
Aberystwyth University

A Distributed Rough Set Theory Algorithm based on Locality Sensitive Hashing
for an Efficient Big Data Pre-processing
Chelly Dagdia, Zaineb; Zarges, Christine; Beck, Gaël; Azzag, Hanene; Lebbah, Mustapha

Published in:
2018 IEEE International Conference on BIG DATA

Publication date:
2018

Citation for published version (APA):
Chelly Dagdia, Z., Zarges, C., Beck, G., Azzag, H., & Lebbah, M. (2018). A Distributed Rough Set Theory
Algorithm based on Locality Sensitive Hashing for an Efficient Big Data Pre-processing. In 2018 IEEE
International Conference on BIG DATA IEEE Press.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Apr. 2024

A Distributed Rough Set Theory Algorithm based
on Locality Sensitive Hashing for an Efficient Big

Data Pre-processing
Zaineb Chelly Dagdia∗†, Christine Zarges∗, Gaël Beck‡, Hanene Azzag‡ and Mustapha Lebbah‡

∗Department of Computer Science, Aberystywth University, Aberystwyth, United Kingdom
†LARODEC, Institut Supérieur de Gestion de Tunis, Tunis, Tunisia

‡ Computer Science Laboratory (LIPN), University Paris-North - 13, Villetaneuse, France

Abstract—A big challenge in the knowledge discovery pro-
cess is to perform big data pre-processing; specifically feature
selection. To handle this challenge, Rough Set Theory (RST)
has been considered as one of the most powerful techniques
as it has much to offer for feature selection. To extend its
applicability to big data, a distributed version of RST was
developed. However, one of its key challenges is the partitioning
of the feature search space in the distributed environment while
guaranteeing data dependency. In this paper, we propose a new
distributed version of RST based on Locality Sensitive Hashing
(LSH), named LSH-dRST, for big data pre-processing. LSH-
dRST uses LSH to match similar features into the same bucket
and maps the generated buckets into partitions to enable the
splitting of the universe in a more appropriate way. We compare
LSH-dRST to the standard distributed RST technique which is
based on a random partitioning of the universe and demonstrate
that our LSH-dRST is not only scalable but also more reliable
for feature selection; making it more relevant to big data pre-
processing. We also demonstrate that our LSH-dRST ensures
the partitioning of the high dimensional feature search space in
a more reliable way. Hence, guarantees data dependency in the
distributed environment, and ensures a lower computational cost.

Index Terms—Big Data Pre-processing; Feature Selection;
Rough Set Theory; Locality Sensitive Hashing; Distributed Pro-
cessing.

I. INTRODUCTION

Big data is extremely valuable and open the gates to ample
opportunities for large progress in a number of diverse real-
world problems [1]. However, big data arises with many
challenges most importantly in dimensionality reduction that
comprises feature extraction and feature selection. The former
category transforms the original meaning of the features while
the latter presents semantic-preserving techniques that attempt
to retain the meaning of the original feature set. Within
this category a further partitioning can be defined where the
techniques are classifies into filter approaches and wrapper
approaches. The main difference between the two branches
is that wrapper approaches include a learning algorithm in
the feature subset evaluation. Although wrappers may produce
better results than filters, they are computationally expensive
and can break down with a very large number of features. On
the other hand, filters tend to be applicable to most domains as
they are not tied to any particular induction algorithm and are
usually a good option for large-scaled data sets with a large
number of features. With the aim of choosing the most relevant

and pertinent subset of features, a variety of dimensionality
reduction techniques were proposed within the Apache Spark
framework1 to deal with big data in a distributed way. Among
these are several feature extraction methods such as nn-gram,
Principal Component Analysis, Discrete Cosine Transform,
etc., and very few feature selection techniques which are the
VectorSlicer, the RFormula and the ChiSqSelector. To further
expand this line of research, i. e., the development of parallel
feature selection methods, some other feature selection tech-
niques which are based on evolutionary algorithms were pro-
posed recently2 [2]. These include a generic implementation of
greedy information theoretic feature selection methods3, and
an improved implementation of the classical minimum Re-
dundancy and Maximum Relevance feature selection method
[3]. This implementation includes several optimizations such
as cache marginal probabilities, accumulation of redundancy
(greedy approach) and a data-access by columns4. However,
most of these techniques suffer from some limitations as they
involve the user for parameterization, require noise levels to
be specified, rank features leaving the user to choose its own
subset, require the user to state how many features are to be
chosen, or they must supply a threshold that determines when
the algorithm should terminate. All of these require the user to
make a decision based on its own (possibly faulty) judgment.
To overcome these shortcomings, the need for a filter method
that does not require any additional information to function
properly seems essential. Rough Set Theory (RST) can be used
as such a technique [4].

The use of RST for feature selection has proved more
efficient in comparison to a variety of state-of-the-art feature
selection methods [4]. Over the past years, RST has become
a topic of great interest to researchers and has been applied
to many domains such as in classification [5] and clustering
[6]. This success is due to many aspects of the theory, among
them the possibility to analyze the facts hidden in data, it
does not require any additional information about the data
and it is able to find a minimal knowledge representation [7].
This is achieved by making use of the granularity structure

1https://spark.apache.org/docs/2.2.0/ml-features.html
2https://github.com/triguero/MR-EFS
3https://github.com/sramirez/spark-infotheoretic-feature-selection
4https://github.com/sramirez/fast-mRMR

of the provided data only. Although RST has been widely
used as a powerful filter feature selection technique, most
of the traditional rough set based algorithms are sequential
algorithms, computationally expensive and can only deal with
non-large data sets. The prohibitive complexity of RST comes
from the search for an optimal feature subset through the
competing of an exponential number of candidate subsets.
Although it is an exhaustive method, this is quite impractical
for big data as it becomes unmanageable to generate the set
of all possible feature combinations. Therefore, to avoid this
prohibitive complexity, recently in [8] a distributed version of
RST was proposed and is named Sp-RST. To perform feature
selection in the context of big data, Sp-RST partitions the
feature search space in a random way where each partition
holds a random set of features. Each partition is dealt with
separately in the distributed environment so that at the end of
the feature selection process all the selected features from each
partition are gathered together to generate the final reduced
set of features. Eventually, in such an implementation design,
it is very likely that similar features will belong to different
partitions and hence a cut in data dependency will occur. It
is very important to highlight that data dependency is a key
issue in a distributed environment and in parallel computing.
Nevertheless, based on the Sp-RST architecture, data depen-
dency will not be assured as the algorithm uses an arbitrary
procedure in partitioning the feature search space. Hence, in
this paper, we propose a novel efficient distributed rough set
theory version based on a hashing technique. Specifically, our
proposed solution is based on the Locality Sensitive Hashing
(LSH) [9] algorithm for large-scale data pre-processing.

