
Achieving Horizontal Scalability in Density-based Clustering for URLs

Azadeh Faroughi⋄, Reza Javidan⋄, Marco Mellia⋆, Andrea Morichetta⋆, Francesca Soro⋆, Martino Trevisan⋆

⋆Politecnico di Torino, ⋄Shiraz University of Technology

a.faroughi@sutech.ac.ir, javidan@sutech.ac.ir, {first.last}@polito.it

Abstract— Clustering has become an important means to
analyze large datasets when labeled data is not available. The
volume of data and its variety however challenge classical
clustering algorithms, with density-based ones suffering from
severe scalability issues.

In this paper, we propose a way to perform density-based
clustering efficiently by exploiting the horizontal scalability
offered by big data solution such as Apache Spark. We are
motivated by recent techniques for Internet monitoring that
rely on clustering to group similar events and spot anomalies.
We focus specifically on textual data, such as URLs or server
logs. Computing the distance between points, here represented
as strings, becomes a major issue. Indeed, when datasets
become large, most of density-based clustering algorithms are
bottlenecked by the computation of all the distances between
any pairs of elements. To overcome this, we propose to decouple
the distance computation, easily amenable to parallelization,
from the algorithm execution. By using this approach, we can
easily exploit the benefits of distributed platforms like Apache
Spark or MapReduce. A faster execution of the algorithms is
thus guaranteed, together with more flexibility in the choice of
the clustering method.

We make both the code and the dataset publicly available,
to both guarantee the repeatability of the experiments, and
possibly offering a new benchmark dataset.

I. INTRODUCTION

The last decade witnessed a humongous increase in the

rate of data which is produced by different sources, with

computer networks as one of the most prominent. The

amount of traffic the Internet carries is indeed expected to

keep increasing in the next decade. According to the Cisco

Visual Networking Index [21] the annual global IP traffic

will reach 3.3 ZB per year by 2021 growing from the 1.2 ZB

per year registered in 2016. Investigating and troubleshooting

what happens in the network is a challenge for data analysts,

network administrators, and network forensics practitioners.

In this context, several classical network measurement

approaches are assisted by big data and machine learn-

ing techniques that allow the processing and analysis of

massive quantities of data [4], [14], [26]. In particular,

unsupervised learning techniques such as clustering proved

to be instrumental for understanding network measurements

when labeled data is not available [3], [11], [20]. Clustering

algorithms aim at partitioning the input data into sets, called

indeed clusters, built in such a way that objects in a cluster

are similar among each other and dissimilar to objects in

other clusters. Among all clustering techniques, the category

The research leading to these results has been funded by the Vienna
Science and Technology Fund (WWTF) through project ICT15-129, ”Big-
DAMA” and by the SmartData@PoliTO center for Big Data technologies.

of density-based algorithms is very popular, allowing clusters

of arbitrary shape, and automatically determines their num-

ber. These methods identify each cluster as a zone with high

density of data points, separated from the others by regions

of lower densities.

The rise of the web and the convergence towards HTTP

pose new challenges to Internet monitoring. Among all data

generated by networks (packets, headers, logs), nowadays

web URLs play a key role and contain valuable information

about services accessed by users, retrieved resources, and

type of fetched content. Density-based clustering on URLs

gives the analyst important information about users’ behavior

and presence of anomalies in the traffic [3], [11], [5], [19],

[20], [23].

However, the use of density-based clustering algorithms

for network monitoring is challenged by severe scalability

issues. For instance DBSCAN, the most popular algorithm,

has been shown to have polynomial complexity [10]. The

main issue of density-based algorithms is the use of expen-

sive ǫ-neighborhood queries that require computing distances

among all pairs of records. Some proposals try to overcome

such limitations by partitioning the feature space, but this

approach is only applicable to points lying on an Euclidean

space [7], [17]. They fail when dealing with complex or

textual data, like strings, URLs or system logs, for which

particular distance metrics are required. Edit distance is an

example of a metric to compare strings, where Levenshtein

distance [15] and other variants are among the most popular.

Despite the good results that these metrics provide, they

require large computation time, which typically scales with

the string length, and makes their use in large datasets

particularly costly.

