privacy, notifications are hashed before being
uploaded to server for counting occurrences. The commonly
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1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!
8. Click for best sales now =>>>
9. Click for best sales now =>>>

1. Notification Filtering

1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
------------------------------------------------------------------------------
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!

2. Notification Clustering

1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!

Cluster 1

Cluster 2

1. Dear $param1, Your order [$param2] has been delivered!
2. Dear $param1, Your order [$param2] has been confirmed!
3. See $param1 recommendations for you!

3. Template Extracting

Fig. 2: An illustration of the template discovering pro-
cess. Duplicated notifications and unstructured notifications
are filtered in Step 1. Notifications generated with similar
templates are clustered together in Step 2. Templates are
extracted from each cluster in Step 3.

appeared hash values are then downloaded to user devices
to help identify global duplicates.

Unstructured notifications, i.e. notifications generated
without a template, are mainly messages or emails from
other users. We identify and remove such notifications with
several heuristics rules, for example checking the host app
against a list of messenger apps and/or matching the noti-
fication text to known patterns, such as “[NEW MAIL](.+)”.

3.2.2 Notification Clustering
After filtering, most of the remaining notifications are gen-
erated with templates. Given the fact that a template is a
common subsequence of the notifications generated with it,
extracting templates from notifications is similar to the task
of longest common subsequence (LCS) mining. However,
mining LCS from these notifications can still be hard, as
the notifications may be significantly different from each
other. A common solution, as used by Fu et al. [18] for
log analysis, is clustering the items before mining patterns
from each cluster. Inspired by their work, we first cluster the
notifications before extracting templates from them.

In order to group the notifications generated with the
same template, we ought to select the correct clustering
algorithm as well as the distance metric. We notice that

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance

0

50000

100000

150000

200000

# 
of

 n
ot

ifi
ca

tio
n 

pa
irs

Fig. 3: The distribution of the edit distances of randomly
selected 1,000 notifications. The threshold δ of the DBSCAN
algorithm should be chosen from the flat region between the
two peaks, in order to correctly cluster notifications.

the notifications generated with the same template are
quite close to each other in edit distance, where each edit
operation can be adding, deleting, or replacing one word.
This is intuitive as the notifications are originally generated
from templates by simple editing (adding entity values as
parameters). Meanwhile, the number of edits should be
relatively small as compared to the length of the template.

For example, in Figure 2, the notification “Dear Alice,
Your order [iPhone X] has been delivered!” is generated
with the template “Dear $param1, your order [$param2]
has been delivered!”. In this example, the template occupies
10 words including punctuations, while the non-template
part occupies only 3. Thus we use the relative edit distance
as the distance metric in our clustering algorithm:

edit distance(a, b) =
# minimum edits from a to b

min(|a|, |b|)

The clustering algorithm is easier to choose. As we do not
know the exact number of templates, we use the DBSCAN
algorithm [19] for clustering.

According to the DBSCAN algorithm, items are grouped
together only if the distance between any two items in
the cluster is lower than a threshold δ. Thus we need to
determine the value of δ to run clustering. If δ is selected
too large, notifications generated with different templates
will be grouped together (an extreme case is that all noti-
fications are grouped into one cluster if δ = 1), while if δ
is too small, notifications generated with the same template
may be separated into different groups. To determine the
proper threshold δ, we investigate the distributions of edit
distances between notifications in a few apps, like in [18].
Specifically, we randomly picked 1000 notifications for each
app in our dataset (the details of the dataset are described
in Section 4.1), and calculated edit distances for each pair
of notifications. The distribution of the distances are then
plotted out as a distribution graph. There should exist two
obvious peaks in the distribution graph. One is at a small
distance value, meaning notifications generated from the
same template have very short edit distances. Another one
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Fig. 4: Frequencies of the words in cluster 1 in Figure 2
among all users. The parameter words “Alice”, “iPhone”,
etc. are significantly less frequent than parameter words
“Your”, “order”, etc.

is at a large distance value, meaning most notification pairs
that are not generated with the same template have long edit
distances. According to that, δ should be picked between
these two peaks. An example of the distribution graph is
shown in Figure 3. By repeating the process for multiple
times and inspecting their distribution graphs, we choose
δ = 0.5 in this paper.

