Loading [MathJax]/extensions/MathMenu.js
Spatio-Temporal Multiple Geo-Location Identification on Twitter | IEEE Conference Publication | IEEE Xplore

Spatio-Temporal Multiple Geo-Location Identification on Twitter


Abstract:

Twitter Geo-tags that indicate the exact location of messages have many applications from localized opinion mining during elections to efficient traffic management in cri...Show More

Abstract:

Twitter Geo-tags that indicate the exact location of messages have many applications from localized opinion mining during elections to efficient traffic management in critical situations. However, less than 6% of Tweets are Geo-tagged, which limits the implementation of those applications. There are two groups of solutions: content and network-based. The first group uses location indicative factors like URLs and topics, extracted from the content of tweets, to infer Geo-location for non geo-active users, whereas the second group benefits from friendship ties in the underlying social network graph. Friendship ties are better predictors compared to content information because they are less noisy and often follow the natural human spatial movement patterns. However, their prediction's accuracy is still limited because they ignore the temporal aspects of human behavior and always assume a single location per user. This research aims to extend the current network-based approaches by taking users' temporal dimension into account. We assume multiple locations per user during different time-slots and hypothesize that location predictability varies depending on the time and the properties of the social membership group. Thus, we propose a hierarchical solution to apply temporal categorizations on top of social network partitioning for multiple location prediction for users in Online Social Networks (OSNs) like Twitter. Given a large-scale Twitter dataset, we show that users' location predictability exhibits different behavior in different time-slots and different social groups. We find that there are specific conditions where users are more predictable in terms of Geo-location. Our solution outperforms the state-of-the-art by improving the prediction accuracy by 16.6% in terms of Median Error Distance (MED) over the same recall.
Date of Conference: 10-13 December 2018
Date Added to IEEE Xplore: 24 January 2019
ISBN Information:
Conference Location: Seattle, WA, USA

Contact IEEE to Subscribe

References

References is not available for this document.