Many hashing algorithms have been proposed in literature
[9]–[11], and among these LSH is considered as the most
representative and popular one. LSH is presented as a proba-
bilistic similarity-preserving dimensionality reduction method,
and based on the adopted distances and similarities, including
lp distance [12], angular distance [13], Hamming distance
[14], Jaccard coefficient [15], etc., different types of LSH
can be designed; which also depends on the types of the
used data [9]. Many variants are developed based on these
basic LSH families such as Spectral hashing [11], Kernelized
spectral hashing [16], and independent component analysis
(ICA) Hashing [17]. These methods aim at learning the hash
functions for better fitting the data distribution [18].

The main motivation of choosing LSH among other hashing
techniques is that LSH is often taken as the baseline and
is widely used in industry, for image recognition, clustering,
and for some other tasks as well; but specifically in database
systems for high dimensional similarity search. The choice of
LSH is also argued by its advantages in comparison to other
hashing techniques when dealing with high dimensional data
sets as presented in the detailed study conducted in [19].

Our proposed solution, dubbed LSH-dRST, uses LSH which
maps similar data instances based on their feature values into
the same bucket in low dimensional cases and based on this
process, LSH-dRST uses the generated buckets to partition
the feature search space in a more reliable way and hence

guaranteeing data dependency and a lower computational cost.
The rest of this paper is structured as follows. Section II

presents preliminaries about the Locality Sensitive Hashing
and Rough Set Theory for feature selection. Section III
formalizes the motivation of this work and introduces our
novel distributed LSH-dRST algorithm for large-scale data
pre-processing. The experimental setup is introduced in Sec-
tion IV. The results of the performance analysis are given in
Section V and the conclusion is given in Section VI.

II. PRELIMINARIES

A. Locality Sensitive Hashing

The Locality Sensitive Hashing (LSH) algorithm [9] was
introduced as a probabilistic technique suitable for solving the
approximate K nearest neighbors (K-NN) problem in a high
dimensional space. It is based on the definition of an LSH
family (H), a family of hash functions mapping similar input
items to the same hash code with higher probability than dis-
similar items. Formally, an LSH family is defined as follows:
Let H be a family of hash functions such that h ∈ H : Rd →
U . Consider a function h that is chosen uniformly at random
from H and a similarity function sim : Rd×Rd → [0, 1]. The
family H is called locality sensitive if for any vectors u, v ∈
Rd, it satisfies the property: P (h(u) = h(v)) = sim(u, v)

That is, the more similar a pair of vectors is, the higher the
collision probability is. The LSH scheme indexes all items
in hash tables and searches for near items via hash table
lookup. Formally, for an integer k, we define a function family
G = {g : Rd → Uk} such that g(v) = (h1(v), . . . , hk(v))
where hi ∈ H, i. e., g is the concatenation of k LSH functions.
For an integer `, we choose ` functions G = {g1, . . . , g`} from
G independently and uniformly at random. Each gi, 1 ≤ i ≤ `
effectively constructs a hash table denoted by Dgi . The hash
table is a data structure that is composed of buckets, each of
which is indexed by a hash code. A bucket in Dgi stores
all v ∈ V that have the same gi values. For space, only
the nonempty buckets are retained using standard hashing. G
defines a collection of ` tables IG = {Dg1 , . . . , Dg`} and we
call it an LSH index.

As previously mentioned, there are different kinds of LSH
families for different (dis)similarity measures including Ham-
ming distance, Jaccard similarity, and cosine similarity. In this
paper, we rely on the LSH scheme that supports the p-stable
similarity.

B. Rough Sets for Feature Selection

Rough Set Theory (RST) [20] is a formal approximation
of the conventional set theory which supports approximations
in decision making. The fundamentals of RST for feature
selection are as follows:

1) Basic concepts: In RST, an information table is defined
as a tuple T = (U,A) where U and A are two finite, non-
empty sets, U the universe of primitive objects and A the set
of attributes. Each attribute or feature a ∈ A is associated with
a set Va of its value, called the domain of a. We may partition

the attribute set A into two subsets C and D, called condition
and decision attributes, respectively.

Let P ⊂ A be a subset of attributes. The indiscernibility
relation, denoted by IND(P), is the central concept to
RST and it is an equivalence relation which is defined as:
IND(P) = {(x, y) ∈ U × U : ∀a ∈ P, a(x) = a(y)},
where a(x) denotes the value of feature a of object x. If
(x, y) ∈ IND(P), x and y are said to be indiscernible
with respect to P . The family of all equivalence classes of
IND(P), referring to a partition of U determined by P , is
denoted by U/IND(P). Each element in U/IND(P) is a
set of indiscernible objects with respect to P . The equivalence
classes U/IND(C) and U/IND(D) are called condition and
decision classes, respectively.

For any concept X ⊆ U and attribute subset R ⊆ A, X
could be approximated by the R-lower approximation and R-
upper approximation using the knowledge of R. The lower
approximation of X is the set of objects of U that are surely
in X , defined as: R(X) =

⋃
{E ∈ U/IND(R) : E ⊆ X}.

The upper approximation of X is the set of objects of
U that are possibly in X , defined as: R(X) =

⋃
{E ∈

U/IND(R) : E ∩ X 6= ∅}. The concept defining the set
of objects that can possibly, but not certainly, be classified
in a specific way is called the boundary region which is
defined as: BNDR(X) = R(X) − R(X). If the boundary
region is empty, that is R(X) = R(X), concept X is said
to be R-definable; otherwise X is a rough set with respect
to R. The positive region of decision classes U/IND(D)
with respect to condition attributes C is denoted by POSc(D)
where POSc(D) =

⋃
R(X). The positive region POSc(D)

is a set of objects of U that can be classified with certainty
to classes U/IND(D) employing attributes of C. Based on
the positive region, the dependency of attributes is defined as:
k = γ(C, ci) = |POSC(ci)|

|U | measuring the degree k of the
dependency of an attribute ci on a set of attributes C.

