
A multi-dimensional extension of the Lightweight
Temporal Compression method

Bo Li1, Omid Sarbishei2, Hosein Nourani1, Tristan Glatard1
1 Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada

2 Research and Development Department, Motsai Research, Saint Bruno, QC, Canada

Abstract—Lightweight Temporal Compression (LTC) is among
the lossy stream compression methods that provide the highest
compression rate for the lowest CPU and memory consumption.
As such, it is well suited to compress data streams in energy-
constrained systems such as connected objects. The current
formulation of LTC, however, is one-dimensional while data
acquired in connected objects is often multi-dimensional: for in-
stance, accelerometers and gyroscopes usually measure variables
along 3 directions. In this paper, we investigate the extension
of LTC to higher dimensions. First, we provide a formulation
of the algorithm in an arbitrary vectorial space of dimension n.
Then, we implement the algorithm for the infinity and Euclidean
norms, in spaces of dimension 2D+t and 3D+t. We evaluate our
implementation on 3D acceleration streams of human activities.
Results show that the 3D implementation of LTC can save up
to 20% in energy consumption for low-paced activities, with a
memory usage of about 100 B.

I. INTRODUCTION

With the recent technological advances in Internet of Things
(IoT) applications, more than one billion connected objects
are expected to be launched worldwide by 20251. Power con-
sumption is among the biggest challenges targeting connected
objects, particularly in the industrial domains, where several
sensing systems are commonly launched in the field to run for
days or even weeks without being recharged. Typically, such
devices use sensors to capture properties such as temperature
or motion, and stream them to a host system over a radio
transmission protocol such as Bluetooth Low-Energy (BLE).
System designers aim to reduce the rate of data transmission
as much as possible, as radio transmission is a power-hungry
operation.

Compression is a key technique to reduce the rate of
radio transmission. While in several applications lossless com-
pression methods are more desirable than lossy compression
techniques, in the context of IoT and sensor data streams,
the measured sensor data intrinsically involves noise and
measurement errors, which can be treated as a configurable
tolerance for a lossy compression algorithm.

Resource-intensive lossy compression algorithms such as
the ones based on polynomial interpolation, discrete cosine
and Fourier transforms, or auto-regression methods [1] are not
well-suited for connected objects, due to the limited memory

1https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide

available on these systems (typically a few KB), and the energy
consumption associated with CPU usage. Instead, compression
algorithms need to find a trade-off between reducing network
communications and increasing memory and CPU usage.
As discussed in [2], linear compression methods provide a
very good compromise between these two factors, leading to
substantial energy reduction.

The Lightweight Temporal Compression method (LTC [3])
has been designed specifically for energy-constrained systems,
initially sensor networks. It approximates data points by a
piece-wise linear function that guarantees an upper bound
on the reconstruction error, and a reduced memory footprint
in O(1). However, LTC has only been described for 1D
streams, while streams acquired by connected objects, such as
acceleration or gyroscopic data, are often multi-dimensional.

In this paper, we extend LTC to dimension n. To do so, we
propose an algebraic formulation of the algorithm that also
yields a norm-independent expression of it. We implement our
extension on Motsai’s Neblina module2, and we test it on 3D
acceleration streams acquired during human exercises, namely
biceps curling, walking and running. Our implementation of
LTC is available as free software.

We assume that the stream consists of a sequence of data
points received at uneven intervals. The compression algorithm
transmits fewer points than it receives. The transmitted points
might be included in the stream, or computed from stream
points. The compression ratio is the ratio between the number
of received points and the number of transmitted points.
An application reconstructs the stream from the transmitted
points: the reconstruction error is the maximum absolute
difference between a point of the reconstructed stream, and
the corresponding point in the original stream.

Section II provides some background on the LTC algorithm,
and formalizes the description initially proposed in [3]. Sec-
tion III presents our norm-independent extension to dimension
n, and Section IV describes our implementation. Section V
reports on experiments to validate our implementation, and
evaluates the impact of n-dimensional LTC on energy con-
sumption of connected objects.

2https://motsai.com/products/neblina

ar
X

iv
:1

81
1.

09
93

0v
1

 [
cs

.I
T

]
 2

5
N

ov
 2

01
8

 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
 https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
 https://motsai.com/products/neblina

II. LIGHTWEIGHT TEMPORAL COMPRESSION

LTC approximates the data stream by a piece-wise linear
function of time, with an error bounded by parameter ε.