Once the threshold is determined, we are able to cluster
the notifications. As shown in Figure 2, each group of no-
tifications after clustering are generated with one template
or several very similar templates. This step also filters out
a good deal of noisy data, i.e. notifications not belonging to
any cluster.

3.2.3 Template Extracting
As we mentioned before, we can identify potential tem-
plates by mining longest common subsequences (LCS) in
each cluster of notifications, where the common sequences
are template bodies and the remaining part are left as
parameter slots. For example, by mining LCS from the
cluster 1 in Figure 2, we can get the template “Dear Alice,
your order $param1 has been $param2”. This template
has two parameter slots. “iPhone X” and “milk powder”
are possible values to fill the first parameter slot $param1,
while “delivered” and “confirmed” for $param2.

Unfortunately, there are two mistakes in the template
discovered with LCS. First, the user name “Alice”, which
should be a parameter in the template, is not correctly iden-
tified. This is because the user name is less variant across all
notifications on the user device. Similar examples include
the user’s gender, profession, etc. Second, “delivered” and
“confirmed” are identified as parameter values, while they
should not as they are not entities related to the user. The
reason is that there are two similar templates in cluster
1 in Figure 2, while the LCS mining algorithm tries to
extract only one template. The two mistakes are both due
to parameter misidentification, i.e. parameters misidentified
as template text or template text misidentified as parameter.

We make use of global word frequency to address the
problem. The global frequency of a word is defined as the
number of users having at least one notification containing
this word. The parameter values are usually more user-

specific, thus having low global frequencies, while template
words should have high global frequencies as they are
usually user-agnostic. Figure 4 shows the global frequency
of each word in cluster 1 in Figure 2. The words “Alice”,
“iPhone”, etc. have notably low global frequency as com-
pared with non-parameter ones such as “Dear”, “order”,
etc., thus they should be identified as parameter values.
The words “delivered” and “confirmed”, although slightly
less frequent than other template words, are identified as
template text as they are still very common among all users.
As a result, the template “Dear Alice, your order $param1
has been $param2” extracted through LCS mining are cor-
rected and split into two templates “Dear $param1, your
order $param2 has been shipped” and “Dear $param1,
your order $param2 has been delivered”.

The above process is based on the global frequency statis-
tics, which requires a joint analysis of many user data on
the server. To guarantee user privacy, we hash the words
on user devices before uploading them to calculate the
word frequency. Specifically, each user uploads a list of hash
values of the words used in the notifications of each app.
The server calculates the global frequency of each word
based on the uploaded hash values:

frequency(w) =
# users who uploaded hash(w)

# users who uploaded hashes

The global frequencies are then downloaded to each user
device to identify the parameters.

Finally, the notification templates extracted on user de-
vices are uploaded to the server to determine the final set of
templates. We further process the templates on the server by
filtering out incorrect ones based on several heuristic rules.
First, templates containing too many parameters and/or too
few non-parameter words are unlikely to be correct. We
exclude the templates with less than 5 non-parameter words
or more than 3 parameters. Second, templates matching
only a few users are excluded, as they are not general
enough, or might contain personal information. Specifically,
we excluded all templates matching fewer than 2 users. We
use the filtered set of templates for semantic analysis (as
described in next sections) and knowledge extraction.

As templates used by each app are typically the same for
different users, our approach only requires a small portion
of users to discover templates on their devices and share the
templates. Other users can directly download and use the
templates without running the template discovering phase.
Meanwhile, sharing the templates should have little impact
on privacy since the template itself does not contain any
personal information.

3.3 Template Semantic Rules

The discovered notification templates can be used to under-
stand the sentence structure of the notifications. To extract
personal knowledge, we will need to further understand the
semantics of each template.

Knowledge extraction in this kind of scenarios is typ-
ically modeled as as a slot filling problem [10]: given a
document and a slot to fill (i.e. a knowledge triple with
a pending entity), finding the boundaries of the slot filler
(i.e. identifying the entity value). The accuracy might be
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TABLE 2: Examples of template semantic rules. The first
column shows the examples of notification templates. The
second column lists the templates of knowledge triples that
can be extracted from the notification. Specifically, u, $p1
and $p2 are short for “user”, “parameter 1” and “parameter
2”.