2) Reduction process: Based on these basics, RST defines
two important concepts for feature selection which are the
Core and the Reduct. In RST, a subset R ⊆ C is said to be
a D-reduct of C if γ(C,R) = γ(C) and there is no R′ ⊂ R
such that γ(C,R

′
) = γ(C,R). In other words, the Reduct

is the minimal set of selected attributes preserving the same
dependency degree as the whole set of attributes. Meanwhile,
RST may generate a set of reducts, REDF

D(C), from the given
information table. In this case, any reduct from REDF

D(C) can
be chosen to replace the initial information table. The second
concept, the Core, is the set of attributes that are contained by
all reducts, defined as CORED(C) =

⋂
REDD(C); where

REDD(C) is the D-reduct of C. Specifically, the Core is
the set of attributes that cannot be removed from the informa-
tion system without causing collapse of the equivalence-class
structure. This means that all attributes present in the Core
are indispensable.

III. LSH-DRST: THE PROPOSED SOLUTION

In this section, we present our proposed solution, dubbed
“LSH-dRST” which is characterized by its distributed im-

plementation design with respect to the Spark framework
for a parallel and in-memory processing task. First, we will
highlight the motivation behind the development of our pro-
posed LSH-dRST solution by pointing out the limitations
of the standard distributed RST. Secondly, we will elucidate
our LSH-dRST solution as an efficient approach capable of
performing big data feature selection in a more intelligent and
convenient manner without any significant information loss.

A. Motivation and Problem Statement

As previously explained in section II-B, to perform feature
selection, RST has to calculate the dependency of attributes
γ(C, ci). To do so and as a first step, the indiscernibility
relation IND(P) for all the features has to be calculated.
Let us recall that IND(P) looks for similar feature values
and gathers them together to form the set of the equivalence
relations. Based on these fundamental RST concepts, it is
crucial to guarantee data dependency in order to set the most
reliable equivalence relations and hence to guarantee the most
representative reduct set. However, data dependency is a key
issue in a distributed environment and in parallel computing.
The standard distributed RST version proposed in [8] partitions
the feature search space in a random manner which does
not assure data dependency. More precisely, the work in [8]
partitions the information table T into m data blocks Ti based
on splits from the conditional attribute set C in a way that:
T =

⋃m
i=1(Cr)Ti; where r ∈ {1, . . . , V }. r is a user-defined

parameter of the algorithm referring to the number of features
that will be considered to constitute each Ti data block and V
is the total number of features. Indeed, each Ti is constructed
based on r random features selected from the conditional
attribute set C. Subsequently, each partition is handled by a
different machine (node) in the distributed environment so that
at the end all the intermediate results will be gathered from
the different m partitions. In such architecture, it is likely that
similar features will belong to different partitions Ti and hence
a false estimation of the constructed IND(P) is more likely
to occur. Consequently, such a random process may mislead
the RST feature selection process by generating a non-relevant
reduct. These are the main motivations for our proposed LSH-
dRST solution that makes use of the locality sensitive hashing
algorithm. Using LSH can guarantee the process of gathering
similar or close data instances based on their feature values
into the same bucket and by using the generated buckets a
more intelligent partitioning of the universe can be applied.
In such a way, we can guarantee that LSH-dRST preserves
data dependency within the same buckets and hence solving
the limitations of the standard distributed RST.

B. LSH-dRST

Technically, to deal with high dimensional data sets and
to make use of the LSH technique, within a distributed
environment, we first generate the appropriate buckets based
on LSH, map them into partitions, partition the entire rough set
feature selection process into elementary tasks, each executed
independently on each generated bucket, and then conquer the

intermediate results to finally acquire the ultimate output; the
reduct set.

1) General Model Formalization: For feature selection, our
learning problem has to select high discriminating features
from the original high dimensional input database which cor-
responds to the data stored in the given Distributed File System
(DFS). To operate on the given DFS, a Resilient Distributed
Data set (RDD) is created. We may formalize the latter as
a given information table defined as TRDD, where universe
U = {x1, . . . , xN} is the set of data items, the conditional
attribute set C = {c1, . . . , cV } contains every single feature
of the TRDD information table and the decision attribute D
of our learning problem corresponds to the class (label) of
each TRDD sample and is defined as D = {d1, . . . , dW }. The
conditional attribute set C presents the pool from where the
most convenient features will be selected.

Algorithm 1 LSH-dRST
Inputs: TRDD: information table with D as decision class,
K: number of nearest neighbors, B: number of buckets
Output: Reduct

1: Generate the B LSH buckets
2: Calculate IND(D)
3: for each TRDD(b)

where b ∈ [1, . . . , B] do
4: Generate the set S sub-information tables Cl based on
K

5: for each Cls(K) where s ∈ [1, . . . , S] do
6: Generate AllComb(K), Calculate
IND(AllComb(K))

7: Calculate DEP (AllComb(K)), Select
DEPmax(AllComb(K))

8: Filter DEPmax(AllComb(K)), Filter
NbFmin(DEPmax(AllComb(K)))

9: end for
10: end for
11: for each TRDD(b)

do
12: for each Cls(K) output do
13: Reduct =

⋃B
b=1

⋃S
s=1REDs

14: end for
15: end for
16: return (Reduct)

In order to make our algorithm scalable with the high
number of features and with respect to data dependency,
we partition the given TRDD information table into B data
blocks based on the B generated LSH buckets. The buckets
are splits from the conditional attribute set C and each
bucket covers a specific feature space enclosing all similar
and close instances based on their feature values. Hence,
TRDD =

⋃B
b=1(Ch)TRDD(b)

; where h ∈ {1, . . . , V }. h is
a value generated by LSH referring to the number of features
per bucket that will be considered to create each TRDD(b)

data
block; and is equal to the size of the feature space C divided
by B. Once the buckets are defined, each TRDD(b)

is divided
into S automatically created sub-information tables Cl based

on the K nearest neighbors approach; where K refers to the
number of features per sub-information table and on which
LSH-dRST will be applied. Hence, TRDD(b)

=
⋃S

s=1 Cls(K);
where S = Ch/K.