A. Notations

The algorithm receives a stream of data points xi at times
ti (i ∈ N), and it transmits a stream of data points ξi at times
τi (i ∈ N). To simplify the notations, we assume that:

∀k ∈ N, ∃!i ∈ N τk = ti

That is, transmission times coincide with reception times. We
define the shifted received points as follows:

∀k ∈ N ,∀j ∈ N∗, (ukj , y
k
j) = (ti+j , xi+j),

where i is such that ti = τk and:

∀k ∈ N, (uk0 , y
k
0) = (τk, ξk).

This definition is such that ykj is the jth data point received
after the kth transmission and ukj is the corresponding times-
tamp. Figure 1 illustrates the notations and algorithm.

The LTC algorithm maintains two lines, the high line, and
the low line defined by (1) the latest transmitted point and
(2) the high point (high line) and the low point (low line).
When a point (ti, xi) is received, the high line is updated as
follows: if xi + ε is below the high line then the high line is
updated to the line defined by the last transmitted point and
(ti, xi + ε); otherwise, the high line is not updated. Likewise,
the low line is updated from xi−ε. Therefore, any line located
between the high line and the low line approximates the data
points received since the last transmitted point with an error
bounded by ε.

Using these notations, the original LTC algorithm can be
written as in Algorithm 1. For readability, we assume that
access to data points is blocking, i.e., the program will wait
until the points are available. We also assume that the content
of variable tr is transmitted after each assignment of this

t0 = 0 t1 t2 t3 = 1 t4 t5 = 2 t6

0 = x0

x1

x2

1

x3
x4

2
x5

x6

(u0
0, y0

0)

(u0
1, y0

1)

(u0
2, y0

2)

(u0
3, y0

3) (u1
1, y1

1)
(u1

0, y1
0)

(u1
2, y1

2)

(u2
1, y2

1)

(u2
0, y2

0)

Fig. 1: Illustration of the LTC algorithm. Blue dots are received
points, red dots are transmitted points. Dashed lines represent
the high and low lines when a point is transmitted.

Algorithm 1 Original LTC algorithm, adapted from [3].
1: Input
2: (ukj , y

k
j) Received data stream

3: ε Error bound
4: Output
5: tr Transmitted points
6: tr = (u00, y

0
0) . Last transmitted point

7: k = 0 ; j = 1
8: (lp, hp) = (y01 − ε, y01 + ε) . Low and high points
9: while True do . Process received points as they come

10: j += 1
11: new lp = max(ykj − ε, line(ukj , tr, (ukj−1, lp)))
12: new hp = min(ykj + ε, line(ukj , tr, (ukj−1, hp)))
13: if new lp ≤ new hp then . Keep compressing
14: (lp, hp) = (new lp, new hp)
15: else
16: tr = (ukj−1, (lp+ hp)/2) . Transmit point
17: k += 1
18: j = 1
19: (lp, hp) = (ykj − ε, ykj + ε)
20: end if
21: end while

variable. Function line, omitted for brevity, returns the
ordinate at abscissa x (1st argument) of the line defined by
the points in its 2nd and 3rd arguments.

III. EXTENSION TO DIMENSION n

In this section we provide a norm-independent formulation
of LTC in dimension n. By n we refer to the dimension of
the data points xi. To handle time, LTC actually operates in
dimension n+ 1.

A. Preliminary comments

We note that the formulation of LTC in [3] relies on
the intersection of convex cones in dimension n + 1. For
n = 1, it corresponds to the intersection of triangles, which
can efficiently be computed by maintaining boundary lines,
as detailed previously. In higher dimension, however, cone
intersections are not so straightforward, due to the fact that
the intersection between cones may not be a cone.

To address this issue, we formulate LTC as an intersection
test between balls of dimension n, that is, segments for n = 1,
disks for n = 2, etc. Balls are defined from the norm used in
the vector space of data points. For n = 1, the choice of the
norm does not really matter, as all p-norms and the infinity
norm are identical. In dimension n, however, norm selection
will be critical.