To further illustrate the role of distance computation, Fig-

ure 1 reports the time spent by the standard implementation

of DBSCAN in Scikit-Learn with respect to the growth of

the dataset size.1 Input data are URLs and the metric used

to express their dissimilarity is a symmetric Levenshtein

distance. The execution time (left y-axis in log scale, black

curve) exhibits a quadratic growth with respect to the dataset

size (x-axis also in log scale). As the dataset grows, most of

the time is spent for the pairwise string distance computation

(right y-axis, red curve).

In this paper, we show how to perform density-based

clustering of URLs exploiting horizontal scalability offered

1Scikit-Learn is a Python library for machine learning: http://

scikit-learn.org/stable/documentation.html

1

103 104 105

Dataset Size

101

102

103

104
T
im

e
(s
)

Execution time

% Spent in distance
computation

70

75

80

85

90

95

100

%
ti
m
e

Fig. 1: DBSCAN execution time and percentage of time

spent in calculating distances among strings.

by big data approaches. We propose to decouple distance

computation from the algorithm execution, allowing inex-

pensive experiments with different clustering algorithms and

faster parameter tuning. Moreover, some clustering quality

measures, like Silhouette [25], are based on the concept of

cohesion and separation, thus requiring distance computa-

tions, and, in turn, gaining from this process. We quantify

the benefits of this approach implementing it in Apache

Spark, the state-of-the-art big data platform. Our approach

represents an alternative to the design of totally distributed

algorithms, a task that could be complex and not always

applicable. We make both the code and the data publicly

available, in an effort to allow reproducibility and also to

create a benchmarking dataset for future use.

The remainder of the paper is organized as follows. In

Sec. II we summarize related work, while in Sec. III we

describe the analyzed algorithms. In Sec. IV we introduce

the datasets, while Sec V and Sec. VI present a performance

analysis on distance computation and clustering, respectively.

Finally Sec. VII concludes the paper.

II. RELATED WORK

Several works extensively profited from clustering tech-

niques to extract knowledge from network data. Authors

of [5] focus on URLs (rather than page content) in the

process of clustering websites. Additional features derived

from content and structural properties are used only at a later,

more fine-grained, clustering stage. Authors of [23] gen-

erate signatures of HTTP-based malwares using clustering

to group malware families. They extract numerical features

from HTTP headers and URLs. Similarly authors of [24]

target malware identification extracting features from HTTP,

TCP and UDP traffic. Our previous works [19], [20] propose

a system that uses density-based clustering to group similar

URLs to ease data analysis and troubleshooting. All these

works face the problem of scaling the proposed algorithms,

being performance severely limited by the computation of

string distance.

Considering density-based algorithms, many works pro-

pose parallel versions, on both centralized and distributed

systems. Authors of [28] propose a parallel version of DB-

SCAN using the tremendous level of parallelism allowed by

GPUs. Authors of [22] design a parallel OPTICS implemen-

tation that leverages graph algorithm techniques and builds

on the OpenMP high performance computing platform. Other

works propose distributed versions of DBSCAN using Spark

and MapReduce platforms [7], [12], [17], [13]. They all

partition the feature space, and distribute the workload to the

executors to achieve parallelization. However, these works

are limited to Euclidean distance metrics, and, thus, cannot

handle arbitrary data. It is worth to mention that all these

works implement the exact clustering (e.g., DBSCAN or OP-

TICS) solutions, that have been proven to have polynomial

complexity with respect to input dataset size. Specifically,

DBSCAN complexity is O(n4/3) for any dataset with more

than two dimensions [10]. Quasilinear time complexity is

achieved by authors of NGDBSCAN [16] that propose an

approximated version of DBSCAN at the price of a lower

accuracy. Differently from previous works, we show that

calculating distances is the slowest part of density-based

clustering when textual data is considered. We claim that,

once the distance computation is distributed, it is possible

to run centralized versions of clustering algorithm with no

performance penalty with respect to fully parallel algorithms.

III. DISTANCE MATRIX COMPUTATION

In our approach, in a first step we compute the pairwise

distances among all couples of elements in the dataset in

a distributed fashion, and store them in matrix form; then

we run the centralized versions of the clustering algorithms,

providing as input the pre-computed distance matrix. We first

describe the matrix computation, and then test and compare

performance of our approach before evaluating the final

clustering.

Given a set S of n = |S| strings, our goal is to compute the

matrix D ∈ R
n×n of all pairwise distances between si, sj ∈

S. We use a modified version of the Levenshtein distance

proposed in our previous work [19]. This metric belongs

to Edit distance class, which, given two strings s1 and s2,

measures the variations required to let s2 be equal to s1.

