
 
 

University of Birmingham

Towards encrypting industrial data on public
distributed networks
Preece, Joseph; Easton, John

DOI:
10.1109/BigData.2018.8622246

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Preece, J & Easton, J 2019, Towards encrypting industrial data on public distributed networks. in 2018 IEEE
International Conference on Big Data (Big Data)., 8622246, IEEE Press / Wiley, pp. 4540-4544, 2018 IEEE
International Conference on Big Data (Big Data), Seattle, Washington, United States, 10/12/18.
https://doi.org/10.1109/BigData.2018.8622246

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 20/12/2018

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

J. D. Preece and J. M. Easton, "Towards Encrypting Industrial Data on Public Distributed Networks," 2018 IEEE International Conference on
Big Data (Big Data), Seattle, WA, USA, 2018, pp. 4540-4544.
doi: 10.1109/BigData.2018.8622246

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.1109/BigData.2018.8622246
https://doi.org/10.1109/BigData.2018.8622246
https://birmingham.elsevierpure.com/en/publications/5206a7f3-166f-4852-9cc8-aefe2bf03e30


Towards Encrypting Industrial Data on Public
Distributed Networks

J. D. Preece
Birmingham Centre for Railway Research and Education

University of Birmingham
Birmingham, United Kingdom

jdp225@student.bham.ac.uk

J. M. Easton
Birmingham Centre for Railway Research and Education

University of Birmingham
Birmingham, United Kingdom

j.m.easton@bham.ac.uk

Abstract—This paper addresses the problem of uploading large
quantities of sensitive industrial data to a public distributed net-
work by proposing a new framework. The framework combines
the existing technologies of the distributed web and distributed
ledger to provide a mechanism of encrypting data and choosing
whom to share the data with. The framework is designed to
work with existing platforms; the InterPlanetary File System
(IPFS) and the Ethereum blockchain platforms are used as
examples within this paper, though it is stated that similar
platforms are capable of providing the requirements for the
framework to operate. The framework uses the concept of the
Diffie-Hellman Key Exchange (DHKE), and is implemented in
three different mechanisms of the DHKE: one-step Elliptical-
Curve Diffie-Hellman Key Exchange (ECDH); two-step ECDH;
and Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH).
The paper discusses the security of each along with individual
advantages and disadvantages, and concludes that the SIDH is
the most appropriate implementation for future use due to it
being post-quantum secure.

Index Terms—distribution, networks, blockchain, cryptogra-
phy

I. INTRODUCTION

Since the advent of the World Wide Web (WWW) in the
early 1990s, the vast majority of internet users have adhered
to the transport protocols supported by World Wide Web
Corporation (W3C). Whilst this performs to a standard that
most users regard as adequate, the network architectures that
the WWW rely on are outdated and are in desperate need
of modernisation. Instead of the reliance upon centralised
servers, information should be distributed across the nodes
of the Internet to make storage of data cheaper and faster to
access. In an industrial context, where the costs associated with
storing data are a major concern, the higher bandwidth costs
of centralised networks can become an issue. For example,
using the distributed approach to streaming a video can save
up to 60% in bandwidth costs over traditional architecture. [1]

However, with this distributed approach comes the problem
of sharing sensitive data; the nature of a distributed web means
that data on the network is visible to anybody who wishes
to access it. Encrypting the data prior to uploading it to the
distributed network is crucial to maintaining the secrecy of
any sensitive data.

Self-encryption methods are straightforward; one encrypts
the file with a symmetric key which can be stored locally at

the owner’s node, and then uses the symmetric key to decrypt
the file when required. The symmetric key is never available
in a public domain, and remains accessible only to the user.
Instead, a method that allows users to encrypt data and share
with selected individuals must exist.

This paper proposes a framework in order to achieve
encryption of data whilst enabling the uploader to decide
whom they wish this data is accessible by. By using a
distributed ledger platform alongside the distributed web to
record transaction history, provide identity and signatures of
the users, and enable the safe exchange of symmetric keys
through an insecure domain, a robust platform of provenance
and shared responsibility is created, removing the need for
centralised servers.