Notification template Knowledge triple templates
Good news! $p1 is on sale! -
Your flight to $p1 is delayed. <u, travelsTo, $p1>
Hi $p1, your order $p2 has been
shipped.

<u, name, $p1>
<u, purchases, $p2>

Mr. $p1, please review the receipt. <u, name, $p1>
<u, gender, male>

Here are some $p1 job
opportunities for you.

<u, profession, $p1>
<u, status, job_hunt>

low if the document is poorly structured (F1 is around 35%
according to [10]). Our approach can easily understand the
sentence structure with the help of notification templates.
Thus the slot filling task is largely simplified: we do not need
to determine the entity boundaries as they are automatically
given by templates.

Due to the simplification, we are able to construct rules
to extract knowledge from push notifications based on their
templates. We introduce template semantic rules to help con-
vert a notification to personal knowledge triples. A template
semantic rule is defined as a mapping from a notification
template to a list of knowledge triple templates (KTTs in short).

There are two types of KTTs considered in our approach,
including 0-parameter KTTs and 1-parameter KTTs. An 1-
parameter KTT can be used to generate different knowledge
triples based on what parameter is used for the entity value.
For example, <user, travelsTo, $param> can use dif-
ferent location names (such as New York City, China,
etc.) as the parameter. <user, purchases, $param> can
use different product names (such as iPhone X, Nike
Shoes, etc.) as the parameter. A 0-parameter KTT is a tem-
plate with a fixed entity value, which can only generate
one type knowledge triple. 0-parameter KTTs are suitable
for attributive knowledge triples such as <user, gender,
male>, <user, status, job_hunt>, etc.

Table 2 shows some examples of template semantic
rules. For example, the non-personal template “Good news!
$param1 is on sale” does not map to any personal knowl-
edge triple. “Hi $param1, here are some $param2 job op-
portunities for you” is a personal knowledge template that
maps to three knowledge triple templates (KTTs), includ-
ing two 1-parameter KTTs (<user, name, $param1> and
<user, profession, $param2>) and one 0-parameter
KTT (<user, status, job_hunt>).

With the template semantic rules, we are able to extract
personal knowledge triples from the notifications formatted
with the templates. As shown in Figure 1, we first identify
the values of template parameters by matching the notifica-
tions with the templates. Then we fill the parameter values
into the knowledge triple templates to obtain the actual
knowledge triples. For example, the notification “Hi Alice,
your order iPhone X has been shipped” satisfies the tem-
plate “Hi $param1, your order $param2 has been shipped”
with $param1 = “Alice” and $param2 = “iPhone X”. Ac-
cording to the template’s corresponding knowledge triple

templates, we can extract two knowledge triples: <user,
name, Alice> and <user, purchases, iPhone X>.

Once we have identified a template, we can then define
its corresponding semantic rule either manually or through
an automatic learning process. In an automated approach,
we need to first manually label the semantic rules for a
small set of notification templates. These manually labeled
rules will be used in the automatic learning process to help
infer the semantic meanings of newly found templates. The
learned rules and manually labeled rules will both be used
in our final step to extract the personal knowledge from new
push notifications.

3.4 Automated Template Semantic Rule Generation

Although manually labeled semantic rules are the most
accurate when used to understand notifications formatted
with known templates, there might be a lot of unseen tem-
plates used by different or newer versions of apps. It is time-
consuming and impractical to manually label semantic rules
for all templates, as they may be generated by potentially
millions of different apps. Thus, we extend our system to
automatically generate semantic rules for unseen templates,
based on a set of manually defined semantic rules for known
templates.

We model the problem as a sequence classification prob-
lem: given a notification template, predict what knowledge
triple templates (KTTs) it may have. Specifically, what 0-
parameter KTTs the template has and what 1-parameter KTTs
each template parameter belongs to.

We use an RNN-based method to address the problem.
RNNs (Recurrent Neural Networks) are commonly used for
NLP tasks such as PoS-tagging and named entity recog-
nition, as they can effectively learn from the context of
each word. The context information is also very important
for understanding the parameters in each template. For
instance, given the template “Your order $param1 has been
shipped”, it is natural to guess that $param1 is the name of
a user-purchased product based on its prefix “Your order”,
and “has been shipped” is also clearly describe the status
of purchased product. To make use of both the prefixes and
suffixes of each parameter, we use the Bi-LSTM (Bidirec-
tional Long Short-Term Memory) model to understand the
template semantics.