Differently to the standard Levenshtein distance, results are

normalized by the length of the input strings. Note that the

time required to compute the Levenshtein distance typically

increases with the string length. Given two strings of size li
and lj , the Levenshtein edit distance scales with complexity

O(li · lj).
To compute distances on a distributed fashion, we build on

Apache Spark to distribute the workload on several executor

nodes 2. Some ingenuity is required here. We consider two

possible solutions.

The first simple solution splits the matrix S in k rows, and

then “maps” the computation of each row among executors.

With k = n, each executor would compute all distances from

one string si to any sj ∈ S. Rows are then collected to build

D, which is stored on disk. This solution however suffers

from the fact that executors that are assigned a long string

2The code is public and available at: https://github.com/

marty90/spark-distance-matrix

2

Algorithm 1 Distance Matrix computation on Apache Spark

Require: S = {strings} ⊲ Input dataset S of strings
Require: n ⊲ Dataset size
Ensure: matrix rdd ⊲ The n× n distances

1: ⊲ Create a RDD containing all possible pairs of elements.
2: index rdd = parallelize({0, 1, ..., n− 1})
3: pairs rdd = index rdd× index rdd ⊲ Cartesian product

4: ⊲ The COMPUTE DIST function calculates the distance
between pairs of elements given the strings dataset.

5: function COMPUTE DIST(i, j)
6: d = edit distance(stringsi, stringsj)
7: emit (i, (j, d))
8: end function
9: distances rdd = pairs rdd.map(COMPUTE DIST)

10: ⊲ Rebuild the distance matrix grouping and sorting pairs for a
specific row.

11: function REBUILD(tuples)
12: sorted tuples = tuples sorted by first element
13: sorted dist = [d for i, d in sorted tuples]
14: emit sorted dist
15: end function
16: matrix rdd = distances rdd.groupByKey()
17: matrix rdd.map(REBUILD)
18: emit matrix rdd.sort()

si would become easily the bottleneck, since the computation

of the distance is heavily influenced by the length of si.

The second smarter solution instead generates all possible

pairs (si, sj) and “maps” the computation of each pairwise

distance. Here, in the first stage, executors generate all the

element pairs in parallel, and the resulting list is automati-

cally split across nodes by using the shuffling mechanisms

of Spark. In the second stage, executors compute the dis-

tances for the pairs. In case an executor gets stuck in the

computation of one pair involving very long strings, other

executors can still consume other pairs. Finally, the matrix

is rebuilt and stored on disk. The resulting algorithm is

thus much less sensitive to the way data is split among

nodes. Algorithm 1 shows the pseudo-code of the second

solution. We leverage the specific Spark feature to compute

automatically the Cartesian product to generate all string

pairs (line 3). The function COMPUTE DIST (si, sj)
computes and emits the distance between si and sj (lines

4-8). Results are then first grouped by key, i.e., the string si,

to for a row of D (line 16). Later rows are re-ordered and

aggregated by the function REBUILD() (lines 11-15). The

real implementation actually performs an extra optimization

computing distances only for the upper triangular matrix, and

mirroring them to the lower triangle.

For the sake of comparison, we also compute distances in

centralized fashion, and profit from the Scikit-Learn Python

library, using the pairwise distances function that

allows parallelism by splitting the workload on multiple jobs

(see Scikit-Learn glossary for details), i.e., exploiting the

vertical scalability offered by multi-core CPU architectures.

IV. BENCHMARKING DATASET

To perform realistic experiments, we use a real dataset

instead of generating artificial data. We focus on cluster-

ing URLs, which are strings with particular properties and

syntax. Compared to natural language words, URLs can be

very long (up to thousands of characters), and can contain

very irregular (e.g., random identifiers, and key-value pairs)

and regular (e.g., timestamps or file extensions) patterns.

In this work, we use real-world data coming from passive

monitoring of ADSL subscribers of a European ISP. To this

end, we deploy a passive meter in a Point-Of-Presence (PoP)

where the traffic of 10 000 customer is aggregated.

We use Tstat [27] to collect URLs. Tstat is a passive meter

that collects rich per-flow summaries, containing hundreds of

statistics regarding TCP/UDP connections issued by clients.

Beside, it includes a DPI module that logs URLs by extract-

ing them from HTTP transactions observed in the packets.