To ensure scalability, rather than applying LSH-dRST to
TRDD including the whole conditional feature set C the
distributed algorithm will be applied to every single Cls(K),
where s ∈ {1, . . . , S}, so that at the end all the intermediate
results will be gathered from the different Cl sub-information
tables of every TRDD(b)

partition. In such a way, we can
guarantee that LSH-dRST can be applied to a computable
number of features while preserving data dependency and
hence solving the standard distributed RST limitations. Algo-
rithm 1 highlights the pseudo-code of our proposed LSH-dRST
solution.

More precisely, the algorithm will first generate the B par-
titions using LSH, TRDD(b)

while preserving data dependency
as previously highlighted. Then, for each partition, the Cl
sub-information table will be created in a way that the K
nearest neighbors from any data point within the TRDD(b)

feature search space form a sub-information table Cls(K)
(Algorithm 1, line 4). Through all the S Cl sub-information
tables, the distributed LSH-dRST tasks, line 5 to 9, will be
executed. As seen in Algorithm 1, line 2 is executed out
of the TRDD(b)

and the Cls(K) iteration loops. The main
reason for this implementation is that this task deals with the
calculation of the indiscernibility relation of the decision class
IND(D). This task is independent from the B generated
partitions as the result depends on the data items class and
not on the features. Out from the iteration loops, line 10, the
output of each Cls(K) is either a single reduct REDs(D)

(K)

or a family of reducts REDF
s(D)

(K). Based on the RST
preliminaries previously mentioned in Section II-B, any reduct
of REDF

s(D)
(K) can be used to represent the Cls(K) sub-

information table.
Consequently, if LSH-dRST generates only one reduct, for a

specific Cls(K) sub-information table, then the output of this
feature selection phase is the set of the REDs(D)

(K) features.
These features reflect the most informative ones among the
K attributes of Cls(K) resulting in a new reduced Cls(K),
Cls(RED), which preserves nearly the same data quality as
its corresponding Cls(K) which is based on the whole feature
set K. On the other hand, if LSH-dRST generates a family
of reducts then the algorithm randomly selects one reduct
among REDF

s(D)
(K) to represent the corresponding Cls(K).

This random choice is argued by the same priority of all the
reducts in REDF

s(D)
(K). In other words, any reduct included

in REDF
s(D)

(K) can be used to replace the K attributes of
Cls(K). At this stage, each Cls sub-information table has
its output REDs(D)

(K) referring to the selected features.
However, since each Cls is based on distinct features within
different TRDD(b)

feature search spaces and with respect to
TRDD(b)

=
⋃S

s=1 Cls(K) a union of the generated selected
features is required to represent the initial TRDD; defined as
Reduct =

⋃B
b=1

⋃S
s=1REDs (Algorithm 1, line 11 to 15).

By removing irrelevant and redundant features, LSH-dRST
can reduce the dimensionality of the data from TRDD(C)
to TRDD(Reduct). In what follows, we will elucidate the
different LSH-dRST elementary distributed tasks.

2) Algorithmic Details: As previously highlighted, the ele-
mentary feature selection LSH-dRST distributed tasks will be
executed on every Cls(K) sub-information table defined by
its K features along the TRDD(b)

partitions; except for task
2 in Algorithm 1 dealing with IND(D). The algorithm goes
through 10 main jobs in order to generate the final sought
Reduct. The first step, is to apply LSH to generate the B
buckets based on a hash table as explained in Section II-A.
To do so, LSH-dRST creates the hash table based on a set of
random vectors following a Gaussian distribution (referred as
the H family of hash functions). The constructed hash table
is based on the size of the features of TRDD. After that, the
algorithm maps the TRDD to work on each partition separately
and on each partition it applies a projection for each vector
based on the set of the TRDD mapped feature vectors. As
a result the buckets are automatically created; each with a
specific index (referred as a hash code). Finally, LSH-dRST
performs a sort action to order the buckets with respect to
the given number of buckets B. The pseudo-code of this
distributed task is given in Algorithm 2.

Algorithm 2 Generate Buckets(B)

Inputs: TRDD, B
Output: TRDD(b)

1: Generate the hash table based on the TRDD feature size
2: Map the TRDD

3: Apply the LSH projection for each vector
4: Sort the buckets by B

After that, LSH-dRST has to compute the indiscernibility
relation for the decision class D = {d1, . . . , dW }; defined
as IND(D): IND(di). More precisely, LSH-dRST will cal-
culate the indiscernibility relation for every decision class di
by gathering the same TRDD data items which are defined in
the universe U = {x1, . . . , xN} and which belong to the same
class di. To do so, LSH-dRST processes a foldByKey5 oper-
ation where the decision label di defines the key and the TRDD

data items identifiers idi of xi, define the values. The set of
gathered data items is only kept as it represents IND(D):
IND(di). The pseudo-code related to this distributed job is
highlighted in Algorithm 3.

At its third step, LSH-dRST has to generate the set S of
the Cl(K) sub-information tables based on the number of
features K. Let us recall at this stage that LSH gathered all
the similar features already within a same specific bucket.
On these similar attributes, a further partitioning is required
to generate the sub-information tables that can be handled
by the LSH-dRST algorithm. As mentioned in Section I, the
standard rough set theory has to generate all the combinations
of features at once, process them in turn to finally generate the

5https://spark.apache.org/docs/0.7.2/api/core/spark/PairRDDFunctions.html

Algorithm 3 Calculate IND(D)

Input: TRDD

Output: IND(D): Array[Array[xi]]
1: IND(di) =

Map the TRDD

Perform a foldByKey operation based on 〈di, idi, xi〉
2: Map the result of step (1) to keep xi as follows:
IND(di).map{case(di, xi) => xi}.collect

reduct. As it is infeasible to generate all the combinations of
features within the big data context, then the distributed LSH-
dRST will operate on the sub-information tables constructed
on K number of features; where K is a manageable size that
can be handled by the algorithm. Therefore and to achieve
this distributed task, for every bucket TRDD(b)

, LSH-dRST
performs a mapPartitionsWithIndex6 operation using the
buckets indexes; the already generated hash codes in Algo-
rithm 2. Then, the later result is mapped; where on each
partition, the K nearest features to a randomly chosen attribute
within the same TRDD(b)

hash code, are selected to form a sub-
information table. The pseudo-code related to this distributed
job is highlighted in Algorithm 4.

