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Abstract— Network representation learning in low dimen-
sional vector space has attracted considerable attention in both
academic and industrial domains. Most real-world networks
are dynamic with addition/deletion of nodes and edges. The
existing graph embedding methods are designed for static
networks and they cannot capture evolving patterns in a
large dynamic network. In this paper, we propose a dynamic
embedding method, dynnode2vec, based on the well-known
graph embedding method node2vec. Node2vec is a random
walk based embedding method for static networks. Applying
static network embedding in dynamic settings has two crucial
problems: 1) Generating random walks for every time step is
time consuming 2) Embedding vector spaces in each timestamp
are different. In order to tackle these challenges, dynnode2vec
uses evolving random walks and initializes the current graph
embedding with previous embedding vectors. We demonstrate
the advantages of the proposed dynamic network embedding
by conducting empirical evaluations on several large dynamic
network datasets.

I. INTRODUCTION

In the last few decades, graph embedding methods have
achieved remarkable success in the analysis of large net-
works. The basic aim is to represent nodes of a large, high-
dimensional graph in low-dimensional vectors that preserve
the neighbourhood information of the graph. Several static
graph embedding algorithms [1], [2], [3], [4], [5], [6], [7],
[8] have been developed for a variety of machine learning
tasks such as visualization [9], node classification [10], link
prediction [11], and recommendation [12]. Random walk and
edge sampling graph embedding approaches [2], [3], [4] have
a remarkable performance in large networks which contain
more than thousand nodes and edges.

Large real-world networks evolve naturally over time,
i.e., nodes and edges appear or disappear, or edges change.
For example, in co-authorship networks new edges may
emerge (new collaborations may be formed) or new nodes
can be added (new authors) and in social networks, users
may delete friends (delete edges) or some users may leave
the network (delete nodes). The static graph embedding
methods are not capable of dealing with the critical challenge
involved in dynamic networks. The disadvantage of using
static embedding methods at each timestamp independently
are as follows. First, embedding vectors for each timestamp
are in different spaces. Second, learning embedding vectors
separately is a time-consuming process.

In this paper, we propose dynnode2vec, a scalable dynamic
network embedding for large evolving networks. In order to
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handle dynamic networks, dynnode2vec modifies the well-
known static embedding method, node2vec by employing the
previous learned embedding vectors as initials weights for
the skip-gram model. This is motivated by dynamic language
models, especially dynamic Skip-gram models [13], [14]. In
addition, we utilizes evolving random walks for updating
the trained skip-gram from previous timestamp. The evloving
random walks are only generated for nodes that have changed
in consecutive times. As random walk generation is the
time consuming part of graph embeddings, we are able to
significantly reduce the running time. Our main contributions
in this paper are:

• We develop a dynamic embedding method dynnode2vec
that captures evolving patterns in large dynamic net-
works

• dynnode2vec is a fast and accurate method for dynamic
graph embedding

• We evaluate the performance of our method in variety of
tasks including link prediction, node classification and
anomaly detection on large real-world graphs

II. Dynnode2vec: SCALABLE DYNAMIC NETWORK
EMBEDDING

We represent a dynamic network G as a sequence of
graphs G1, G2, . . . , GT from timestamps 1 to T . Each graph
at time t is represented by Gt = (Vt, Et) where Vt and Et are
the vertices and edges of the graph respectively. Our goal is
to modify the static node2vec embedding method for learning
representation of a dynamic network. We begin with a brief
description of the static node2vec embedding method. Then,
we explain the steps of dynnode2vec which are summarized
in Algorithm 1.
node2vec is an extension of deepwalk algorithm [4] and has
two main subcomponents; node2vec random walk and Skip-
gram model. node2vec random walk is a flexible random
walk method which samples neighbourhoods of a source
node by Breadth-first Sampling (BFS) and Depth-first Sam-
pling (DFS). node2vec first generates a corpus by sampling a
number of random walks γ of length t starting at each vertex.
Then, the Skip-gram uses these random walks to learn the
representation vector for each node.