For each transactions, it records the full URL and relevant

HTTP headers.3

For our experiments we use a 2 day-long dataset, collected

in March 2016. We randomly selected 30 subscribers among

the top 1, 000 that generated a significant amount of network

activity. Only URLs are extracted, in aggregated form and

removing duplicates. K-anonimity – with k = 30 – is

guaranteed. Our dataset includes more than 100, 000 unique

URLs 4

V. RESULTS

In this section we evaluate the performance of the different

approaches to compute the distance matrix. We focus on the

time required to complete the computation of D, using both

a centralized and distributed solution.

All experiments are replicated 5 times, and plots report the

resulting median value.5 To build smaller datasets, we ran-

domly split the original 100, 000-URL set. We also perform

experiments with set of different URL lengths to evaluate

the impact of the computational time of the Edit distance.

A. Experimental Platform

For our experiments, we rely on two different sys-

tems. Centralized experiments are run on a high-end server

equipped with two Intel® Xeon® E5-2640 processors pro-

viding 40 cores in total and 128 GB of RAM. Experiments

with Apache Spark run on a medium-sized Hadoop cluster

composed of 25 worker nodes with 564 cores and 2TB of

RAM overall. We use Spark version 2.3.0 and all code is

written in Python for a fair comparison.

B. Distance computation

Our analysis attempts to investigate the cost of calculating

the pairwise distance for all the pairs of input elements,

3To preserve users’ privacy, client identifiers are anonymized, and sensible
information, such as URL-encoded parameters and POST data, is not
recorded.

4We are preparing the dataset, in order to preserve privacy and replica-
bility of experiments at the same time.

5Variability is very low, always limited to ±10% of the median values.

3

103 104 105

Dataset size

100

101

102

103

104

105
E
la
p
se
d
ti
m
e
[s
]

Centralized, 10

Centralized, 40

Distributed, 100

Distributed, 500

Fig. 2: Elapsed time in distance matrix computation.

10
3

10
4

10
5

Dataset Size

0

1

2

3

4

5

6

7

8

S
p
a
rk

S
p
ee
d
u
p

500 executors

200 executors

100 executors

Fig. 3: Speedup factor of Spark distributed approach varying

the number of Spark executors w.r.t. centralized algorithm

using 40 threads.

yielding as a result the final distance matrix. Given n records,

n × n distances have to be computed, allowing clustering

algorithms to perform the ǫ-neighborhood queries.

Fig. 2 depicts the elapsed time – i.e., the amount of time

needed for the job to complete – for the distance matrix

computation while varying the dataset size, both with a

centralized (red dashed lines) and distributed approach (blue

solid lines). We consider two different number of jobs (10

and 40) and executors (100 and 500). Results clearly points

out the differences between the two methods: the centralized

approach shows a clear direct relation with the dataset size,

and grows with a O(n2) complexity (note the log-log scale).

With the largest dataset (100 k URLs) 40 jobs on a single

machine require more than 7 hours to complete the operation,

while the 10 jobs configuration does not reach completion

in a reasonable time. On the other hand, the Spark-based

version takes less than 1 hour, showing the goodness of the

horizontal scalability approach for large and complex dataset.

Note indeed that for datasets smaller than 5, 000 URLs, the

overhead caused by the initialization of the executors and the

shuffling of results impact the distributed solution, making it

slower than the centralized one.

For both the centralized and distributed approach, the

increase in the number of jobs and executors guarantees

a better utilization of resources, providing better overall

scalability, and proving that the distance matrix computation

is amenably parallelizable. In particular, with Spark, the total

5 10 20 50 100 200 500

Executors

102

103

104

E
la
p
se
d
ti
m
e
[s
] 5000

10000

20000

Fig. 4: Distance matrix computation time with different

number of Spark workers.

time to complete the job remains practically constant up to

when the cluster capacity is reached (which depends on the

number of used executors, and on the size of the cluster). In

particular, with more than 10, 000 elements the complexity

becomes again O(n2), meaning that all the computation

power of our system has been saturated.

To better highlight results, Fig. 3 depicts the speedup fac-

tor, computed dividing the execution time of the centralized

implementation (40 jobs) by the distributed one (100, 200

and 500 executors). Results allow to better appreciate that

(i) the speedup is less than 1 when dataset size is small (red

area); (ii) when the size is big, i.e. the input dataset is larger

than 10,000 URLs, the speed up factor increases significantly.