B. Algebraic formulation of LTC

1) Definitions: Let (uk0 , y
k
0) ∈ Rn+1 be the latest trans-

mitted point. For convenience, all the subsequent points will
be expressed in the orthogonal space with origin (τk, ξk). We
denote by (vj , zj)j∈J0,mK such points:

∀j ≤ m, (vj , zj) = (ukj − τk, ykj − ξk)

Let Bj be the ball of Rn of centre v1
vj
zj and radius v1

vj
ε:

Bj =

{
z ∈ Rn,

∥∥∥∥z − v1
vj
zj

∥∥∥∥ ≤ v1
vj
ε

}
Note that v1 is defined as soon as one point is received after
the last transmission.

2) LTC property: We define the LTC property as follows:

∃z ∈ Rn, ∀j ∈ J1,mK,
∥∥∥∥vjv1 z − zj

∥∥∥∥ ≤ ε.
The original LTC algorithm ensures that the LTC property is
verified between each transmission. Indeed, all the data points
z such that (v1, z) is between the high line and the low line
verify the property. Line 13 in Algorithm 1 guarantees that
such a point exists.

The LTC property can be re-written as follows:

∃z ∈ Rn, ∀j ∈ J1,mK,
∥∥∥∥z − v1

vj
zj

∥∥∥∥ ≤ v1
vj
ε

that is:
m⋂
j=1

Bj 6= Ø (1)

Note that (Bj)j∈J1,mK is a sequence of balls of strictly de-
creasing radius, since vj > v1.

C. Algorithm

The LTC algorithm generalized to dimension n tests that the
LTC property in Equation 1 is verified after each reception of
a data point. It is written in Algorithm 2.

Algorithm 2 Generalized LTC.
1: Input
2: (ukj , y

k
j) Received data stream

3: ε Error bound
4: Output
5: tr Transmitted points
6: tr = (τ, ξ) = (u00, y

0
0) . Last transmitted point

7: k = 0 ; j = 0
8: while True do
9: j += 1

10: (vj , zj) = (ukj − τ, ykj − ξ)
11: if

⋂j
l=1 Bl = Ø then

12: Pick z in
⋂j−1
l=1 Bj . Transmit point

13: tr = (τ , ξ) = (ukj−1, z)
14: k += 1
15: j = 1
16: end if
17: end while

D. Ball intersections

Although Algorithm 2 looks simple, one should not over-
look the fact that there is no good general algorithm to test
whether a set of balls intersect. The best general algorithm we
could find so far relies on Helly’s theorem which is formulated
as follows [4]:

Theorem. Let {Xi}i∈J1,mK be a collection of convex subsets
of Rn. If the intersection of every n+ 1 subsets is non-empty,
then the whole collection has an non-empty intersection.

This theorem leads to an algorithm of complexity
(
m
n+1

)
which

is not usable in resource-constrained environments.
The only feasible algorithm that we found is norm-specific.

It maintains a representation of the intersection
⋂m
j=1 Bj which

is updated at every iteration. The intersection tests can then be
done in constant time. However, updating the representation
of the intersection may be costly depending on the norm used.
For the infinity norm, the representation is a rectangular cuboid
which is straightforward to update by intersection with an n-
ball. For the Euclidean norm, the representation is a volume
with no particular property, which is more costly to maintain.

E. Effect of the norm

As mentioned before, norm selection in Rn has a critical
impact on the compression error and ratio. To appreciate this
effect, let us compare the infinity norm and the Euclidean norm
in dimension 2. By comparing the unit disk to a square of side
2, we obtain that the compression ratio of a random stream
would be 4

π times larger with the infinity norm than with the
Euclidean norm. In 3D, this ratio would be 6

π . Conversely,
a compression error bounded by ε with the infinity norm
corresponds to a compression error of ε√

n
with the Euclidean

norm. Unsurprisingly, the infinity norm is more tolerant than
the Euclidean norm.

It should also be noted that using the infinity norm in Rn
boils down to the use of the 1D LTC algorithm independently
in each dimension, since a data point will be transmitted as
soon as the linear approximation doesn’t hold in any of the
dimensions. For the Euclidean norm, however, the multidimen-
sional and multiple unidimensional versions are different: the
multiple unidimensional version behaves as the infinity norm,
but the multidimensional version is more stringent, leading to
a reduced compression rate and error.

To choose between the multidimensional implementation
and multiple unidimensional ones, we recommend to check
whether the desired error bound is expressed independently for
every sensor, or as an aggregate error between them. The mul-
tidimensional version is more appropriate for multidimensional
sensors, for instance 3D accelerometers or 3D gyroscopes,
and the multiple unidimensional version is more suitable for
multiple independent sensors, for instance a temperature and
a pressure sensor.