II. BACKGROUND

A. Distributed Networks

A computing network can be described as a “collection of
interlinked nodes that exchange information”. [2] How said
information is exchanged is governed by the architecture of the
network, of which many varying models exist. Baran defines
three such models, as illustrated in Figure 1; centralised,
decentralised, and distributed.

Fig. 1.



Traditionally, the Internet relies upon centralised servers
that act as a mandatory points-of-access. One aspect of the
centralised Internet is the ability to regulate the network, as
traffic must pass through mandatory servers before reaching
the client. This is both advantageous and disadvantageous in
the eyes of different users of the Internet.

Larger networks such as the Internet are made up of
smaller sub-networks. These sub-networks can use any model.
Individuals who host small websites will opt to run a single
centralised server that handles all traffic and data. Large
companies such as Google will use a distributed approach,
hosting multiple servers and hubs in a number of different
locations. This is so that data is not prone to loss due to
a single point-of-failure. Note that although the sub-network
is decentralised, the sub-network within the main network is
centralised, as access is restricted and maintained by Google
alone.

The distributed web is a term associated with transforming
the WWW from a centralised model to a distributed model.
This means that instead of accessing information stored at
centralised servers, the information is distributed efficiently at
every node on the network. Any node accessing information
can then check locally or access remotely by locating a
node that has the information. Because the information is
distributed, there is no point-of-failure, and information can
be accessed even if the information’s source node is offline.

One notable attempt to achieve the distributed web is the
IPFS. [4] The IPFS is an open-source peer-to-peer distributed
file system, where each node on the network stores content
it holds an interest in, along with indexing information to
make tracking the location of other files easier. Each node
is identified by a hash of a public key, where the key is
generated by S/Kademlia static cryptographic puzzle and then
stored in the distributed hash table. The network can make
use of existing transport protocols such as Hypertext Transport
Protocol (HTTP), Web Real-Time-Communication (WebRTC),
and Micro Transport Protocol (µTP). A new routing system
is introduced that combines the technologies of Coral and
Kadmelia to maintain information to help locate information
on the network, both locally and remote. Furthermore, a new
block exchange protocol is introduced to govern efficient block
distribution across the network. The file storage on the IPFS
is analogous to Git. An object on the IPFS can store up to
256kb of data, and links to other objects. For files larger than
256kb, the file is broken down into these 256kb objects and
linked via a Merkle Directed Acyclic Graph (MDAG). Though
files are immutable and permanent, the IPFS supports version
control and has a mutable naming system.

There are advantages that the distributed web (and imple-
mentations such as the IPFS) provide. One major advantage is
the reduction of bandwidth. Assume a video is being streamed
from YouTube. This is currently performed by requesting the
video from the YouTube server each time; the same data is
transferred between the server and the client every time the
video is accessed. With the distributed web approach, the video
is stored locally after accessing it once, removing the need to

use bandwidth to stream the video further. It is estimated the
distributed approach could reduce bandwidth costs by up to
60%.

B. Methods of Key Exchange
One of the earliest methods of key exchange is the DHKE,

proposed in 1976. The DHKE establishes a shared secret
between two parties by utilising the mathematical properties
of Public Key Encryption (PKE). Each party may establish the
secret independently of one another, removing the need to send
sensitive data (i.e. a symmetric) across a network. The process
is illustrated using a colour analogy in Figure 2. Alice and Bob

Fig. 2. The DHKE method, using paint mixing as an analogy

wish to produce a common colour, though wish to keep one
colour hidden from the other. To achieve this, they agree on a
common paint colour and mix in their secret colours. The new
colours are swapped, and their secret colours are then mixed
in. By doing this, they both end up with the common secret,
without having to share their secret colours. Because paint
separation is an expensive process, the secret colours cannot
be derived from any mixtures. Eve - an adversary watching
the process - only has access to the common paint and initial
mixtures, meaning she cannot establish the common secret or
either of the secret colours.