Increasing the number of executors has a noticeable impact

in the speed-up factor growth, that is shown to reach a

value up to 8 when Spark exploits 500 executors. With very

large datasets, the communication overhead slows down the

speed-up. In Fig. 2 and in Fig. 3 it can be noticed that the

performance obtained using 500 executors on small datasets

are worse than what obtainable with lower parallelization,

that because of the initialization cost. The results are better

for dataset sizes greater than 10, 000.

We now concentrate on the impact of different paral-

lelization levels, measuring the time required for the matrix

computation when varying the number of executors from 5

to 500. We consider three different dataset sizes, n =5 000,

10 000 and 20 000 URLs. In Figure 4 we can appreciate

the effects of greater parallelization in the execution time

(notice again the log-log scales). However, we can notice

the curve flattening for the values of 200 and 500 executors,

where the benefits of higher parallelism are nullified by the

communication and synchronization overhead.

At last, we investigate the impact of the string length on

the overall computation time. To quantify this phenomenon,

we conduct experiments considering sets of URLs lying

in different length ranges. We define 11 bins and divided

original URLs according to their length, until each bin

was composed by 10 000 elements. We used the 40 jobs

configuration for the centralized approach and 500 executors

for the distributed one. Figure 5 reports the time elapsed

for computing the entire distance matrix for each set of

different length URLs. The results demonstrate the impact

4

1-4
0
40
-80
80
-12

0

12
0-1

60

16
0-2

00

20
0-2

40

24
0-2

80

28
0-3

20

32
0-3

60

36
0-4

00

40
0-1

00
00

String length

101

102

103

104
E
la
p
se
d
ti
m
e
[s
] Centralized

Distributed

Fig. 5: Distance matrix computation time for sets of different

string length, with n = 10 000 strings in each set.

of the string sizes and again the different behaviors of

centralized and distributed approaches. Note how in the

centralized case the computation time is highly dependent

on the URL length, with a penalty incurred with extremely

long strings for which the distance computation becomes

the main driver. The distributed approach instead can better

exploit the higher parallelism, so that overall time decreases.

Again, for particularly short strings, the initialization and

communication overhead is still dominating the computation.

VI. FINAL CLUSTERING COMPUTATION

Once the distance matrix D has been computed, it is

possible to run the desired clustering algorithms, tune their

parameters, and compare the results. To show this, we now

focus on the execution time of the clustering process, when

the precomputed distance matrix is provided as input. We

consider 5 possible clustering algorithms that we briefly

introduce next, before running experiments. They all require

to compute all pairwise distances among points.

A. Selected density-bases algorithms

1) DBSCAN: The DBSCAN algorithm [8] aims at identi-

fying dense areas. An area is called dense if inside the sphere

of radius ǫ that delimits it there are at least MinPoints points;

the points represent the ǫ-neighborhood. Since all points must

be explored and given the need to find neighbors within the

radius ǫ, it requires the availability of the entire distance

matrix D.

2) OPTICS: Ankerst et al., in their work, they addressed

the difficulty of setting DBSCAN parameters, and in par-

ticular the choice of ǫ, which become particularly hard

when dealing with huge datasets with variable densities. OP-

TICS [2] stems from the basic idea that, given a fixed value

for MinPoints, the clusters at higher density are contained in

groups of points with a lower density and so different local

densities may be necessary to be defined to extract clusters

in different areas of the data space.

3) HDBSCAN: A limitation of DBSCAN is that it is

not able to identify cluster of points at different densities.

HDBSCAN [6], [18] aims at solving this problem. It creates

a tree representation of all the possible clusters that can be

generated for different ǫ. The algorithm solves the problem of

finding the best clusters as an optimization problem. Thanks

to this approach, there is no need to tune the ǫ parameter.

4) Iterative DBSCAN: This algorithm aims at simplifying

the parameter selection by automatically choosing a suit-

able value for ǫ, adapting it to the given data set, and to

improve the results that would be achievable after a single

run of DBSCAN, by iteratively reapplying DBSCAN over

elements erroneously grouped together [20]. The ǫ selection

is performed before the first run of DBSCAN and in every

subsequent iteration by using the k-Distance graph rule

[1]. The quality of clusters is measured with the Silhouette

coefficient [25], which again requires the computation of

distance among all points.

