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Abstract—Big data repositories from online learning plat-
forms such as Massive Open Online Courses (MOOCs) rep-
resent an unprecedented opportunity to advance research
on education at scale and impact a global population of
learners. To date, such research has been hindered by poor
reproducibility and a lack of replication, largely due to three
types of barriers: experimental, inferential, and data. We
present a novel system for large-scale computational research,
the MOOC Replication Framework (MORF), to jointly address
these barriers. We discuss MORF’s architecture, an open-
source platform-as-a-service (PaaS) which includes a simple,
flexible software API providing for multiple modes of research
(predictive modeling or production rule analysis) integrated
with a high-performance computing environment. All experi-
ments conducted on MORF use executable Docker containers
which ensure complete reproducibility while allowing for the
use of any software or language which can be installed in
the linux-based Docker container. Each experimental artifact
is assigned a DOI and made publicly available. MORF has
the potential to accelerate and democratize research on its
massive data repository, which currently includes over 200
MOOCs, as demonstrated by initial research conducted on the
platform. We also highlight ways in which MORF represents
a solution template to a more general class of problems faced
by computational researchers in other domains.

Keywords-data infrastructure; education; MOOC; repro-
ducibility; predictive modeling; machine learning

I. INTRODUCTION

A. Educational Big Data in the MOOC Era

Since the launch of the three major Massive Open Online
Course (MOOC) platforms in 2012, MOOCs have been met
variously with enthusiasm, curiosity, and criticism regard-
ing their potential to transform the educational landscape
and provide unprecedented access to high-quality educa-
tional content and credentials for learners around the globe.
The massive, granular, and multimodal data generated by
MOOCs has the potential to answer many of the research
questions underlying these perspectives, informing educa-
tional research on the process of learning within online
environments. To date, MOOC research has addressed a
diverse array of research questions from psychometrics and
social psychology to predictive modeling and machine learn-

ing. For example, several works have explored prediction
of various student outcomes using behavioral, linguistic,
and assignment data from MOOCs to evaluate and predict
various student outcomes including course completion [1],
[2], [3], assignment grades [4], Correct on First Attempt
(CFA) submissions [5], student confusion [6], and changes
in behavior over time [7]. A key area of research has been
methods for feature engineering, or extracting structured
information from raw data (i.e. clickstream server logs,
natural language in discussion posts) [8].

B. A Confluence of Challenges for MOOC Research

The challenges of doing big data research have grown over
the past decade as the data, statistical models, and techni-
cal tools have become increasingly complex, and MOOC
research has not been immune to the many challenges
facing the larger big data research community. Issues with
reproducibility and the lack of replication studies have the
potential to hamper the field and limit researchers’ under-
standing, and, consequently, to diminish the potential impact
of MOOCs for learners around the globe. Strict privacy
regulations also limit the sharing of learner data for MOOC
research. Many universities interpret the Family Educational
Rights and Privacy Act (FERPA), the IRB Common Rule,
or other data regulations in ways that severely limit access
to MOOC data. The recent passage of the General Data
Protection Regulation (GDPR) in the European Union may
further limit data sharing and collection.

C. Contribution: A Proposed Solution

In this work, we present a novel big data research plat-
form, the MOOC Replication Framework (MORF), which
is designed to jointly address technical, data, and method-
ological barriers to reproducible and replication research
in MOOCs. We present empirical evidence on the cur-
rent state of the “replication crisis” in big data and the
learning sciences in Section II, motivating the need for
MORF. Then, we provide a detailed overview of the MORF
platform in Section III, detailing MORF’s unique platform-
as-a-service (PaaS) architecture for working with massive
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privacy-restricted MOOC datasets in two modes of anal-
ysis (predictive modeling and production rule analysis).
In particular, we highlight its use of containerization to
ensure full replicability of computational results, and its
massive, highly diverse datasets available for analysis in
a secure, high-performance environment. We discuss how
MORF represents a framework which can apply broadly to
many other research domains, the software’s openness and
reuse potential, and the many benefits of big data replication
research, in Section IV.

II. THE REPLICATION CRISIS: AN EMPIRICAL
PERSPECTIVE

An emerging body of empirical evidence is revealing the
extent to which several factors – a lack of basic reproducibil-
ity practices in big data research; a dearth of replication
studies; and experimental, data, and inferential challenges
to big data research – have hindered the field.