There are a number of different mechanisms that make use
of the underlying principles of the DHKE. Three particular



examples used for implementation of this framework are
ECDH, SIDH, and Supersingular Isogeny Key Encapsulation
(SIKE).

1) Elliptical-Curve Diffie-Hellman Key Exchange: The
ECDH is a modification of the original DHKE which makes
use of Elliptical Curve Cryptography (ECC). Assume Al-
ice and Bob have elliptical curve key-pairs (QA, dA) and
(QB , dB) respectively, where d is a secret key and Q is a
public key. A public key is represented by a point on the
elliptical curve

Q = dG

where Q is the point on the curve, d is the secret key
associated, and G is the generator of the cyclic subgroup. The
coordinate on the elliptical curve is calculated as

(x, y) = dAQB = dBQA

where Alice calculates dAQB , and Bob calculates dBQA. The
x coordinate is used as the shared secret. Because

dAQB = dAdBG

and
dBQA = dBdAG

it is trivial to see that the shared secret is equal for both parties.
The ECDH is compatible with keypairs generated by the

Elliptical Curve Digital Signature Algorithm (ECDSA), and as
such, any distributed ledger platform that utilises the ECDSA
such as Ethereum.

Shor’s algorithm is a hypothetically possible quantum algo-
rithm that computes discrete logarithms to break the under-
lying ECC, with an estimate of 2330 qubits and 126 Toffoli
gates required to break a 128-bit level of security. [5]

2) Supersingular Isogeny Diffie-Hellman Key Exchange:
SIDH is a solution that modifies the methodology to secure
the DHKE against post-quantum attacks such as Shor’s algo-
rithm. [6] As with the ECDH, certain parameters are made
public prior to use: a prime p; a supersingular elliptical curve
E; fixed elliptical points (PA, QA) and (PB , QB); and the
orders of the points (ωA)

eA and (ωB)
eB .

Alice begins by establishing the kernal of her isogeny by
creating a random point

RA = mAPA + nAQA

where nA,mA are two random integers and nA,mA <
(ωA)

eA . Alice uses RA to create an isogeny mapping φA,
where the mapping is E → EA. Alice applies the mapping to
PB and QB to form points φA(PB) and φA(QB) on the curve
EA. Alice sends EA, φA(PB), and φA(QB) to Bob. Bob then
mirrors the steps made by Alice and sends her EB , φB(PA),
and φB(QA).

Alice then forms

SBA = mA(φB(PA)) + nA(φB(QA))

and creates an isogeny mapping ψBA, where the mapping is
E → EBA. Alice then computes the j-invariant

K = j(EBA) = 1728
4a3

4a3 + 27b2

by using the Weierstrass equation. Bob mirrors Alice’s steps
to also obtain EAB to calculate the j-invariant. Both curves
are guaranteed to have an identical j-invariant.

It is confirmed that SIDH has a classical security of
O(p1/4) [7, 8] and is hypothesised that the quantum security
is O(p1/6) [6]. This suggests that the security level is 128-bit
if the p is a 768-bit prime number.

The SIDH requires public keys of 330 bytes, greater than
that used by the ECDSA. As such, SIDH is not compatible
with existing distributed ledger platforms that make use of
ECDSA to generate the keypairs.

III. METHODOLOGY

In order to combat the issue of data privacy issues within
distributed networks, a new framework is proposed that inte-
grates both distributed web and distributed ledger technologies
to enable secure key exchange and permanently accessible
data. The framework operates over a series of steps: en-
crypting plain text data and placing it on the distributed
web; establishing a shared secret with an intended recipient
and encrypting the symmetric key used to encrypt the plain
text data; sending the encrypted symmetric key through a
transaction on the distributed ledger; decrypting the symmetric
key with the shared secret; and decrypting the cipher text
with the symmetric key. There are two agents at play in the
framework: Alice, who wishes to commit and send data; and
Bob, who wishes to receive data from Alice. Eve, who wishes
to intercept and read the data without prior permission, is also
considered.

The framework is implemented in three varying methods:
one-step ECDH, two-step ECDH, and SIDH. This is in order
to compare the security and efficiency of two varying exchange
tools against one another. The details of all implementations
are explained in the following sections respectively.