A. Description of dynnode2vec steps

The main challenge of modification of the static node2vec
is how to learn embedding at time t by updating embedding
vectors in time step t − 1. For a dynamic network G =
G1, G2, . . . , GT , we run the static node2vec for the first
graph G1 separately, extract the embedding vectors and keep
the structure of trained Skip-gram for the next timestamp.
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For all other subsequent timestamps 2, . . . , T , the following
steps are performed between two consecutive timestamps t
and t+ 1.

1) Evolving Walk generation: In the static node2vec,
random walks are generated independently for each times-
tamp for all nodes which is very time-consuming process.
In dynnode2vec, we generate an effective set of random
walks for only evolving nodes instead of generating random
walks for all nodes in the current timestamp. Therefore,
new random walks from changed regions in the graph
Gt can efficiently update the embedding vectors according
to temporal evolution of networks over time. Assume the
structure evolution of the graph Gt from Gt−1 includes
sets of new edges/nodes that are added (Eadd/Vadd), deleted
(Edel/Vdel) and their weights have changed (Echange). The
evolving nodes in the timestamp t are defined as follows:

∆Vt = Vadd∪{vi ∈ Vt|∃ei = (vi, vj) ∈ (Eadd∪Edel)} (1)

Generating evolving random walks is fast and time-efficient
since dynamic networks are evolved gradually and neigh-
bourhoods of most nodes are kept unchanged. However, in
the worst case, evolving nodes include all nodes as all nodes
have changed in the timestamp t.

2) Dynamic Skip-gram model: In natural language pro-
cessing domain, several dynamic word embedding [15], [16],
[13], [14] have been proposed to track word evolution such
as new words are created (internet), and some words die
out throughout time. In [14], for learning the representation
vectors in the timestamp t they train the Skip-gram by
initializing word vectors obtained from previous timestamp
t−1. In this dynamic Skip-gram model, the vocabulary set is
updated and the Skip-gram is retrained by new documents in
timestamp t. In network embedding domains, DynGEM [17]
incrementally learns embedding vectors for the timestamp t
by using embedding vectors from the timestamp t − 1 as
initial weights for SDNE atuoencoder in a dynamic network.

dynnode2vec also takes advantage of dynamic Skip-gram
model for obtaining embedding vectors at time t and uses
the pre-trained Skip-gram model (Skip-gramt−1) as initial
weight for (Skip-gramt). In order to do that, first the vocab-
ulary set of Skip-gramt is updated according to new evolving
walks. Then, Skip-gramt is trained by new evolving walks
generated on the evolving nodes.

Algorithm 1 :Algorithm: Dynnode2vec
1: Input: Graphs G = G1, G2, . . . , GT

2: Output: Embedding vectors Z1, Z2, . . . , ZT

3: Run static node2vec for the Graph G1

4: for t = 2 to N do
5: Find a set of evolving nodes,∆Vt,
6: Sample new random walks (Walkn) for ∆Vt
7: Train Skip-Gram Skipt with Walkn and obtain Zt

8: end for

III. EXPERIMENTS

A. Datasets

The performance of dynnode2vec is evaluated on follow-
ing datasets.

• Hep-th [20]: This dataset is the coauthorship network of
researchers in High energy physics theory conference.
Hep-th has 34k nodes, 421k edges divided into 60
graphs.

• Autonomous Systems (AS) [21]: AS is built from logs
of the BGP (Border Gateway Protocol) which shows the
communication between users. Number of nodes, edges
and time steps are 6k, 13k and 100 respectively.

• Enron [18]: Enron is the email communication network
between Enron company employees. It has 87k nodes
and 1.1M edges over 175 months.

• StackOverflow (St-Ov) [22]: This dataset is derived
from question and answers in Math Overflow website.
Each edge shows users interactions. This dataset con-
tains 14k nodes and 195k edges over 2350 days. We
divided the datastream into 58 graphs.