Figure 5 illustrates our model for automated semantic
rule generation. For each notification template, we first rep-
resent each word in the template as a vector through word
embedding. We use an existing word embedding model
pre-trained with fastText [20], which is able to generate
reasonable word embeddings for unseen words. Reusing the
pre-trained model enables us make use of the meanings of
words learned from large corpus, thus facilitates training
our model with relative small dataset. The word vectors are
then fed into a Bi-LSTM network, with which each word
has a node capturing information from prefix words as
well as a node capturing information from suffix words.
By concatenating the output of the two nodes for each
parameter, we can generate a vector representation of the
parameter. Similarly, the whole template is represented as
the concatenation of the outputs of the last word’s for-
ward node and the first word’s backward node. Finally,
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Here             are             some      $param            job      opportunities      for               you

<user, status, job_hunt> <user, purchases, $param>

Notification template text

Word vectors

Template vector & 
parameter vectors

Knowledge triple templates

Word embedding

Bi-LSTM

Concat

Softmax

Fig. 5: The overview of our semantic rule prediction model. Given a notification template, we first represent each word
and parameter in the template with word embedding. Then we compute a vector representation for the whole template
and each parameter through a Bi-LSTM layer. Finally, the template vector is used for predicting 0-parameter KTTs and each
parameter vector is used for predicting 1-parameter KTTs.

the parameter vector of each parameter is used to predict
1-parameter KTTs, i.e. the knowledge triples that use the
parameter as the entity value. The template vector is used to
predict 0-parameter KTTs whose entity values are fixed.

We use the manually labeled semantic rules (mappings
from notification templates to knowledge triple templates)
as to train the model. The hyperparameters are tuned based
on several rounds of experiments. In the end, we use 200
hidden units for Bi-LSTM. We train the model for at most
15 epochs with the Adam optimizer, 1e-9 learning rate and
0.9 learning rate decay. Early stopping is adopted to prevent
over-fitting.

The trained model is able to handle unseen notifica-
tion templates. Given a new template, the model can di-
rectly predict the knowledge triple templates it may have.
The mapping from a previously unseen template to the
predicted knowledge triple templates is an automatically
generated semantic rule. Both the automatically-generated
and manually-labeled semantic rules are used to extract
knowledge triples from push notifications.

4 IMPLEMENTATION AND EVALUATION

We implemented two versions of the proposed knowledge
extraction mechanism for production and experiments re-
spectively:

1) The production version is implemented as an An-
droid app. The app runs as a background ser-
vice, collecting received notifications, identifying
the template for each notification, and extracting
personal knowledge from it. The service also pro-
vides APIs for other apps to access the personal
knowledge base. App developers can simply import
our library and call getPersonalKnowledge() to
get a stream of personal knowledge triples.

2) The experiment version is implemented entirely
on a server. It takes a centralized dataset with all

user notifications as the input and output the ex-
tracted knowledge triples for each user. However,
we simulate the situation of the production version
where the notifications are distributed on each user
device, by processing each user data separately. This
version of implementation is easier for conducting
experiments as it does not require users to install
our app.

We evaluated our proposed approach by primarily look-
ing at three aspects:

1) Can our system discover new personal knowl-
edge templates from smartphone notifications accu-
rately?

2) Can our system understand the meaning of the tem-
plates accurately, especially for previously unseen
templates? Specifically, what is the accuracy of the
template semantic analysis?

3) Can our system run on real user devices without
introducing too much overhead?

To answer these questions, we conducted experiments on a
dataset of push notifications from real users.

4.1 Dataset Overview
The dataset we used in the experiments contains 119,289,901
notifications from 100,000 smartphone users, obtained
through a mobile service provider in China. As these no-
tifications may contain sensitive user information, all data
have been collected from a group of designated test users in
accordance with the policies of the service provider. We have
strictly followed the “terms and conditions” specified by
the smartphone provider with respect to these test users in
our study. For example, the identities of all users have been
anonymized, while all push notifications have been kept on
the servers within the provider’s company throughout the
whole process.
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Fig. 6: Statistics of our dataset, including the distributions (CDFs) of the number of notifications per user, the number of
personal notifications per user, and the number of matched users per personal knowledge template.