5) CANF: This method finds the nearest and furthest

neighbors to define subgroups of data [9]. In creating the

subgroups, it does not need to consider global parameter like

ǫ. It computes the radius of subgroups based on the variance

of data points and the number of members in each subgroup

and its volume are adaptive to data distribution. So it can

identify clusters with different shape and densities. Since

CANF uses subsampling, less time complexity is required

compared to the methods that use the whole data. However,

being iterative, worst case complexity entails the comparison

of all distance pair again.

B. Algorithm Execution

All algorithms were tested setting the value of

MinPoints = 20; the supplementary parameter ǫ, used by

DBSCAN and OPTICS, is set at the value ǫ = 0.4, and

starting from a pre-computed matrix D. Our aim here is to

show the possible improvement in terms of total execution

time and the flexibility in the algorithm choice that the pre-

computation of the distance matrix produces. Off the shelf

Scikit-Learn implementations of DBSCAN and HDBSCAN

are used, OPTICS is executed using the pyclustering version,

IDBSCAN uses Scikit-Learn DBSCAN as building block,

while CANF is completely developed by the authors.

Fig. 6 shows the execution time of the clustering al-

gorithms, using the off-the-shelf implementation offered in

Scikit-Learn. The dark gray area indicates the best execution

time for the distance matrix, as obtained from Fig. 2. The

light gray one represents the computation time with the cen-

tralized approach. As it is visible, for most of the algorithms

the execution time is order of magnitude lower than the time

needed for the mere computation of the distance matrix (note

the log-log scales). Even CANF benefits from the distributed

computation of D for large dataset. Only OPTICS would be

bottlenecked by the clustering stage. The best performance is

obtained by DBSCAN, and HDBSCAN. Despite running on

a single thread, both end the computation in several orders of

magnitude less than the time to compute the matrix D, even

when very large datasets are involved. The heterogeneity

in the obtained results reflects the variety in the chosen

algorithm implementations. Each of them, indeed, takes

advantage of a different degree of optimization. Regardless

of time performance, in this paper we opted for restricting

the field of investigation to three widely-known and applied

5

10
3

10
4

10
5

Dataset Size

100

101

102

103

104

E
la
p
se
d
ti
m
e
[s
]

DBSCAN

OPTICS

HDBSCAN

CANF

IDBSCAN

Fig. 6: Algorithms execution time in seconds.

algorithms (i.e. DBSCAN, OPTICS and HDBSCAN), and to

two (i.e. CANF snd IDBSCAN) specifically designed by the

authors having the URL clustering problem in mind. Such

choice results also in different clustering performance, whose

analysis is out of the scope of this work.

VII. CONCLUSION

In this paper we presented an approach to reduce the

computation time of density-based clustering algorithms with

custom non-euclidean distance measures, an often cumber-

some task especially with textual data as input. By pre-

computing the distance matrix – an amenable parallelizable

task – we show the benefits of the horizontal scalability,

offered by today popular Big Data solution such as the

Hadoop-based Spark, which is said to scale linearly with

respect to the number of cluster nodes.

The results show the utility of this approach, which

allows a good adaptability to different clustering solutions,

leaving to the final user the freedom to choose the best

approach, together with the opportunity to lighten the test

and parameter tuning processes.

REFERENCES

[1] Charu C. Aggarwal and Chandan K. Reddy. Data Clustering:

Algorithms and Applications. Chapman and Hall/CRC, 2013.

[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg
Sander. Optics: ordering points to identify the clustering structure. In
ACM Sigmod record, volume 28, pages 49–60. ACM, 1999.

[3] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Danilo
Giordano, Marco Mellia, and Luca Venturini. Selina: a self-learning
insightful network analyzer. IEEE Transactions on Network and

Service Management, 13(3):696–710, 2016.

[4] Arian Bär, Alessandro Finamore, Pedro Casas, Lukasz Golab, and
Marco Mellia. Large-scale network traffic monitoring with dbstream,
a system for rolling big data analysis. In Big Data (Big Data), 2014

IEEE International Conference on, pages 165–170. IEEE, 2014.

[5] Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. Highly
efficient algorithms for structural clustering of large websites. In
Proceedings of the 20th international conference on World wide web,
pages 437–446. ACM, 2011.

[6] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-
based clustering based on hierarchical density estimates. In Pacific-

Asia conf. on knowledge discovery and data mining, pages 160–172.
Springer, 2013.

[7] Irving Cordova and Teng-Sheng Moh. Dbscan on resilient distributed
datasets. In High Performance Computing & Simulation (HPCS), 2015

International Conf. on, pages 531–540. IEEE, 2015.