Algorithm 4 Generate Cl(K)

Inputs: TRDD(b)
, K

Outputs: S, Cl(K)
1: Perform a mapPartitionsWithIndex on every TRDD(b)

using its index
2: Map the result of step (1)

Perform a KNN by looking for the K nearest features
within a randomly selected attribute within each TRDD(b)

3: Generate the set S of the Cl(K) sub-information tables

Once the set S of the Cl(K) sub-information tables is
generated for all the TRDD(b)

, LSH-dRST has to perform
feature selection for each single Cls(K). To do so, first,
the algorithm has to create all the possible combinations
of the K set of feature, AllComb(K), using the flatMap7

spark function. Then, the fifth LSH-dRST job deals with
the indiscernibility relation computation for every previously
generated combination. As presented in Algorithm 5, LSH-
dRST aims at grouping all the data items identifiers idi sharing
the same specific combination of features extracted from
AllComb(K). In order to achieve this, we use the foldByKey
spark operation where the combination of features defines the
key and the idi mapped as value.

At this phase, LSH-dRST prepares the set of features that
will be selected in the coming steps. In Algorithm 6, the
dependency degrees γ(K,AllComb(K)) of each feature com-
bination are computed. To do so, the calculated indiscernibility

6https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.
html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.
ClassTag)

7https://spark.apache.org/docs/latest/rdd-programming-guide.html

https://spark.apache.org/docs/0.7.2/api/core/spark/PairRDDFunctions.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Algorithm 5 Calculate IND(AllComb(K))

Inputs: Cls(K), AllComb(K)

Output: IND(AllComb(K)) : Array[Array[idi]]
1: IND(AllComb(K)) =

Map the Cls(K) sub-information table
Perfom a foldByKey operation based on
〈AllComb(K), idi〉

2: Map the result of step (1) to keep idi as follows:
IND(AllComb(K)).map{case(ListV alues, idi) =>
idi}.collect

relations IND(D) and IND(AllComb(K)) as well as the set
of all feature combinations AllComb(K) are required. The task
is to test, first, if the intersection of every IND(di) with each
IND(AllComb(K)) keeps all the latter elements; referring to
the lower approximation. If so then a score which is equal to
the length of IND(AllComb(K)) is given, zero otherwise.
As this process is made in a distributed way where each
machine is dealing with some feature combinations, a first
sum operation of the IND(di) scores is operated followed
by a second sum operation to record all the IND(D) scores;
referring to the dependency degrees γ(K,AllComb(K)).

Algorithm 6 Generate DEP (AllComb(K))

Inputs: AllComb(K), IND(D), IND(AllComb(K))
Outputs: γ(K,AllComb(K)), Size(AllComb(K))

1: for i := AllComb(K) do
2: for j := IND(D) do
3: for v := IND(AllComb(K)) do
4: if j.intersect(v).length == v.length then v.length
5: else 0
6: Reduce(+)
7: Reduce(+)

The output of this step is the set of dependency
degrees γ(K,AllComb(K)) of the feature combinations
AllComb(K) and their associated sizes Size(AllComb(K)).
Then, LSH-dRST looks for the maximum dependency value
DEPmax(AllComb(K)) among all γ(K,AllComb(K)) using
the max function operated on the given RDD. The output
MaxDependency reflects in one hand the dependency of
the whole feature set K representing the Cls(K) and on the
other hand the dependency of all the possible feature combi-
nations satisfying the constraint γ(K,AllComb(K)) = γ(K).
MaxDependency is the baseline value for feature selection.
Once the MaxDependency is generated, LSH-dRST keeps
the set of all combinations having the same dependency
degrees as MaxDependency; i. e., γ(K,AllComb(K)) =
MaxDependency. This is achieved by applying a filter
function. In fact, at this stage LSH-dRST removes in each
computation level the unnecessary features that may affect
negatively the performance of any learning algorithm.

Finally and based on the output of the previous step,
LSH-dRST keeps the set of combinations having the min-

imum number of features, Size(AllComb(K)), by applying
a filter operation (NbFmin(DEPmax(AllComb(K)))) and
by satisfying the full reduct constraints discussed in Sec-
tion II-B; γ(K,AllComb(K)) = γ(K) while there is no
AllComb

′

(K) ⊂ AllComb(K) such that γ(K,AllComb
′

(K)) =
γ(K,AllComb(K)). Each combination satisfying this con-
dition is considered as a viable minimum reduct set. The
attributes of the reduct set describe all concepts in the sub-
information table Cls(K).

IV. EXPERIMENTAL SETUP

A. Used Benchmark

To validate the efficiency of the LSH-dRST algorithm we
require a data set with a large number of attributes as the
advantage of the data partitioning scheme and the fact of
looking on data dependencies via LSH will become more
pronounced for data sets with a large set of features. Therefore,
and for the sake of comparisons with the standard distributed
RST version [8], we chose the Amazon Commerce reviews
data set from the UCI machine learning repository [21]. This
choice is based on the fact that this data set was the one with
the largest number of features that still had a sufficiently large
number of data items and as it was used in [8]. This data set
was derived from customer reviews on the Amazon commerce
website by identifying a set of most active users and with
the goal to perform authorship identification. The database
includes 1 500 data items described through 10 000 features
(linguistic style such punctuation, length of words, sentences,
etc.) and 50 distinct classes (authors). Instances are identically
distributed across the different classes, i. e., for each class there
are 30 items.

B. Experimental plan, testbed and tools

The main aim of our experimentation is to demonstrate that
our proposed approach LSH-dRST preserves data dependency
within the same generated buckets and within the distributed
environment. We will show that by using a more intelligent
partitioning of the universe, via the use of LSH, a more reliable
process of gathering similar data instances based on their
feature values can be reached; and hence better classification
results can be obtained. Indeed, we will show that LSH-
dRST is not only scalable but also more reliable for feature
selection; making it more relevant to big data pre-processing.
We, therefore, investigate different parameters of LSH-dRST
and analyze how these affect execution time and stability of
the feature selection; hence data dependency. We then show
that the improvement in performance does not decrease the
feature selection ability by using a Random Forest classifier on
the original data set, the reduced data sets produced by LSH-
dRST and some other feature selection techniques as described
below. We use the scikit-learn Random Forest implementa-
tion8 with the following parameters: n estimators = 1000,

8http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

n jobs = −1, and oob score = True. A Stratified 10-Folds
cross-validator9 is used for all our conducted experiments.