• dblp [23]: This is the coauthorship network dataset
among researchers of different fields. It consists of 90k
nodes and 749k edges over 18 years. Each node in
dblp has one of the two class labels, database and
data mining (VLDB, SIGMOD, PODS, ICDE, EDBT,
SIGKDD, ICDM, DASFAA, SSDBM, CIKM, PAKDD,
PKDD, SDM and DEXA) and computer vision and
pattern recognition (CVPR, ICCV, ICIP, ICPR, ECCV,
ICME and ACM-MM).

• Darpa [19]: Darpa is a dataset consisting of commu-
nications between source IPs and destination IPs. This
dataset contains different attacks between IPs. We used
a subset of darpa consisting of 12k nodes and 22k edges
over 100 hours.

B. Baselines

We compared the performance of our method against the
following existing methods:

• DeepWalk[4]: This is the first node embedding method
based on random walks. DeepWalk uses Skip-gram
model and uniform random walks to learn the neigh-
borhood structure of the graph.

• node2vec[3]: This method learns node representation in
networks by preserving network neighborhood of nodes.
It explores the neighborhood of a node by generating
DFS and BFS random walks for that node.

• DynGEM [17]: This approach is a stable dynamic node
embedding method that works for growing dynamic
graphs. It incrementally builds the embedding vectors
at each time using the embedding vectors from previous
time. In dynamic networks with a large number of
nodes like Enron and DBLP, the memory requirement of
Dyngem signicantly increases. Therefore, we are only
able to run it on three datasets; AS, Hep-th, and St-Ov.



TABLE I
LINK PREDICTION RESULTS USING FOUR OPERATORS A) WEIGHTED-L1

B) WEIGHTED-L2 C) HADAMARD D) AVERAGE

Op Algorithm Dataset
AS Hep-th Enron St-Ov

A DeepWalk 0.957 0.9887 0.8489 0.5595
node2vec 0.9554 0.9893 0.8533 0.5617
DynGEM 0.7855 0.6246 - 0.6242
dynnode2vec 0.9625 0.996 0.8922 0.66

B DeepWalk 0.9577 0.9882 0.805 0.5561
node2vec 0.9561 0.9894 0.8649 0.5608
DynGEM 0.7701 0.6161 - 0.6246
dynnode2vec 0.9635 0.9977 0.8981 0.6698

C DeepWalk 0.888 0.9749 0.8167 0.7456
node2vec 0.8935 0.9762 0.8236 0.7478
DynGEM 0.8005 0.5882 - 0.6387
dynnode2vec 0.9512 0.9975 0.9012 0.8886

D DeepWalk 0.6197 0.5571 0.5271 0.5182
node2vec 0.6258 0.5577 0.5083 0.5149
DynGEM 0.7949 0.555 - 0.6175
dynnode2vec 0.7718 0.6269 0.6147 0.6824

node2vec settings (p,q) (0.5,1) (0.5,1) (0.5,1) (1,2)

C. Link Prediction

Link prediction is an important application of graph
embeddings. In this task, future edges are predicted given
the previous edges. We consider the link prediction as a
classification task similar to [3]. For example, if we have a
sequence of graphs G0, G1, ..., Gt, we predict edges at time
t using edges from time 0 to t− 1. For instance, edges of G1

are predicted using the positive and negative edges of G0.
For G2, we use edges from G0 and G1. We do the same for
all the graphs at future time points.
Edge embedding. The embedding of an edge (u, v) can be
computed using embedding vectors of nodes u and v. In the
literature, different operators are applied on node embedding
vectors to compute edge embeddings including Weighted-L1,
Weighted-L2, Hadamard and average as defined in [3].
We report the link prediction results for all the four afore-
mentioned operators in Table I. The results are the average
AUC (Area Under Curve) with a grid search over p, q ∈
{0.5, 1, 2, 4}. We evaluated all methods on four datasets: AS,
Hep-th, Enron and St-Ov. The results show that dynnode2vec
outperforms baselines in almost all datasets. Among differ-
ent operators, dynnode2vec has the best performance with
Hadamard operator and the worst performance with average
operator.

D. Node Classification

Another application of node embeddings is in node classi-
fication. In supervised classification, nodes have class labels
in the dataset. We used logistic regression as the classification
method. Similar to link prediction, node embeddings of
previous time points are used in predicting class labels of
future time points. We compared the results of our method
with baselines on dblp dataset. The Micro-F1 and Macro-F1

results are reported in Table II. Our result are better than
other baselines in terms of Micro-F1 scores.