The notifications were generated by 2,658 apps over 30
days from March to April 2018. Each notification entry is
consisted of:

• A user ID: the unique identity of the sampled smart-
phone. Each user ID is anonymized for security and
privacy reasons.

• An app ID: the unique identity of the app that the
notification belongs to.

• A timestamp: the time when the notification was
pushed to the user’s smartphone.

• Notification content: the notification title followed by
the text body. All numbers in the notifications are
elided for security and privacy reasons.

Figure 6a shows the distribution of the number of notifi-
cations per user in our dataset. Most users (around 50%)
have more than 1000 notifications and about 20% of the
users have more than 2000 notifications. On average, there
are about 40 notifications for each user per day in our
dataset, which is a subset of users’ notifications. The reason
is that we have only obtained the notifications that are
pushed through a certain service provider, instead of all the
notifications on a smartphone. However, while there is some
bias in our data set, we believe that our technique can still
generalize.

4.2 Accuracy of Notification Template Discovering
We simulated the scenario that the notifications are dis-
tributed on users’ smartphones, and used the template
discovering method described in Section 3.2 to identify
notification templates.

In total, we discovered 2,788 templates belonging to 409
apps from the dataset. We manually labeled the discovered
templates, determining whether each template contains per-
sonal knowledge and whether it is correct (by correct we
mean that the template correctly identifies the boundaries
of parameters). The result shows that there are 2,163 per-
sonal knowledge templates, among which 2,006 (92.7%) are
correct, and 625 non-personal templates, among which 414
(66.2%) are correct. The overall correctness ratio of tem-
plate discovering is 86.8%. The correctness for non-personal
templates is relatively low because those notifications are
usually less-structured. Such notifications include top news,

sales information, etc., many of which are manually crafted
without a template. However, it is not a huge problem as we
are not going to extract knowledge from these non-personal
templates anyway. Figure 6c shows the distribution of the
number of matched users per personal knowledge template
(i.e. the users who have one or more notifications matching
the template). On average, each personal knowledge tem-
plate has matched 1,571 users.

Table 3 shows some examples of the personal knowledge
templates discovered from our dataset. We selected three
most common templates (i.e. the templates that match most
users) in each of the three knowledge categories. As we can
see, a notification can contain multiple categories of per-
sonal knowledge. For example, the template “Hi $param1,
see what your friend $param2 is talking about you!” con-
tains both user profile information (the user’s name) and
social relationship information (name of the user’s friend).
It is also interesting to see that there are other categories
of personal knowledge except for the three categories we
considered. For example, “Now hiring! See $param1 job
opportunities near $param2.” contains the user’s job pref-
erence information, which is also an important type of
personal knowledge.

In total, we found that about 5.7% of all notifications
contain some kind of personal information3. Specifically,
6,824,002 out of 119,289,901 notifications are identified as
personal notifications, as they can match one of the dis-
covered personal knowledge templates. The distribution
of the number of personal notifications per user is shown
in Figure 6b. Around 10% of the users have more than
200 personal notifications. On average, there were at least
68 push notifications for each user that contain personal
knowledge. As we only considered a subset of notifications
due to the limitation of our dataset, we believe that more
personal notifications can be found on actual smartphones.

4.3 Accuracy of Template Semantic Analysis
We also conducted experiments to evaluate how well our
system can correctly understand the semantics of previously
unseen templates. We used the 2,788 notification templates

3. The proportion can be higher if we consider more types of personal
knowledge beyond what have been defined in this paper.
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TABLE 3: Examples of the notification templates discovered from our dataset. The #users column shows the number of
users that have notifications matching the template. The #notifications column shows the total number of notifications
matching the template. Note that the notification templates are translated from Chinese.