Based on the conducted experiments in [8], a maximum of
10 features per sub-information table Cl is used that can be
processed by LSH-dRST. We therefore perform experiments
for 2, 5, 10, 25 and 50 buckets (B), in Algorithm 1, each
comprising sub-information tables of 4, 5, 8 and 10 features
(F); where F refers to the K parameter in Algorithm 1. For
instance, for bucket (B = 2) and for a number of 4 features
(F = 4) per sub-information table the algorithm generates
1250 Cl. We run all settings on 1, 2, 4, 8, and 16 nodes
on the Grid5000 testbed10 which is a French national large-
scale and versatile platform. Our analysis first focuses on the
scalability of the algorithm. We evaluate the performance of
LSH-dRST using the speedup, sizeup, and scaleup criteria
introduced in [22] and define the combined runtime for LSH
and dRST as the execution time of our method.

We perform model evaluation using a Random Forest classi-
fier to evaluate the quality of our feature selection and compare
it with other common techniques, namely the Sum Squares
Ratio as implemented in Smile11 as well as Information Gain,
Gain Ratio and Chi Squared as provided in Weka 3.6.1512.
For the Sum Squares Ratio, we set the number of features
to be selected to a value comparable with LSH-dRST, i. e.,
the average number of features selected for each parameter
setting of F . All other methods were run with ‘Ranker’ as
search method and a threshold of 0. We determine the sets of
features selected by these methods and then perform 10 runs of
the above Random Forest implementation on the new feature
set. We use the standard measures which are the precision, the
recall, the accuracy and the F1 score to report our results.

LSH-dRST makes use of randomisation in several places,
e. g., LSH uses random projections, the construction of the
sub-information tables starts with a randomly selected feature,
and we select one reduct among the generated family of
reducts randomly. For this reason, we always perform multiple
runs of the algorithm and report appropriate statistics.

V. RESULTS AND ANALYSIS

In this section, we will discuss our results. We first consider
the scalability of LSH-dRST. We then investigate the quality
of the feature selection and compare our results with the
previously introduced algorithm creating random partitions
(Sp-RST).

A. Scalability

1) Speedup Analysis: We first consider the speedup of
LSH-dRST: We keep the size of the data set constant (where
size is measured by the number of features, i. e., 10 000

9http://scikit-learn.org/stable/modules/generated/sklearn.model selection.
StratifiedKFold.html

10https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
11https://haifengl.github.io/smile/feature.html
12https://www.cs.waikato.ac.nz/∼ml/weka: classes ChiSquaredAttributeE-

val, GainRatioAttributeEval, InfoGainAttributeEval

features in our case) and increase the number of nodes. The
speedup of a system with m nodes is defined as [22]:

Speedup(m) =
runtime on one node
runtime on m nodes

We plot the speedup in Figure 1 and see that the speedup
for most parameter settings is very similar. However, setting
F = 8 improves the speedup considerably—independently
of the setting for B (where B = 5 and B = 10 yield the
best overall results). Overall, we conclude that the number of
buckets does not have a significant influence on the speedup,
but the number of sub-information tables F does. The latter
is expected since the execution time grows exponentially in
the number of features and thus, using more nodes is more
beneficial in cases with many features. It is therefore somewhat
surprising that F = 10 does not exhibit a larger speedup. Note
that an ideal parallel algorithm has linear speedup, which is,
however, difficult to achieve in practice due to startup and
communication cost as well as interference and skew [22].

0
1

2
3

4
5

6

Number of Nodes

Sp
ee

du
p

1 2 4 8 16

●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

Parameters
F=4,B=2
F=4,B=5
F=4,B=10
F=4,B=25
F=4,B=50
F=5,B=2
F=5,B=5
F=5,B=10
F=5,B=25
F=5,B=50
F=8,B=2
F=8,B=5
F=8,B=10
F=8,B=25
F=8,B=50
F=10,B=2
F=10,B=5
F=10,B=10
F=10,B=25
F=10,B=50

Fig. 1. Speedup for Amazon with 10 000 features for 16 nodes.

2) Sizeup Analysis: The sizeup keeps the number of nodes
constant and measures how much the execution time increases

0
5

10
15

20
25

30

m

Si
ze
up

1 2 4 6 8 10

●
●

●

●

●

●

●
●

●

●
●

●

●
●

● ● ● ●

● ●

●

●

● ●

●

●

●

●

Parameters
F=4,B=2
F=4,B=5
F=4,B=10
F=4,B=25
F=4,B=50
F=5,B=2
F=5,B=5
F=5,B=10
F=5,B=25
F=5,B=50
F=8,B=2
F=8,B=5
F=8,B=10
F=8,B=25
F=8,B=50
F=10,B=2
F=10,B=5
F=10,B=10
F=10,B=25
F=10,B=50

Fig. 2. Sizeup for Amazon with 10 000 features for 16 nodes.

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
https://haifengl.github.io/smile/feature.html
https://www.cs.waikato.ac.nz/~ml/weka

as the data set is increased by a factor of m [22]:

Sizeup(m) =
runtime for data set of size m · s

runtime for baseline data set of size s
To measure the sizeup we have created smaller databases by
selecting random features from the original Amazon 10 000
database. We use 1 000 features as a baseline and consider
2 000, 4 000, 6 000, 8 000, and 10 000 features, respectively.
We plot the sizeup for 16 nodes (the largest number of nodes
we consider) in Figure 2 and see that our method has sub-linear
sizeup for most parameter settings, i. e., for a 10-times larger
data set it requires less than 10 times more time. The only
two exceptions are F = 4 and F = 5 (i. e., small numbers of
features) with only two buckets (B = 2). Looking closer into
our results we can observe that for some parameter settings
the LSH part of LSH-dRST is more time-consuming than the
rough set part, but for others it is less time-consuming.