A. Reproducibility in Big Data Modeling Research

Recent evidence has demonstrated that issues with basic
reproducibility – the ability to regenerate the original results
of an experiment using the original methods and data – are
widespread in the field of big data research, which covers a
variety of methods spanning artificial intelligence, machine
learning, data mining, and simulation-based research. In a
survey of 400 papers from leading artificial intelligence
venues, none documented all aspects necessary to fully
reproduce the work; on average, only 20-30% of the factors
needed to replicate the original work were reported [9].
In a survey of 30 text mining studies, none of the 30
works surveyed provided source code, and only one of
16 applicable studies provided an executable, to reproduce
their experiments [10]; lack of access to data, software
environment, and implementation methods were noted as
barriers to reproducibility in the works surveyed. Even when
code is available, it is often insufficient to reproduce an
experiment: in a survey of 613 published computer systems
papers, the published code accompanying failed to build or
run in 20% of cases; in total, it was not possible to verify
or reproduce 75.1% of studies surveyed using the artifacts
provided in publication [11].

Much-needed replication studies – where the original
methods of an experiment are applied to new data to evaluate
the generalizability of findings and contextualize the results
– are not even possible with a great deal of published big
data research, as even mere reproducibility is not possible.

B. Lack of Replication Studies in Learning Sciences

Replication research in the domain of the learning sci-
ences has been scarce to date. A survey of the top 100
education journals [12] demonstrated that only 0.13% of
education articles were replications (a replication rate eight
times lower than in the field of psychology). 67.4% of

replications attempted replicated the original results fully,
19.5% replicated some (but not all) findings, and 13.1%
failed to replicate any original findings.

Replication specific to MOOCs and educational big data
research has been particularly scarce. This may make the
existing body of research in MOOCs particularly unreli-
able, an issue compounded by the fact that most MOOC
studies to date have used small samples of MOOCs, and
selected highly-varying subsets of students from the avail-
able datasets (e.g. only students who joined in the first 10
days of the course and have viewed at least one video;
completed pre-course survey and the first end-of-unit exam,
etc.) [8]. In other domains, it has been shown that selecting
subpopulations which vary in even subtle ways has led to
very different experimental conclusions in big data analyses
depending on the population used [13].

The limited MOOC replication research to date has shown
that many published findings in the field may not replicate.
For example, in a large-scale replication, [14] found that
only 12 of 15 previously-published MOOC findings repli-
cated significantly across the data sets, and that two findings
replicated significantly in the opposite direction; similar
results in a machine learning replication in the context of
algorithm and feature selection were shown in [15].

C. Three Barriers to Reproducible Big Data Research

We identify three key sets of barriers contributing to both
the lack of general reproducibility in big data research, and
the lack of replication studies within the field of educational
big data research in particular. MORF attempts to resolve
all three barriers.

Experimental challenges with reproducibility relate to
reproducing the exact experimental protocol [9]. Many have
advocated for the open sharing of code as a potential
solution to address technical issues with reproducibility [16].
However, as discussed in Section II-A, even when code is
available, other technical issues can prevent reproducibility
in computational research workflows [17], [18].

Researchers have argued for over two decades that the
complete software environment is a necessary condition
for reproducing computational results [19]; however, the
open sharing of such environments remains rare. Even when
code is bug-free, compiles correctly, and is publicly shared,
issues that are not resolved by code-sharing include (i)
code rot, in which code becomes non-functional or its
functionality changes as the underlying dependencies change
over time (for example, an update to a data processing
library which breaks backwards compatibility, or a modified
implementation of an algorithm which changes experimental
results), as well as (ii) dependency hell, in which configuring
the software dependencies necessary to install or run code
prevents successful execution [20]. This complex web of
interdependencies is rarely described or documented in



published machine learning and computational science work
[17], [9], [10].

Methodological challenges to reproducibility reflect the
methods of the study, such as its procedure for model tuning
or statistical evaluation. Existing work on reproducibility
focuses on technical challenges, but methodological issues
are at least as important. Methodological challenges include
the use of biased model evaluation procedures [21], [22],
the use of improperly-calibrated statistical tests for classifier
comparison [23], or “large-scale hypothesis testing” where
thousands of hypotheses or models are tested at once,
despite the fact that most multiple testing corrections are not
appropriate for such tasks [24]. A machine learning version
of these errors is seen in massive unreported searches of
the hyperparameter space, and in “random seed hacking”
wherein the random number generator itself is systematically
searched in order to make a target model’s performance
appear best or a baseline model worse [25]. Replication plat-
forms can address methodological issues – working toward
what [9] terms inferential reproducibility– by architecting
platforms which support effective methodologies and adopt
them by default, effectively nudging researchers to make
sound choices.