Category Notification template examples #users #notifications

User profile
- $param1 just downloaded your resume, talk with them now! 187 1,003
- Dear $param1, see new comments from your friends. 497 2,021
- Now hiring! See $param1 job opportunities near $param2. 1,861 20,533

Social
- Your friend $param1 sent you a message. 328 21,366
- $param1: $param2 is now live streaming. 3,385 47,904
- Hi $param1, see what your friend $param2 is talking about you! 824 3,958

Location
- [Weather Forecast] There will be rainy near $param1 this afternoon. 1,424 3,942
- Warning: Traffic is heavy near $param1 ... 1,262 2,284
- These delicious restaurants near $param1 are popular! 1,474 1,852

Shopping
- Your order $param1 is on its way. 25,100 118,757
- Shipping notice: The item $param1 has been shipped! 13,779 31,695
- Here are some good matches with the $param1 that you purchased. 6,064 6,760
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Fig. 7: The number of users per knowledge type.

from 409 apps discovered with our template discovering
method, as described in Section 4.2.

We manually labeled the knowledge triple templates for
each notification template according to our personal knowl-
edge ontology (Table 1) as the ground truth. Figure 7 shows
the number of users that have each type of knowledge (a
user is identified to have a type of knowledge if one of
his/her notifications matches a template in that knowledge
type). As we can see, only a small portion of users have user-
profile-related knowledge in their notifications, while lots
of them can be extracted knowledge in social relationship,
location, and shopping categories. This is because only
few apps put user’s personal information (name, gender,
profession, etc.) into notifications and even fewer users are
using these apps.

Each knowledge triple template is a label in our clas-
sification model, and each notification template can have
zero or more labels. Labels are selected in order that there
are enough samples (notification templates having the label)
for machine learning. For example, the knowledge triple
templates with gender relation and profession relation
are not used as label in this experiment as they. In to-
tal, we selected two 0-parameter KTTs to evaluate the
classification of templates and seven 1-parameter KTTs
to evaluate the classification of parameters, as shown in
Table 4.

We considered two situations where we need to predict
semantic rules for unseen notification templates. The first is
that when a new app is added to our system, all of the

notification templates used by that app are unseen. The
second is that when an existing app is updated, it may use a
new template to bring information to its users. We designed
two experiments to evaluate our system’s performance for
both situations:

• We first ran a 5-fold cross-validation to check
whether our system is able to handle unseen tem-
plates from unseen apps. For each label, we ran-
domly divided the 417 apps into 5 sets such that each
set had approximately equal amount of apps whose
templates have the label. For example, each set will
have about 9 apps that contain <u, follows, $p>
knowledge triples, as there are in total 45 apps con-
taining such knowledge. In each fold, we used 4 sets
of templates for training and the remaining set of
templates for predicting.

• In the second experiment, we also use 5-fold cross-
validation, but with different partitioning method.
For each app, we randomly divided its templates to
5 sets. We used 4 sets for training and the remaining
1 set for predicting in each fold.

The results of the both experiments are shown in Table 4.
Overall, our semantic model is able to accurately predict
labels (i.e. generate semantic rules) for unseen templates.
The accuracy of predicting labels for new templates of
existing apps is high (89.41% precision and 92.19% recall),
which is not a surprise because the new templates of an app
are usually similar to its old templates.

For unseen apps’ templates, the precision (83.62%) and
the recall (82.56%) are both lower than the other situation. Is
is because that different apps may use significantly different
ways to express same types of knowledge. For example, a
live streaming app (such as Twitch) may notify users about
the updates of their subscribed anchors using “$param
is live streaming.”, while an online publishing app (such
as Medium) may notify users about the updates of their
favorite authors using “$param posted a new article.”, both
notification templates express a following social relation-
ship while using totally different vocabularies. However,
the accuracy is acceptable for most common use cases of
personal knowledge, such as recommender systems and
conversational bots.

Among the knowledge relations considered in our eval-
uation, the accuracy for “livesNear”, “purchases” and
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TABLE 4: Accuracy of template semantic analysis. We used our model to predict labels (knowledge triple templates) for
unseen notification templates, including the templates used by unseen apps and the new templates of existing apps.