[8] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. of the Second International Conference

on Knowledge Discovery and Data Mining, KDD’96, pages 226–231.
AAAI Press, 1996.

[9] Azadeh Faroughi and Reza Javidan. Canf: Clustering and anomaly de-
tection method using nearest and farthest neighbor. Future Generation

Computer Systems, 89:166 – 177, 2018.
[10] Junhao Gan and Yufei Tao. Dbscan revisited: mis-claim, un-fixability,

and approximation. In Proceedings of the 2015 ACM SIGMOD

International Conf. on Management of Data, pages 519–530. ACM,
2015.

[11] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Botminer:
Clustering analysis of network traffic for protocol- and structure-
independent botnet detection. In USENIX Security Symposium, 2008.

[12] Dianwei Han, Ankit Agrawal, Wei-Keng Liao, and Alok Choudhary.
A novel scalable dbscan algorithm with spark. In Parallel and Dis-

tributed Processing Symposium Workshops, 2016 IEEE International,
pages 1393–1402. IEEE, 2016.

[13] Fang Huang, Qiang Zhu, Ji Zhou, Jian Tao, Xiaocheng Zhou, Du Jin,
Xicheng Tan, and Lizhe Wang. Research on the parallelization of the
dbscan clustering algorithm for spatial data mining based on the spark
platform. Remote Sensing, 9(12):1301, 2017.

[14] Yeonhee Lee and Youngseok Lee. Toward scalable internet traffic
measurement and analysis with hadoop. ACM SIGCOMM Computer

Communication Review, 43(1):5–13, 2013.
[15] Vladimir I Levenshtein. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, volume 10, pages
707–710, 1966.

[16] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura
Ricci. Ng-dbscan: scalable density-based clustering for arbitrary data.
Proc. of the VLDB Endowment, 10(3):157–168, 2016.

[17] Guangchun Luo, Xiaoyu Luo, Thomas Fairley Gooch, Ling Tian,
and Ke Qin. A parallel dbscan algorithm based on spark. In Big

Data and Cloud Computing (BDCloud), Social Computing and Net-

working (SocialCom), Sustainable Computing and Communications

(SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE Interna-

tional Conf. on, pages 548–553. IEEE, 2016.
[18] L. McInnes and J. Healy. Accelerated hierarchical density based clus-

tering. In 2017 IEEE International Conf. on Data Mining Workshops

(ICDMW), pages 33–42, Nov 2017.
[19] Andrea Morichetta, Enrico Bocchi, Hassan Metwalley, and Marco

Mellia. Clue: clustering for mining web urls. In Proc. of the ITC

28, 2016, volume 1, pages 286–294. IEEE, 2016.
[20] Andrea Morichetta and Marco Mellia. Lenta: Longitudinal exploration

for network traffic analysis. In 2018 30th International Teletraffic

Congress (ITC 30), volume 1, pages 176–184. IEEE, 2018.
[21] Cisco Visual networking Index. Forecast and methodology, 2016-2021,

white paper. San Jose, CA, USA, 1, 2016.
[22] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao,

Fredrik Manne, and Alok Choudhary. Scalable parallel optics data
clustering using graph algorithmic techniques. In Proc. of the Inter-

national Conference on High Performance Computing, Networking,

Storage and Analysis, page 49. ACM, 2013.
[23] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral cluster-

ing of http-based malware and signature generation using malicious
network traces. In NSDI, volume 10, page 14, 2010.

[24] M Zubair Rafique and Juan Caballero. Firma: Malware clustering
and network signature generation with mixed network behaviors. In
International Workshop on Recent Advances in Intrusion Detection,
pages 144–163. Springer, 2013.

[25] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and

Applied Mathematics, 20:53 – 65, 1987.
[26] Taghrid Samak, Daniel Gunter, and Valerie Hendrix. Scalable analysis

of network measurements with hadoop and pig. In Network Operations

and Management Symposium (NOMS), 2012 IEEE, pages 1254–1259.
IEEE, 2012.

[27] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi.
Traffic analysis with off-the-shelf hardware: Challenges and lessons
learned. IEEE Communications Magazine, 55(3):163–169, March
2017.

[28] Bingchen Wang, Chenglong Zhang, Lei Song, Lianhe Zhao, Yu Dou,
and Zihao Yu. Design and optimization of dbscan algorithm based on
cuda. arXiv preprint arXiv:1506.02226, 2015.

6