Data challenges to reproducibility concern the availability
of data itself. In some domains of big data research, making
raw data available is more an issue of convention than a
true barrier to reproducibility. However, educational data
are governed by strict privacy regulations which protect
the privacy of student records. Similar restrictions affect
other big data domains, from the health sciences to com-
putational nuclear physics [18]. As a result, researchers are
often legally prohibited from making their data available.
Efforts such as the Pittsburgh Science of Learning Center
DataShop [26] and the HarvardX MOOC data sets [27] have
attempted to address this problem in educational research
by only releasing limited non-reidentiable data, but many
analyses require the original, unprocessed data for a full
replication. Restricted data sharing is one of the main factors
(in our experience) hindering generalizability analysis in
educational data mining: investigators are generally limited
to one or two courses worth of data (e.g. the courses they
instruct), and models are often overfit to these datasets.

III. THE MOOC REPLICATION FRAMEWORK (MORF)

MORF’s key design principles are: (i) ensure the complete
end-to-end reproducibility of experiments, (ii) support high-
quality replication studies and original research using mul-
tiple methods of analysis, (iii) provide access to a large and
diverse dataset, (iv) leverage high-performance computing
requiring minimal user input, and (v) ensure complete com-
pliance with legal restrictions on data sharing. This section
detail’s MORF’s architecture and how it encodes these
principles. In Section IV, we discuss how this architecture

may apply to a much broader set of problems across many
other domains.

A. Platform Architecture

MORF consists of two main components: an open-source
Python API for specifying the workflow of an experiment
(the “MORF API”), and a Platform-as-a-Service (PaaS),
which is a running instance of MORF’s back-end infras-
tructure coupled with computational resources and a large
MOOC dataset (the “MORF platform”).

1) MORF API and Controller Scripts: The life-cycle of
a complete end-to-end experiment, from raw data to results,
is shown in Figure 1. First, a user creates and submits a
configuration file to MORF, either using an HTTP request
or using the easy_submit() MORF API function. This
configuration file contains job metadata, including a pointer
to an executable Docker image which encapsulates all code,
software, and operating system dependencies for the users’
experiment. The configuration file also points to a Python
controller script that specifies the high-level experimental
workflow, such as how model training and testing should
occur and whether cross-validation or a holdout set should
be used in a predictive modeling experiment. The use of
controller scripts is a best practice for reproducible com-
putational research [18], as it provides a single script to
fully reproduce an experiment. An additional advantage is
that MORF controller scripts are human-readable, providing
a high-level overview of an experiment. An example of a
controller script from the experiment in [28] is shown in
Listing 1.

MORF uses the controller script to manage low-level data
platform tasks, including (i) data wrangling (retrieving and
archiving necessary data at each step of the experiment); (ii)
Docker image setup and execution; and (iii) parallelization.
Of particular note is (iii), as MORF is able to leverage paral-
lelization without requiring any user input or code written for
parallel execution. The controller script provides sufficient
information about how MORF can execute parallelization,
which can lead to speedups of 1-2 orders of magnitude when
each of MORF’s CPUs is occupied with a separate task
(e.g. training models on each of the different MOOC courses
available).

Listing 1: A MORF controller script
e x t r a c t s e s s i o n ( )
e x t r a c t h o l d o u t s e s s i o n ( )
t r a i n c o u r s e ( l a b e l t y p e = ‘ d r o p o u t ’ )
t e s t c o u r s e ( l a b e l t y p e = ‘ d r o p o u t ’ )
e v a l u a t e c o u r s e ( l a b e l t y p e = ‘ d r o p o u t ’ )

2) Docker Containerization for Reproducibility: Another
key component of MORF’s architecture is that it requires
submissions as executable Docker containers in order to
resolve many of the experimental challenges described
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Figure 1: MORF platform architecture: this figure shows a high-level overview of a predictive modeling workflow in MORF.
Solid lines indicate data transmission/archiving for reproducibility; dashed lines indicate messaging to MORF users.

in Section II-C. Docker containers can be thought of as
lightweight virtual machines which fully encapsulate the
code, software dependencies, and execution environment of
an end-to-end experiment in a single file.