TABLE II
NODE CLASSIFICATION RESULTS

Metric Algorithm Dataset
dblp

Micro-F1
DeepWalk 0.5337
node2vec 0.5272
dynnode2vec 0.5415

Macro-F1
DeepWalk 0.4141
node2vec 0.3847
dynnode2vec 0.4056

node2vec settings (p,q) (1,2)

Fig. 1. Anomaly detection results

E. Anomaly Detection

Anomalies are any deviations from normal behavior. There
are different categories of anomaly detection methods in
dynamic settings including detecting anomalous nodes, edges
and change detection. Inspired by DynGEM, we used dynn-
ode2vec to detect changes in the dynamic network. We com-
puted the norm of the differences between embedding vectors
of common nodes at consecutive time points. High values
for the norm signals a significant change in the structure
of the graph. We applied dynnode2vec and node2vec on a
subset of Darpa dataset[19]. Figure 1 shows that there are
three major peaks in the dynamic node2vec curve. These
spikes correspond to time points that three important attacks
occurred in the dataset.

F. Effects of evolving walk generation

In this work, we only generate walks for the nodes in the
graph that have changed compared to previous time point.
This leads to a significant speedup in dynnod2vec running
time. In order to show the time efficiency of dynnod2vec, we
compared the running time of dynnod2vec with two methods:
node2vec and dynnod2vec version denoted by dynnod2vec-
all that samples walks for all the nodes. The comparison
results on three datasets: AS (the first fifty time steps), Hep-th
and Enron (the first forty time steps) are shown in Table III.
dynnod2vec was faster than other methods. All experiments
are performed on a windows X-64 with 7 cores, 64 GB RAM
and a clock speed of 3.6 GHz.
Additionally in terms of accuracy, we compared the AUC



TABLE III
RUNNING TIME COMPARISON

AS Hep-th
node2vec 23.22 min 14.42 min
dynnode2vec-all 23.10 min 13.52 min
dynnode2vec 4.49 min 1.25 min

TABLE IV
COMPARISON OF DYNNODE2VEC VS DYNNODE2VEC-ALL

OP Algorithm Dataset
AS Hep-th Enron St-Ov

a dynnode2vec-all 0.9799 0.9973 0.9114 0.6674
dynnode2vec 0.9625 0.996 0.8922 0.66

b dynnode2vec-all 0.9803 0.9976 0.9042 0.6734
dynnode2vec 0.9635 0.9977 0.8981 0.6698

c dynnode2vec-all 0.9099 0.9966 0.9022 0.8825
dynnode2vec 0.9512 0.9975 0.9012 0.8886

d dynnode2vec-all 0.6488 0.5982 0.6364 0.6798
dynnode2vec 0.7718 0.6269 0.6147 0.6824

node2vec setting (p,q) (0.5,1) (0.5,1) (0.5,1) (1,2)

scores of dynnod2vec with dynnod2vec-all. Table IV indi-
cates the AUC scores in link prediction task. In most cases
the AUC for these two methods are not significantly different.

IV. CONCLUSION

In this paper, we propose dynnode2vec, a scalable dy-
namic network embedding that learns representation vectors
for dynamic networks. dynnode2vec employs the dynamic
Skip-gram model and evolving random walks to discover
information changes in temporal networks. In the dynamic
Skip-gram model, the previous learned embedding vectors
are transferred to the next timestamp as initial weights. This
results in smooth embedding vectors for graphs over times.
Furthermore, the evolving random walks are generated to
efficiently reflect the changes in dynamic graph structure.
By only considering subset of random walks, dynnode2vec
can obtain embedding vectors in notably less time without
sacrificing accuracy. Our experiments demonstrate the supe-
riority of dynnode2vec as compared with the state-of-the-
art embedding methods in various tasks. Future work will
investigate using other dynamic Skip-gram models [15], [13]
for dynamic graph embedding.
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