KTT Category KTT #apps #templates Templates of unseen apps New templates of existing apps
precision recall precision recall

0-param <u, status, job_hunt> 8 48 92.31% 71.79% 94.13% 93.89%
<u, status, car_hunt> 10 97 92.40% 77.37% 91.27% 89.68%

1-param

<u, name, $p> 22 90 87.81% 85.45% 93.77% 95.91%
<u, follows, $p> 45 217 90.37% 76.21% 90.85% 93.89%

<u, isFriendOf, $p> 129 485 87.12% 86.52% 90.21% 92.95%
<u, livesNear, $p> 16 157 74.13% 71.40% 93.94% 87.58%
<u, travelsTo, $p> 9 39 93.38% 86.72% 89.66% 92.10%
<u, purchases, $p> 22 83 73.30% 86.85% 87.50% 91.79%
<u, wantsToBuy, $p> 41 234 76.93% 84.45% 82.31% 90.88%

Overall 302 1450 84.50% 81.86% 89.69% 92.08%

“wantsToBuy” is relatively low. One major reason is that
these relations can be expressed in a wide range of ways,
while our dataset only contains a limited number of apps,
each using a specific way to express the knowledge. We
think this problem can be tempered by adding more training
data, such as more labeled notification templates from other
apps.

4.4 Client Overhead

We also evaluated the overhead that our approach may
bring to end-users by running the system on a real device.
The device we used in this experiment is a Nexus 5 phone
running Android 7.1.2. Most of the time our app simply
log the received push notifications and save them to a local
database, which only consumes little storage and compu-
tational resource. Occasionally (e.g. once a week), our app
need to run the knowledge extraction phase. According to
our experiment, extracting knowledge triples from 10,000
notifications only took around 5.8 seconds.

Some users will also need to run the template discov-
ering phase in order to contribute knowledge templates
to the server. We experimented with different amount of
notifications and found that it took about 2.8, 38.7, and
770.8 seconds to process (including clustering notifications,
extracting templates from the clusters, and uploading the
discovered templates) 100, 1,000, and 10,000 notifications
respectively. As our system only requires a small portion
of users to run the template discovering phase, and both the
template discovering phase and the knowledge extraction
phase only need to be performed occasionally, we believe it
is little overhead for most normal users.

5 LIMITATIONS AND FUTURE WORK

In this section, we highlight some of the limitations of our
system and discuss possible solutions.

Strong privacy guarantee. Our system is privacy-
preserving because it only uploads the notification tem-
plates to the server. However, it is not a strong privacy
guarantee because the uploaded templates may contain
personal information if the templates are incorrect. One
possible solution is to scan potential templates for sensi-
tive information before uploading, e.g. using Named Entity
Recognition techniques.

Real-world scenario. Our system is evaluated with a
dataset provided by a push notification service provider,

which only contains remotely-generated notifications from
a small subset of apps. The real scenario might be different
as we will be able to access all notifications on users’
smartphones. In the future, we would like to deploy our
system and evaluate the performance of our system in the
real-world scenario.

Comprehensive personal knowledge ontology. We con-
sidered three common categories of personal knowledge
in our implementation. However, a lot of other knowl-
edge categories can be found in push notifications, such as
work information, travel information, etc. Meanwhile, our
knowledge ontology is specifically designed for personal
knowledge in push notifications. There ought to be a more
complete and formal ontology of personal knowledge, like
the one defined in Schema.org [8] for world’s knowledge.

Other ways to obtain notification templates. Our ap-
proach requires a portion of users to upload discovered
notification templates for offline learning. This requirement
might be hard to fulfill if our system does not have enough
users. We can solve this problem by using other methods
to obtain an initial set of notification templates, such as ex-
tracting the templates from application code through static
analysis, or generating notifications by automatically testing
the apps [21].

6 RELATED WORK

6.1 Knowledge Base Population
Automated knowledge base population is an important
problem in both academia and industry. There are mainly
four groups of approaches in this area according to [15]:
YAGO [13], YAGO2 [22], DBpedia [23], and Freebase [14]
extracts information from structured data sources such as
Wikipedia infoboxes; Reverb [24], OLLIE [25], PROSMATIC
[26] use open information (schema-less) extraction tech-
niques applied to the entire web; NELL [27], PROSPERA
[28] and Elementary [29] extract information from the entire
web, bus use a fixed ontology; Approaches like Probase
[30] construct taxonomies (is-a hierarchies), as opposed to
general knowledge bases with multiple types of predicates.
Unlike these approaches that try to construct knowledge
bases in the public domain, we focus on personal knowledge
related to each individual.