Docker containers were originally developed to resolve
the technical issues described above in software development
contexts [29], and are frequently used in both industrial
software applications as well as computational and computer
systems research [20], [30], [31]. Their use in data science
applications is increasing, but the execution, publication, and
sharing of pre-built Docker images as part of a research
workflow is rare. While some existing platforms utilize
containerization (e.g. Codalab1), this functionality is hidden
from the user and containers are created “under the hood”
by the platform. This limits users’ ability to fully leverage
containerization by building the complex, customized envi-
ronments many machine learning experiments may require
or to share these containers upon completion of an experi-
ment. We are not aware of any data research platform which
allow users to submit Docker images directly for execution.

A major advantage of Docker over simple code-sharing is
that Docker containers fully reproduce the entire execution
environment of the experiment, including code, software
dependencies, and operating system libraries, exactly as this
environment is configured at the time of an experiment.
These containers are much more lightweight than a full
virtual machine, but achieve the same level of reproducibility
[29], [31].

When submitting a job for execution to the MORF plat-
form, a user generates a Docker image containing the code,

1http://codalab.org/

software, and operating system dependencies required to
execute their experiment, and uploads the image to a public
location (files located locally, HTTP, or in Amazon S3 are
supported). The user provides the image’s URL the configu-
ration file submitted to MORF, and the image is fetched,
checked, and executed according to the controller script.
When an experiment completes error-free execution, MORF
uploads the image to a public image repository on Docker
Hub using a unique identifier. This makes implementations
of every experiment on MORF immediately and publicly
available for verification, extension, citation, or reuse.

As part of MORF, we are assembling an open-source
library of ready-to-use Docker containers to replicate ex-
periments conducted on MORF to serve as shared base-
line implementations. These containers can be loaded with
a single line of code, allowing the research commu-
nity to replicate, fork, interrogate, modify, and extend
the results of an experiment. For example, the experi-
ment in [28] can be loaded by running docker pull
themorf/morf-public:fy2015-replication in
the terminal of any computer with Docker installed.

Building Docker containers requires only a single Dock-
erfile (akin to a makefile) which contains instructions for
building the environment. This imposes minimal additional
burden on researchers, but achieves a considerable increase
in reproducibility over merely sharing code. Users can also
generate Docker images by manually building a Docker
environment (without a Dockerfile), or by using a tool
such as Jupyter’s repo2docker, which generates Docker
images from public Github repositories2.

2https://github.com/jupyter/repo2docker

http://codalab.org/
https://github.com/jupyter/repo2docker


MORF’s combination of containerization and controller
scripts allow the user to manage low-level experimental
details (operating system and software dependencies, feature
engineering methods, and statistical modeling) by construct-
ing the Docker container which is submitted to MORF for
execution, while MORF manages high-level implementation
details (parallelization, data wrangling, caching of results)
using the instructions provided in the controller script. Most
importantly, the use of Docker containers ensures end-to-
end reproducibility and enables sharing of the containerized
experiment.

3) Other Services and Platform Architecture: While
Docker containers allow jobs submitted to the MORF plat-
form to use any combination of programming languages,
software, or analytical tools that can be installed on a linux
system, MORF itself is written in Python and the platform
utilizes a variety of Amazon Web Services tools, including
S3, Lambda, Simple Queueing Service (SQS), Simple Email
Service (SES), and others. The platform is built on top of
the Flask web framework. MORF utilizes Zenodo to assign
unique DOIs to every experimental artifact (configuration
files and controller scripts), and Docker Hub to create a
public archive of every Docker image executed on the
platform.

B. Platform Use and Software API

MORF includes a simple, minimal software API which
is used to write controller scripts that control job execution
on the platform (see Listing 1 for an example). The Python
API allows users to provide a simple execution “recipe” for
the MORF platform to execute their experiment specifying
the complete end-to-end pipeline from raw data to model
evaluation: extract features from raw data; train and
test machine learning models (predictive modeling exper-
iments only), and evaluate the experimental results. For
example, after extracting the desired features, a predictive
modeling experiment could train individual models for every
session of a course by using train_session() in their
controller script; train one model per course using the data
from all sessions by using train_course(); or train a
single monolithic model using all data from every session of
every course by using train_all(). An example of how
MORF translates the various train functions into different
experimental workflows, by mounting different data into the
Docker environment, is shown in Figure 2. Note that the
API functions used in the controller script are also used
for MORF to manage many other low-level tasks, such as
caching of intermediate results (e.g. trained models) and par-
allelization to ensure optimal performance. Similar functions
exist for feature extraction, model testing, and evaluation, as
well as for special cases (e.g. forking features extracted in
a previous experiment for a new experiment).