IV. IMPLEMENTATION

To implement LTC in nD with the infinity norm, we main-
tain a cuboid representation of ∩jl=1Bl across the iterations of

the while loop in Algorithm 2. The implementation works
with constant memory and requires limited CPU time.

With the Euclidean norm, the intersection test is more
complex. We keep in memory a growing set S of balls and the
bounding box B of their intersection. Then, when a new point
arrives, we consider the associated ball Bj and our intersection
test works as in Algorithm 3. box is a function that re-
turns the bounding box of an n-ball. find_bisection(S,
B) searches for a point in all the elements in S, using
plane sweep and bisection initialized by the bounds of B.
Our code is available at https://github.com/big-data-lab-team/
stream-summarization under MIT license.

Algorithm 3 Intersection test for Euclidean n-balls.
1: Input
2: S Set of intersecting balls
3: B Bounding box of the intersection of balls in S
4: Bj New ball to check
5: Output
6: S Updated set of intersecting balls
7: B Updated bounding box
8: T True if all the balls in S and Bj intersect
9: if Bj ∩B = Ø then . Ball is outside bounding box

10: return (S, B, False)
11: end if
12: if ∃ Bi ∈ S s.t. Bj ∩ Bi = Ø then
13: return (S, False) . Some balls don’t intersect
14: end if
15: if ∃ Bi ∈ S s.t. Bj ⊂ Bi then . Remove inclusions
16: Remove Bi from B. Add Bj to B.
17: end if
18: B = box(Bj)

⋂
B

19: S = S
⋃
{Bj}

20: x = find bisection(S, B) . This can take some time
21: if x == Null then
22: return (S, B, False)
23: else
24: return (S, B, True)
25: end if

V. EXPERIMENTS AND RESULTS

We conducted two experiments using Motsai’s Neblina
module, a system with a Nordic Semiconductor nRF52832
micro-controller, 64 KB of RAM, and Bluetooth Low Energy
connectivity. Neblina has a 3D accelerometer, a 3D gyroscope,
a 3D magnetometer, and environmental sensors for humidity,
temperature and pressure. The platform is equipped with
sensor fusion algorithms for 3D orientation tracking and a
machine learning engine for complex motion analysis and
motion pattern recognition [5]. Neblina has a battery of
100mAh; at 200 Hz, its average consumption is 2.52 mA when
using accelerometer and gyroscope sensors but without radio
transmission, and 3.47 mA with radio transmission, leading to
an autonomy of 39.7 h without transmission and 28.8 h with
transmission.

A. Experiment 1: validation

Fig. 2: Setup with
Neblina.

We validated the behaviour of our
LTC extension on a PC using data
acquired with Neblina. We collected
two 3D accelerometer time-series, a
short one and a longer one, acquired
on two different subjects performing
biceps curl, with a 50 Hz sampling
rate (see Figure 3). In both cases, the
subject was wearing Neblina on their
wrist, as in Figure 2. It should be
noted that the longest time-series also
has a higher amplitude, perhaps due to
differences between subjects.

We compressed the time-series with various values of ε,
using our 2D (x and y) and 3D (x, y and z) implementations
of LTC. On Neblina, the raw uncalibrated accelerometer data
corresponds to errors around 20 mg (1 g is 9.8 m/s2). We used
a laptop computer with 16 GB of RAM, an Intel i5-3210M
CPU @ 2.50GHz × 4, and Linux Fedora 27. We measured
memory consumption using Valgrind’s massif tool [6], and
processing time using gettimeofday() from the GNU C
Library.

Results are reported in Table I. As expected, the compres-
sion ratio increases with ε, and the maximum measured error
remains lower than ε in all cases. The maximum is reached
most of the time on these time-series.

a) Infinity vs Euclidean norms: The average ratio be-
tween the compression ratios obtained with the infinity and
Euclidean norm is 1.03 for 2D data, and 1.06 for 3D data.
These ratios are lower than the theoretical values of 4