3) Scaleup Analysis: The scaleup evaluates the ability to
increase the number of nodes and the size of the data set
simultaneously and is defined as [22]:

Scaleup(m) =
runtime for data set of size s on 1 node

runtime for data set of size s ·m on m nodes
We use the sub-data sets previously described with 1 000
features as a baseline and plot the results in Figure 3. It
should be noted that a scaleup of 1 implies linear scaleup,
which similarly to linear speedup is difficult to achieve. Our
scaleup is clearly smaller than 1 for all parameter settings,
but fluctuates between 0.2 and 0.4 for most settings and 8
nodes, including the ones that exhibit the best speedup. The
best scaleup is achieved for F = 5 and large values for B.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Nodes

Sc
al

eu
p

1 2 4 8

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

Parameters
F=4,B=2
F=4,B=5
F=4,B=10
F=4,B=25
F=4,B=50
F=5,B=2
F=5,B=5
F=5,B=10
F=5,B=25
F=5,B=50
F=8,B=2
F=8,B=5
F=8,B=10
F=8,B=25
F=8,B=50
F=10,B=2
F=10,B=5
F=10,B=10
F=10,B=25
F=10,B=50

Fig. 3. Scaleup.

B. Comparison with Other Feature Selection Techniques

We show the results of 10 runs of random forest on the
different reduced data sets in Figures 4 and 5. We observe
that LSH-dRST outperforms the Chi Squared, Information
Gain and Gain Ratio selection methods and has comparable
performance to the other methods. Moreover, we see that the
classification result is quite stable with respect to the parameter

settings in LSH-dRST. This is observed for all evaluation
metrics, i. e., accuracy, recall, precision, and F1 score.

We plot the number of features selected over 10 runs as
boxplots and the corresponding mean execution time of the
random forest classifier in Figure 6. We see that the number
of features is very concentrated around its median, implying
a low variance in the number of features selected. We select
around 3 300 features for F = 4, 2 700 for F = 5, 1 800 for
F = 8, and 1 500 for F = 10. Again, the number of buckets
hardly has any impact. For Sp-RST the results reported in
[8] were much more erratic with no clear tendency based on
the parameter setting and numbers ranging between 1 600 and
6 200.

VI. CONCLUSION AND EMERGING TRENDS

We have introduced a distributed algorithm for feature
selection based on rough set theory that uses locality sensitive
hashing to determine appropriate partitions of the feature
set; called LSH-dRST. Our approach improves a previously
introduced method using random partitions (Sp-RST). Our ex-
periments demonstrate that LSH-dRST scales well in terms of
three commonly used evaluation criteria: speedup, sizeup, and
scaleup. We investigate different parameter settings and show
that LSH-dRST is robust with respect to the number of buckets
used in LSH while there is a clear trade-off between quality of
the feature selection and speedup with respect to the second
parameter (the number of features in each sub-information
table). Configured appropriately the mean accuracy achieved
by a random forest classifier on the reduced data sets is better
than for the unreduced data set and comparable to the results
obtained by Sp-RST, however, LSH-dRST exhibits a much
smaller variance in the feature selection process and thus, is
considered more reliable. Based on the conducted experiments
and results, we can clearly see the benefit and impact of
using the locality sensitive hashing in our proposed solution
as it partitions the high dimensional feature search space in
a more reliable and intelligent way and hence guaranteeing
data dependency in the distributed environment, and ensuring
a lower computational cost.

Future research will further investigate the interplay of
the different components of LSH-dRST, e. g., the trade-off
between the execution times of the LSH and the RST elements
of the algorithm and their influence on the reduced data set.
Ultimately, we want to use our methods on real-world data
sets with more features and data items than the used Amazon
data set.

ACKNOWLEDGMENT

This work is part of a project that has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement No 702527.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

F
4
B
2

F
4
B
5

F
4
B
1
0

F
4
B
2
5

F
4
B
5
0

F
5
B
2

F
5
B
5

F
5
B
1
0

F
5
B
2
5

F
5
B
5
0

F
8
B
2

F
8
B
5

F
8
B
1
0

F
8
B
2
5

F
8
B
5
0

F
1
0
B
2

F
1
0
B
5

F
1
0
B
1
0

F
1
0
B
2
5

F
1
0
B
5
0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Accuracy

F
4
B
2

F
4
B
5

F
4
B
1
0

F
4
B
2
5

F
4
B
5
0

F
5
B
2

F
5
B
5

F
5
B
1
0

F
5
B
2
5

F
5
B
5
0

F
8
B
2

F
8
B
5

F
8
B
1
0

F
8
B
2
5

F
8
B
5
0

F
1
0
B
2

F
1
0
B
5

F
1
0
B
1
0

F
1
0
B
2
5

F
1
0
B
5
0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall

F
4
B
2

F
4
B
5

F
4
B
1
0

F
4
B
2
5

F
4
B
5
0

F
5
B
2

F
5
B
5

F
5
B
1
0

F
5
B
2
5

F
5
B
5
0

F
8
B
2

F
8
B
5

F
8
B
1
0

F
8
B
2
5

F
8
B
5
0

F
1
0
B
2

F
1
0
B
5

F
1
0
B
1
0

F
1
0
B
2
5

F
1
0
B
5
0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Precision

F
4
B
2

F
4
B
5

F
4
B
1
0

F
4
B
2
5

F
4
B
5
0

F
5
B
2

F
5
B
5

F
5
B
1
0

F
5
B
2
5

F
5
B
5
0

F
8
B
2

F
8
B
5

F
8
B
1
0

F
8
B
2
5

F
8
B
5
0

F
1
0
B
2

F
1
0
B
5

F
1
0
B
1
0

F
1
0
B
2
5

F
1
0
B
5
0

0.0

0.2

0.4

0.6

0.8

1.0

(d) F1 Score

Fig. 4. The classification results for different parameters of LSH-dRST.

[2] D. Peralta, S. del Rı́o, S. Ramı́rez-Gallego, I. Triguero, J. M. Benitez,
and F. Herrera, “Evolutionary feature selection for big data classification:
A MapReduce approach,” Mathematical Problems in Engineering, vol.
2015, Article ID 246139, 2015.

[3] H. Peng, F. Long, and C. H. Q. Ding, “Feature selection based on
mutual information: Criteria of max-dependency, max-relevance, and
min-redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226–1238, 2005.

[4] K. Thangavel and A. Pethalakshmi, “Dimensionality reduction based on
rough set theory: A review,” Appl. Soft Comput., vol. 9, no. 1, pp. 1–12,
2009.