The MORF API is written in Python, is available on

Mounted data 
directory structure in 

Docker containers:

Parallelization:

train_session()

…

/input

/course_name

/001

Docker Image

your_features.csv

labels_train.csv

train_all()

…

/input

/course_name

/001

Docker Image

your_features.csv

labels_train.csv

/002

your_features.csv

labels_train.csv

…

/other_course

/001

your_features.csv

labels_train.csv

/002

your_features.csv

labels_train.csv

train_course()

…

/input

/course_name

/001

Docker Image

your_features.csv

labels_train.csv

/002

your_features.csv

labels_train.csv

/003

your_features.csv

labels_train.csv

Parallelize over sessions 
(most efficient)

Parallelize over courses No parallelization possible

Results: One model per session One model per course One model

Figure 2: Example of MOOC data mounted to Docker
images in MORF based on the use of varying API functions
in a predictive modeling experiment. This shows how users
control workflows using the Python API, while having
the flexibility to process and model raw data using any
underlying software within their Docker images.

the Python Package Index (PyPi)3, and is pip-installable.
Development releases are available from Github.4 It is
important to note that while the MORF API is written in
Python, this is simply the language that is required for
controller scripts which MORF interprets to control job
execution; users’ code inside their Docker containers can
be written using any language(s) or software that can be
installed in the linux-based Docker container.

C. Replication and Analysis Functionality

1) Predictive Modeling: A critical area of MOOC re-
search to date has been the construction and analysis of pre-
dictive models of student success [8]. Such models have the
potential to drive personalized learner supports or platform
modalities [32], adaptive learning pathways [33], contribute
to learning theory or support data understanding (such as
about demographic differences in dropout or achievement)
[4], or “early warning” systems designed to alert instructors
of struggling students.

One primary thread of this research has been predict-
ing whether a student is likely to dropout of, or fail to
complete, a course. MORF currently supports two dropout
prediction tasks: binary classification (dropout/no dropout)
and regression (the week a student will drop out of a course,
up to the final week). Predictive modeling experiments on
MORF follow a standard end-to-end supervised learning
workflow: feature extraction from raw data; model training;
model testing; and model evaluation (whereby performance
is analyzed or, optionally, evaluated using statistical tests).
In order to perform a predictive modeling experiment using

3https://pypi.org/project/morf-api/
4https://github.com/educational-technology-collective/morf

https://pypi.org/project/morf-api/
https://github.com/educational-technology-collective/morf


MORF, users specify their Docker image should respond
when executed in each of these “modes” with the requisite
data mounted within the image. Predictive modeling exper-
iments conducted on MORF to date include [28], [15].

2) Production Rule Analysis: A key design principle
of MORF has been to support high-quality replication re-
search, and the generation of other novel findings, even
for researchers not interested in (or technically capable of)
predictive modeling. As such, MORF supports a second
mode of evaluation, known as production rule analysis.
Production rules are if-then rules, coded in the form of
“If a student who is <attribute> does <operator>, then
<outcome>” [34]. MORF uses the JESS expert system
language to code these production rules. In order to perform
a production rule experiment using MORF, users provide a
text file containing the production rule of interest. A set of at-
tributes, operators, and outcomes are available in the MORF
platform. Currently, the available attributes, operators, and
outcomes are based on prior findings which we sought to
replicate in the MORF platform, although future versions of
the platform will allow users to specify their own definitions
for each. Production rule experiments conducted on MORF
to date include [34], [14].

D. Platform Data

1) Available MOOC Data: To date, the privacy re-
strictions protecting MOOC learner data have hindered
researcher access to large, diverse MOOC datasets. This
has led to many studies evaluating only a small number
of courses: a recent survey indicated that 70% of prior
predictive modeling experiments in MOOCs used datasets
consisting of five or fewer unique courses [8]. As discussed
above, larger, more diverse and representative datasets are
critical for a nascent field such as MOOC research, which
is still developing consensus on many research questions.

The MORF platform seeks to resolve this issue, and
makes a large, diverse dataset available for analysis of plat-
form users. Currently, MORF contains the complete raw data
exports from 209 sessions of 77 unique MOOCs offered on
the Coursera platform, representing nearly 30 million unique
interactions on courses offered across two of Coursera’s four
founding partner institutions (the University of Michigan and
the University of Pennsylvania). Descriptive statistics for the
data currently available in MORF are shown in Table I. The
provision of this data for analysis to MORF users represents
a considerable advancement of the field.