π in 2D
and 6

π in 3D, which are obtained for random-uniform signals.
Unsurprisingly, the infinity norm surpasses the Euclidean norm
in terms of resource consumption. Memory-wise, the infinity
norm requires a constant amount of 80 B, used to store the
intersection of n-balls. The Euclidean norm, however, uses
up to 4.7 KB of memory for the Long time-series in 3D
with ε=48.8 mg. More importantly, the amount of required
memory increases for longer time-series, and it also increases
with larger values of ε. Similar observations are made for
the processing time, with values ranging from 0.4 ms for the
simplest time-series and smallest ε, to 41.3 ms for the most
complex time-series and largest ε.

b) 2D vs 3D: For a given ε, the compression ratios
are always higher in 2D than in 3D. It makes sense since
the probability for the signal to deviate from a straight line
approximation is higher in 3D than it is in 2D. Besides,
resource consumption is higher in 3D than in 2D: for the
infinity norm, 3D consumes 1.4 times more memory than 2D
(1.8 times on average for Euclidean norm), and processing
time is 1.35 longer (1.34 on average for Euclidean norm).

B. Experiment 2: impact on energy consumption

We acquired two 3D accelerometer time-series at 200 Hz
for two activities: walking and running (see Figure 4). In both
cases, the subject was wearing Neblina on their wrist as in

https://github.com/big-data-lab-team/stream-summarization
https://github.com/big-data-lab-team/stream-summarization

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ax

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ay

-6

-4

-2

 0

 2

 4

 6

 0 2 4 6 8 10 12 14

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

az

(a) Short biceps curla
a Average of az data is -7.81mg. It was shifted to 0 so that the graphs can all use the same y scale.

-6

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700 800 900

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ax

-6

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700 800 900

A
cc

e
le

ra
ti

o
n
 (

m
g

)
Time (s)

ay

-6

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700 800 900

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

az

(b) Long biceps curl

Fig. 3: Time-series used in Experiment 1

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ax

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ay

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

az

(a) Walking

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ax

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

ay

-6

-4

-2

 0

 2

 4

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

e
le

ra
ti

o
n
 (

m
g

)

Time (s)

az

(b) Running

Fig. 4: Time series used in Experiment 2

Experiment 1. We collected 1,000 data points for each activity,
corresponding to 5 seconds of activity.

We measured energy consumption associated with the trans-
mission of these time-series by “replaying” the time-series
after loading them as a byte array in Neblina. We measured the
current every 500 ms. We also measured the max and average
latency resulting from compression.

Results are reported in Table II. For a given ε and norm,
the compression ratio is larger for walking than for running.
The ratio of saved energy is relative to the reference current
of 3.47 mA measured when Neblina transmits data without
compression. In all cases, activating compression saves en-
ergy. The reduction in energy consumption behaves as the
compression ratio: it increases with ε, it is higher for the
infinity norm than for the Euclidean, and it is higher for
the walking activity than for running. For a realistic error of

ε=9.8 mg, the ratio of saved energy with the infinity norm is
close to 20% for the walking activity, which is substantial.
Latency is higher for walking than for running, and it is also
higher for the Euclidean norm than for the infinity norm. In
all cases, the latency remains lower than the 5-ms tolerable
latency at 200 Hz, which demonstrates the feasibility of 3D
LTC compression.

VI. CONCLUSION

We presented an extension of the Lightweight Temporal
Compression method to dimension n that can be instantiated
for any distance function. Our extension formulates LTC as
an intersection detection problem between n-balls. We imple-
mented our extension on Neblina for the infinity and Euclidean
norms, and we measured the energy reduction induced by
compression for acceleration streams acquired during human
activities.

Infinity Euclidean
ε (mg) 48.8 34.5 48.8 34.5
Max error (mg) 48.8 34.4 48.8 34.5
Compression ratio (%) 79.77 72.59 77.49 70.96
Peak memory (B) 80 80 688 688
Processing time (ms) 0.101 0.094 0.456 0.406

(a) Short biceps curl (2D)
Infinity Euclidean

ε (mg) 48.8 34.5 48.8 34.5
Max error (mg) 48.8 34.5 48.8 34.5
Compression ratio (%) 77.46 70.98 75.77 68.81
Peak memory (B) 80 80 2512 2608
Processing time (ms) 6.06 5.84 33.84 31.07

(b) Long biceps curl (2D)
Infinity Euclidean

ε (mg) 48.8 28.2 48.8 28.2
Max error (mg) 48.8 28.2 48.8 28.2
Compression ratio (%) 78.14 66.39 74.39 63.13
Peak memory (B) 112 112 1744 784
Processing time (ms) 0.147 0.134 0.731 0.514