[5] P. Lingras, “Unsupervised rough set classification using gas,” J. Intell.
Inf. Syst., vol. 16, no. 3, pp. 215–228, 2001.

[6] ——, “Rough set clustering for web mining,” in The 11th IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE’02). IEEE,
2002, pp. 1039–1044.

[7] I. Düntsch and G. Gediga, “Rough set data analysis,” Encyclopedia of
Computer Science and Technology, vol. 43, no. 28, pp. 281–301, 2000.

[8] Z. C. Dagdia, C. Zarges, G. Beck, and M. Lebbah, “A distributed rough
set theory based algorithm for an efficient big data pre-processing under
the spark framework,” in 2017 IEEE International Conference on Big
Data (BigData 2017). IEEE, 2017, pp. 911–916.

[9] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high

dimensions via hashing,” in Proceedings of the 25th VLDB Conference.
Morgan Kaufmann, 1999, pp. 518–529.

[10] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang, “Supervised hashing
with kernels,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, 2012, pp. 2074–2081.

[11] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems 21 (NIPS 2008). Curran
Associates, Inc., 2009, pp. 1753–1760.

[12] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
20th ACM Symposium on Computational Geometry (SCG’04). ACM,
2004, pp. 253–262.

[13] M. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings on 34th Annual ACM Symposium on Theory
of Computing (STOC’02). ACM, 2002, pp. 380–388.

[14] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing (STOC’98).
ACM, 1998, pp. 604–613.

[15] A. Z. Broder, “On the resemblance and containment of documents,”
in Proceedings. Compression and Complexity of SEQUENCES 1997.
IEEE Computer Society, 1997, pp. 21–29.

[16] J. He, W. Liu, and S. Chang, “Scalable similarity search with optimized

A
m

a
z
o

n

S
p

-R
S

T
 (

4
)

S
p

-R
S

T
 (

5
)

S
p

-R
S

T
 (

8
)

S
p

-R
S

T
 (

1
0

)

C
h

i S
q

u
a

re
d

G
a

in
 R

a
tio

In
fo

 G
a

in

S
u

m
 S

q
u

a
re

s
 (

1
5

0
9

)

S
u

m
 S

q
u

a
re

s
 (

1
7

8
4

)

S
u

m
 S

q
u

a
re

s
 (

2
7

1
5

)

S
u

m
 S

q
u

a
re

s
 (

3
3

5
2

)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Accuracy

A
m

a
z
o

n

S
p

-R
S

T
 (

4
)

S
p

-R
S

T
 (

5
)

S
p

-R
S

T
 (

8
)

S
p

-R
S

T
 (

1
0

)

C
h

i S
q

u
a

re
d

G
a

in
 R

a
tio

In
fo

 G
a

in

S
u

m
 S

q
u

a
re

s
 (

1
5

0
9

)

S
u

m
 S

q
u

a
re

s
 (

1
7

8
4

)

S
u

m
 S

q
u

a
re

s
 (

2
7

1
5

)

S
u

m
 S

q
u

a
re

s
 (

3
3

5
2

)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Recall

A
m

a
z
o

n

S
p

-R
S

T
 (

4
)

S
p

-R
S

T
 (

5
)

S
p

-R
S

T
 (

8
)

S
p

-R
S

T
 (

1
0

)

C
h

i S
q

u
a

re
d

G
a

in
 R

a
tio

In
fo

 G
a

in

S
u

m
 S

q
u

a
re

s
 (

1
5

0
9

)

S
u

m
 S

q
u

a
re

s
 (

1
7

8
4

)

S
u

m
 S

q
u

a
re

s
 (

2
7

1
5

)

S
u

m
 S

q
u

a
re

s
 (

3
3

5
2

)

0.0

0.2

0.4

0.6

0.8

1.0

(c) Precision

A
m

a
z
o

n

S
p

-R
S

T
 (

4
)

S
p

-R
S

T
 (

5
)

S
p

-R
S

T
 (

8
)

S
p

-R
S

T
 (

1
0

)

C
h

i S
q

u
a

re
d

G
a

in
 R

a
tio

In
fo

 G
a

in

S
u

m
 S

q
u

a
re

s
 (

1
5

0
9

)

S
u

m
 S

q
u

a
re

s
 (

1
7

8
4

)

S
u

m
 S

q
u

a
re

s
 (

2
7

1
5

)

S
u

m
 S

q
u

a
re

s
 (

3
3

5
2

)

0.0

0.2

0.4

0.6

0.8

1.0

(d) F1 Score

Fig. 5. The classification results for the original data set and other feature selection methods.

kernel hashing,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’10).
ACM, 2010, pp. 1129–1138.

[17] J. He, S. Chang, R. Radhakrishnan, and C. Bauer, “Compact hashing
with joint optimization of search accuracy and time,” in 2011 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, 2011, pp. 753–760.

[18] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” ArXiv e-prints, vol. abs/1408.2927, 2014.

[19] D. Cai, “A revisit of hashing algorithms for approximate nearest neigh-
bor search,” ArXiv e-prints, vol. abs/1612.07545, 2016.

[20] Z. Pawlak and A. Skowron, “Rudiments of rough sets,” Inf. Sci., vol.
177, no. 1, pp. 3–27, 2007.

[21] D. Dheeru and E. K. Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[22] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” in High Performance Data Mining.
Springer, 1999, pp. 263–290.

● ●

●

●

●

●

●

F=
4,

B=
2

F=
4,

B=
5

F=
4,

B=
10

F=
4,

B=
25

F=
4,

B=
50

F=
5,

B=
2

F=
5,

B=
5

F=
5,

B=
10

F=
5,

B=
25

F=
5,

B=
50

F=
8,

B=
2

F=
8,

B=
5

F=
8,

B=
10

F=
8,

B=
25

F=
8,

B=
50

F=
10

,B
=2

F=
10

,B
=5

F=
10

,B
=1

0
F=

10
,B

=2
5

F=
10

,B
=5

0

1500

2000

2500

3000

N
um

be
r o

f F
ea

tu
re

s

Ti
m

e
(in

 s
ec

on
ds

)

0

50

100

150

200

250number of selected features
RDF executation time

Fig. 6. The number of features in the reduced data set together with the
average execution time of the classifier.

http://archive.ics.uci.edu/ml