For all of the courses in MORF, the complete, raw exports
consisting of all available course, user, and interaction data
are available. In the case of the Coursera data currently made
available by MORF, this consists of seven exports for every
course [35]: multiple MySQL database dumps, CSV files,
compressed clickstream server logs, and HTML files. This
includes the complete clickstream server log for every user
interaction with course content (example shown in Figure

Table I: Data available in the MORF Platform. This allows
all experiments conducted on MORF to utilize massive,
diverse datasets considerably larger than almost all other
MOOC prediction research to date [8].

Metric Value
Total MOOC Sessions 209
Unique Courses 77
Active Students 986,420
Interactions 29,416,369
Discussion Forum Posts 1,695,297
Assignments 231,066

3a), discussion forum posts and associated metadata (time,
thread ID, user ID, upvotes/downvotes received, etc.; shown
in Figure 3b), learner-provided responses to a course de-
mographic survey, assignment submissions and grades with
associated metadata, and course metadata (such as video
titles, lengths and subtitle text; assignment information and
due dates; etc.). Anonymizing such data, as many existing
MOOC research solutions do, often obscures critical details,
such as users’ IP address (which can be used to estimate a
users’ location or socioeconomic status), the text of students’
forum posts, and logfile entries which could be used to
identify individual users. Using these rich datasets in raw
and unredacted form presents an opportunity for researchers
to investigate a highly diverse space of hypotheses, conduct
rich feature engineering to build diverse predictive models,
and replicate a wide variety of findings across many modes
of inquiry.

2) Execute-Against Access for Secure Big Data Research:
In order to provide direct and unredacted access to the
rich, raw big data exports of MOOC platforms in a way
that also accommodates the data regulations restricting the
sharing of MOOC learner data (FERPA, IRB Common Rule,
GDPR), we provide “execute-against” access to the platform
data exports: users can run analyses against MORF’s data,
but cannot download or directly access the data. Instead,
their experiments are executed against MORF’s data within
a sandboxed, networked-restricted computing environment.
Then, a summary of the results are returned to the user. For
predictive modeling jobs, these results are 8 measures of
prediction performance (AUC, Cohen’s κ, F1, etc.) on each
course or session the job was executed on. For production
rule analyses, statistical testing results are returned.

Most MOOCs are generated by a small number of plat-
forms (e.g. Coursera, edX, FutureLearn), and all courses
from a given platform use publicly-documented data
schemas (e.g. [35]). Thus, users can develop experiments
using their own data from a given platform – or even the
public documentation – and then submit these experiments
for MORF to execute against any other course from that
platform. This enables MORF to provide an interface to
its large data repository, without sharing the data itself,
by utilizing the consistent and public schema of MOOC
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"8801600464-1422359379358","language": "en-US,en;q=0.5","from": "https://class.coursera.org/
aidsfearandhope-001/lecture/11","user_ip": "209.59.96.42","user_agent": "Mozilla/5.0 (Windows NT 6.2; 
WOW64; rv:35.0) Gecko/20100101 Firefox/35.0", "12": ["{\"height\":900,\"width\":1600}"], "13": [0], "30": 
[1423100962836]}

(a)

(b)

Figure 3: Data types available for MOOC research in MORF.
In existing solutions, these data sources are often highly
redacted, anonymized, or simply unavailable. (a) Example
clickstream log entries. (b) Example threaded forum posts.
Personally-identifying information has been redacted.

datasets. These shared public data schemas also ensure that
existing experiments in MORF can be replicated against
new data (from the same MOOC platform) as it becomes
available. Additionally, while only descriptive summary re-
sults are returned to users, MORF persists all extracted
features, trained models, and predictions obtained in the
course of an experiment for complete reproducibility, which
also allows for trusted users to obtain access to intermediate
experimental results.

Run 1 Run n

Holdout

Run 2 Run n-1

Training 

…
Figure 4: Default future-course prediction architecture used
in MORF. This avoids potential inferential issues caused
by using cross-validated performance to estimate model
performance on future course sessions, by instead estimating
that performance directly.

While the term “execute-against” access is novel, this
framework of accepting analytical submissions which are
executed against protected data has been used, for example,
with healthcare data in the Critical Care Health Informatics
Collaborative (CCHIC) [36] and with copyrighted music
data in the Networked Environment for Music Analysis
(NEMA) [37].