(c) Short biceps curl (3D)
Infinity Euclidean

ε (mg) 48.8 28.2 48.8 28.2
Max error (mg) 48.8 28.2 48.8 28.2
Compression ratio (%) 71.23 58.11 67.35 53.24
Peak memory (B) 112 112 4752 3856
Processing time (ms) 7.87 7.22 41.29 39.04

(d) Long biceps curl (3D)

TABLE I: Results from Experiment 1

Infinity Euclidean
ε (mg) 48.8 9.8 4.9 48.8 9.8 4.9
Max error (mg) 48.8 9.8 4.9 48.8 9.8 4.9
Compr. ratio (%) 88.9 66.4 45.5 87.6 63.3 37.2
Average (mA) 2.64 2.79 3.02 3.10 3.02 3.13
Saved energy (%) 23.9 19.7 13.0 10.7 13.0 9.7
Max latency (µs) 60 – – 1530 – –
Average latency (µs) 31 – – 145 – –

(a) Walking
Infinity Euclidean

ε (mg) 48.8 9.8 4.9 48.8 9.8 4.9
Max error (mg) 48.8 9.8 4.9 48.8 9.8 4.9
Compr. ratio (%) 68.6 25.5 9.5 64.4 19.8 5.7
Average (mA) 2.88 3.22 3.38 2.95 3.32 3.39
Saved energy (%) 17.0 7.2 2.5 14.9 4.3 2.2
Max latency (µs) 60 – – 840 – –
Average latency (µs) 30 – – 64 – –

(b) Running

TABLE II: Results from Experiment 2

We conclude from our experiments that the proposed ex-
tension to LTC is well suited to reduce energy consumption
in connected objects. The implementation behaves better with
the infinity norm than with the Euclidean one, due to the time

complexity of the current algorithm to detect the intersection
between n-balls for the Euclidean norm.

Our future work focuses on this latter issue. We plan to
start from Helly’s theorem, which only provides an algorithm
of complexity

(
m
n+1

)
to compress m points in dimension n. We

note that Helly’s theorem holds for arbitrary convex subsets of
Rn, while we are considering a sequence of balls of decreasing
radius. Based on this observation, a stronger result might exist
that would lead to a more efficient implementation of LTC
with the Euclidean norm. Our current idea is to search for a
point expressed as a function of the ball centres that would
necessarily belong to the ball intersection when it is not empty;
such a point, if it exists, necessarily converges to the centre
of the last ball in the sequence as n increases, as the radius of
the last ball decreases to zero. The resulting algorithm would
then compute this point and check its inclusion in every ball,
which is done in O(m) complexity.

The choice of an appropriate norm should not be underes-
timated. Some situations might be better described with the
Euclidean norm than with the infinity norm, such as the ones
involving position or movement measures. Using the infinity
norm instead of the Euclidean would lead to important error
differences, proportional to

√
n in dimension n. Investigating

other norms, in particular the 1-norm, would be relevant too.

ACKNOWLEDGEMENT

This work was funded by the Natural Sciences and Engi-
neering Research Council of Canada.

REFERENCES

[1] J. Lu, F. Valois, M. Dohler, and M.-Y. Wu, “Optimized data aggregation
in WSNs using adaptive ARMA,” in IEEE Conf. on Sensor Technologies
and Applications, 2010, pp. 115–120.

[2] D. Zordan, B. Martinez, I. Vilajosana, and M. Rossi, “On the performance
of lossy compression schemes for energy constrained sensor networking,”
ACM Transactions on Sensor Networks (TOSN), vol. 11, no. 1, p. 15,
2014.

[3] T. Schoellhammer, E. Osterweil, B. Greenstein, M. Wimbrow, and D. Es-
trin, “Lightweight temporal compression of microclimate datasets,” in
IEEE International Conference on Local Computer Networks, 2004, pp.
516–524.

[4] E. Helly, “Über mengen konvexer körper mit gemeinschaftlichen punkte.”
Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 32, pp. 175–
176, 1923.

[5] O. Sarbishei, “On the accuracy improvement of low-power orientation
filters using IMU and MARG sensor arrays,” in IEEE International
Symposium on Circuits and Systems, 2016, pp. 1542–1545.

[6] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload
characterization tools with valgrind,” in IEEE Symposium on Workload

Characterization, 2006, pp. 2–2.