Extracting knowledge from natural language text is
typically modeled as a slot filling task [10], i.e. adding
information about an entity to the knowledge base based
on the language semantics. The state-of-the-art approaches
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[11], [12] framed the task as sequence labeling and applied
neural networks to predicting the boundaries and labels
of entity values. However, the data source we used to
extract knowledge from is mobile notification text, which is
significantly different from the data sources of the world’s
knowledge, as notifications are mainly structured with tem-
plates. Our knowledge extraction method is tailored for
such kind of data based on template learning and template
understanding.

6.2 Personal Knowledge Extraction
Personal knowledge is the basis to many personalized ser-
vices, thus how to collect personal knowledge has attracted
many researchers’ and companies’ interests. The commonly
used data sources for extracting personal knowledge in-
clude search queries, conversational dialogs, SMS messages,
sensor, and UI content. For example, various approaches
[31], [32], [33] have been proposed to mine users’ places
of interest and mobility patterns from mobile data. Min et
al. [7] and Cruz et al. [34] analyzed communication logs
and wireless access logs respectively to infer users’ social
relationships. Spolaor et al. [35] presented a data extraction
tool named DELTA, which can extract UI interaction data
for user habit analysis. Li et al. [6] introduce a statistical lan-
guage understanding approach to automatically construct
personal knowledge graph from conversational dialogs.
Google Now on Tap and Bing Snapp can identify entities
in the UI content displayed by apps and show information
related to these entities.

As the data sources of personal knowledge are often
privacy-sensitive, a lot of approaches have been proposed
to mitigate the privacy concern during knowledge mining.
The most commonly-used method is to do the computation
locally on users’ devices. For example, Shen et al. propose
a client-side web search agent [36] to build user models
for search personalization. PrivacyStreams [37] introduce an
Android library for app developers to process personal data
locally and transparently. Appstract [38] use an offline user-
agnostic learning phase and an on-device predicting phase
to preserve the privacy of UI content analysis. Inspired by
Appstract, our system also adopts a two-phase method to
minimize users’ privacy concern.

6.3 Notification Analysis
Prior to our work, push notifications have been studied by
researchers from different aspects. Most researchers have
focused on the disruptive nature of push notifications [39],
[40], [1], [41] in order to guide the design implementation
of better notification systems. For example, Shirazi et al.
[39] analyzed a large scale of notifications and revealed the
differences in the importance of notifications. Mehrotra et al.
[40], [41] analyzed how notifications with different content,
sender and context can cause disruption to users. Other re-
searchers have also explored the effects of push notifications
to foster meta-learning [42] and self-logging [43]. Our work
does not aim to improve the notification mechanisms or use
notifications to influence users’ behaviors, instead, we make
use of notification content for a broader purpose: building a
personal knowledge base. The knowledge base can be used
to support all kinds of personalized services.

6.4 Wrapper Generation

Wrapper in data mining is a program that extracts content
of a particular information source and translates it into a
relational form. The aim of a wrapper is to locate relevant
information in semi-structured data and to put it into a self-
described representation for further processing [44]. Typi-
cally, wrappers are used to extract structured data, such as
telephone directories, product catalogs, etc. from web pages
formatted with fixed HTML templates. Wrappers can be
generated manually by experts, semi-automatically through
supervised learning [44], [45], [46], or automatically through
unsupervised learning [47], [48], [18]. Our work deals with
another form of wrapper: push notification templates. We
used an unsupervised approach to discover the templates
and supervised machine learning to understand the seman-
tic rules of the templates.

7 CONCLUDING REMARKS

This paper proposes an approach for extracting personal
knowledge from smartphone push notifications. It is able
to automatically identify templates from notification text
using pattern mining techniques, and then understand the
semantics of the templates through supervised machine
learning. The approach is privacy-preserving as only the
templates might be uploaded to the server for labeling and
learning.

We have implemented a prototype system on Android
and evaluate it with three common categories of personal
knowledge. Experiments on about 120 million push no-
tifications from 100,000 smartphone users show that we
are able to discover and understand notification templates
accurately, while successfully use the templates to extract
personal knowledge from push notifications.
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