E. MORF Resolves Existing Barriers to Replication in Ed-
ucational Big Data Research

MORF uses containerization to resolve many of the
experimental challenges described in Section II-C. The
Docker containers submitted to MORF fully encapsulate
the code, software dependencies, and execution environment
required of an experiment in a single file, ensuring end-to-
end reproducibility and enabling sharing of the containerized
experiment. These containers are automatically stored in a
public repository and assigned unique, persistent identifiers.
They can be loaded with a single line of code, allowing the
research community to replicate, fork, interrogate, modify,
and extend the results of any experiment in MORF.

In order to address concerns with methodological and
inferential reproducibility, MORF provides sensible default
procedures for many tasks, such as model evaluation, as well
as simple statistical testing procedures. For example, MORF
avoids the use of cross-validation for model evaluation: the
prediction tasks to which most MOOC models aspire are
prediction of future student performance (i.e., in an ongoing
course where the true labels – such as whether a student will
drop out – are unknown at the time of prediction). As such,
using cross-validation within a MOOC session, when the
outcome of interest is accuracy on a future MOOC session,
provides an unrealistic and potentially misleading estimate
of model performance. Prior work has demonstrated that
cross-validation provides biased estimates of independent
generalization performance [22], and in the MOOC domain,
that cross-validation can produce biased estimates of classi-
fication performance on a future (unseen) course [28], [38].
Holding out a single session of every course requires a
large data repository (multiple sessions of every MOOC).
The rarity of such methods in prior work [39] is likely due
to the scarcity of MOOC data, an issue MORF resolves.
Adopting more effective model evaluation techniques by
default requires no additional work for MORF users, and
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Data
Raw (non-anonymized) data available NA
Complete MOOC exports available NA NA
Total MOOC Sessions Available 209 151 NA NA
Supports “execute-against” data

Platform
Supports custom code
Supports R, Python, Java, C++
Command-line submission/execution
Open-Source
GUI Available

Reproducibility
Uses containerization
Accepts submission as container
End-to-end execution in platform
Assigns DOI to each job
Analyses are forkable
Integrated w/public image repository

Computation
Provides computational resources
Native Parallelization Implemented

Table II: Comparison to existing solutions with similar goals,
including those within the same domain (Learnsphere +
Datastage), in a related domain (CCHIC), and domain-
agnostic tools (Codalab). = Supported; = Partially Sup-
ported. *: statistics shown for use with DataStage MOOC
data repository. †: users can provide their own additional
worker nodes.

ensures that work produced on the MORF platform follows
effective model evaluation procedures. MORF also provides
support for statistical model evaluation to provide for more
reliable inference than comparing machine learning experi-
ments without statistical testing, as is commonly performed
[39].

MORF achieves data reproducibility while also meeting
data privacy restrictions by providing “execute-against” ac-
cess to underlying data, described in Section III-D2.

IV. DISCUSSION

A. Implications for Big Data Research

In addition to jointly addressing several challenges to
reproducible and replication research within the field of ed-
ucation, MORF’s architecture, workflow, and initial research
results have implications for the broader big data community.
MORF addresses a set of problems faced by big data re-
searchers across many domains. This includes experimental
reproducibility as big data research in many fields uses
increasingly complex computational models; methodological
and inferential reproducibility as big data research enables
problematic statistical practices such as massively multiple
testing via testing thousands or millions of hypotheses in

a single experiment; and data reproducibility as available
data become massively multimodal (many different formats),
measure increasingly private or restricted aspects of users’
behavior and identity, and cannot be easily anonymized.

MORF demonstrates that big data research in the face of
such challenges is possible, and suggests a general blueprint
for conducting a variety of research tasks while addressing
these issues. MORF’s API code is fully open-source, as is
most of the code supporting the MORF platform (except
where doing so presents a security risk). The MORF frame-
work is domain-agnostic, and can support generic workflows
for supervised learning and production rule analyses in
any domain which works with complex, multiformat data
which cannot be easily anonymized (e.g. sensitive medical
data, copyrighted media, computational nuclear physics).
As noted in Section III-D2 above, systems using execute-
against access have been successfully deployed in the fields
of healthcare and music information retrieval.

B. Beyond Verification: The Benefits of Replication

Much prior work on reproducibility has focused on verify-
ing that published results can be reproduced. However, end-
to-end reproducible machine learning frameworks, such as
MORF, provide benefits beyond mere verification, including:

Gold standard benchmarking: open replication plat-
forms allow for the comparison of results which were pre-
viously not comparable, having been conducted on different
data. The use of such benchmarking datasets has contributed
to the rapid advance of fields such as computer vision (e.g.
MNIST, IMAGENET), natural language processing (Penn
Tree Bank, Brown corpus), and computational neuroscience
(openFMRI). These datasets have been particularly impact-
ful in fields where it is difficult or expensive to collect, label,
or share data (as is the case with MOOC data, due to legal
restrictions on sharing and access). These help to evaluate
the state of the art by providing a common performance
reference which is currently missing in many fields.

Shared baseline implementations: We noted above that
variability in so-called “baseline” or reference implementa-
tions of prior work has contributed to concerns about repro-
ducibility in the field [25]. By providing fully-executable
versions of existing experiments, MORF ameliorates these
issues, allowing for all future work to compare to the exact
previous implementation of a baseline method.

Forkability: containerization produces a ready-made ex-
ecutable which fully encompasses the code and execution
environment of an experiment. These can be readily shared
and “forked” across the scientific community, much in the
same way code is “forked” from a git repository. This
allows researchers to build off of others’ work by modifying
part or all of an end-to-end pipeline (for example, by
experimenting with different statistical algorithms but using
the same feature set as a previous experiment) within the
same software ecosystem.



Generalizability analysis: Each successive replication of
an experiment provides information about its generalizabil-
ity. Evaluating the generalizability of experiments has been
a challenge in MOOC research to date, where studies con-
ducted on single-course, restricted, and often homogenous
datasets tend to dominate the literature. When containerized
implementations are available, replicating these analyses on
new data – even data which are not publicly available but
share the schema of the original data – becomes as straight-
forward as running the containerized experiment against new
data.

Sensitivity Analysis: This technique, used widely in
Bayesian analysis, evaluates how changes to the underlying
assumptions or hyperparameters affect experimental results.
Such an evaluation can provide useful information about
a model’s robustness and potential to generalize to new
data. Without being able to fully reproduce a model on
the original data, sensitivity analyses of published results
are not possible. In MORF, such analyses can be conducted
by forking and modifying the containerized version of the
original experiment, then re-executing it against the same
data. This process also enables so-called ablation analyses,
wherein individual components are removed from a model
to observe their contribution to the results, as well as slicing
analyses, where analysis of performance across different
subgroups (e.g. demographic groups) is explored [40].

Full Pipeline Evaluation: Each stage of an end-to-end
machine learning experiment (feature extraction, algorithm
selection, model training, model evaluation) can be done
in many different ways. Each stage also affects the others
(for example, some algorithms might perform best with
large feature spaces; others might perform poorly with
many correlated features). However, current research usually
evaluates only one or two components of this pipeline (e.g.
training several algorithms and tuning their hyperparameters
on a fixed feature set). Not only are the remaining stages
often described in poor detail or not at all [9]; such work
also leaves future researchers unable to evaluate the synergy
between different aspects of the end-to-end pipeline in a
published experiment (for example, exploring whether an
algorithm’s performance improves with a different feature
set). MORF fully encapsulates this end-to-end pipeline for
a given experiment and it makes it available for modification
to any other researcher.

Meta-Analysis: While meta-analyses are common in
fields with robust empirical research bases, such analyses
have been less common in the field of big data, which has
an emphasis on novelty. The open availability of executable
machine learning experiments affords detailed meta-analyses
by providing complete results of all modeling stages for
meta-analysis. MORF has already been used for meta-
analysis [14].

V. CONCLUSION

Replication is important to all research, including big data
research in education. We have constructed MORF, a system
to facilitate such analysis. MORF has been used to conduct
several replication studies [28], [15], [34], [14], each of
which demonstrated that the initial findings did not entirely
replicate. While we encourage interested institutions to part-
ner with us to make their data available within MORF, users
or institutions can also create their own platform instances
by using the open-source code and API. We see immediate
future opportunities to broaden our work by (a) reducing
the need for researchers to understand environments such
as Docker, by integrating front-end calls to this tool within
development environments such as Jupyter; (b) providing
light weight web front-ends for this system, allowing users
to explore this large data through web visualizations; and
(c) increasing the size and scope of the project by involving
more institutions and a broader array of educational data
(e.g. non-MOOC learning management system data).
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