A. One-Step Elliptical-Curve Diffie-Hellman Key Exchange

This approach utilises the ECDH methodology by enabling
the two parties to independently generate a shared secret K. A
symmetric key is derived by passing the shared secret through
the Hash-Based Message Authentication Code (HMAC) Key
Derivation Function (KDF) (HKDF) which is then used to
encrypt Alice’s plaintext. We assume that Alice and Bob
have generated keypairs (QA, dA) and (QB , dB) respectively,
where Q is a point on the elliptical curve. The keypairs are
generated by the ECDSA, and as such can be used as Ethereum
addresses. The process is described in the following sequence:

1B Bob invokes a request transaction, asking Alice to
share data with him

1A Alice computes Bob’s public key QB from the
transaction and computes the point on the elliptical
curve (x, y) = dAQB



2A Alice passes the shared secret x (the x coordinate
of the computed elliptical curve point) through the
HKDF to derive a robust symmetric key K

3A Alice encrypts plaintext data she wishes to share
with Bob by using K with the Advanced Encryption
Standard (AES).

4A Alice uploads her ciphertext on to the IPFS.
2B Bob derives K by mirroring Alice’s steps between

2A-3A
3B Bob accesses the IPFS file and uses K to decrypt

the ciphertext.
The disadvantage of this approach concerns the fact that

there is one shared symmetric key per pair of Ethereum
addresses. Should Alice wish to share a piece of data with
10 people, she will have to establish a shared symmetric key
with each person and encrypt the data 10 times. This is a
computationally demanding process, as each version of the
ciphertext must be made available on the IPFS.

B. Two-Step Elliptical-Curve Diffie-Hellman Key Exchange
A variation of the ECDH may be used, where a symmetric

key is randomly generated for each piece of data being shared,
and a shared secret is generated between Alice and Bob via
a temporary elliptical curve key-pair. As with the one-step
implementation described previously, we assume that Alice
and Bob have generated keypairs (QA, dA) and (QB , dB) re-
spectively. The process is described in the following sequence:

1A Alice generates a 128-bit symmetric key K1 and
encrypts the plaintext

2A Alice uploads the ciphertext to the IPFS
1B Bob invokes a transaction to request K1 to decrypt

the ciphertext
3A Alice checks for any unresolved requests on the

blockchain. She performs this by checking the re-
quest addresses against her address whitelist.

4A If Bob’s address is on the whitelist, Alice computes
his public key QB and then computes the point on
the elliptical curve (x, y) = dAQB

5A Alice passes the shared secret x (the x coordinate
of the computed elliptical curve point) through the
HKDF to derive a robust symmetric key K2

6A Alice encrypts K1 with the AES, using K2 as the
key

7A Alice invokes a transaction to send Bob the encrypted
K1

2B Bob derives K2 by mirroring Alice’s steps between
5A-6A and decrypts the encrypted K1

3B Bob uses K1 to decrypt the ciphertext
The advantage of this approach is that each piece of data

uses a unique randomly generated symmetric key which is
used to encrypt the data prior to any requests being made. If
two users agree to share data, they establish a shared secret via
their respective elliptical curve keypairs. This maintains one
shared secret between the users, whilst protecting the original
symmetric key should Alice wish to withhold the data from
Bob.

C. Supersingular Isogeny Diffie-Hellman Key Exchange

A further use of the Diffie-Hellman approach is SIDH.
Whilst the underlying method behind this approach is identical
to that of the approach described in Section III-B, the SIDH
approach is post-quantum secure, ensuring security against
adversaries with quantum computing capabilities.

1A Alice generates a 128-bit symmetric key K1 and
encrypts the plaintext

2A Alice uploads the ciphertext to the IPFS
1B Bob invokes an Ethereum transaction to request K1

to decrypt the ciphertext. Within this transaction, Bob
provides EB , φB(PA), and φB(QA)

3A Alice checks for any unresolved requests on the
ledger. She performs this by checking the request
addresses against her address whitelist.

4A If Bob’s address is on the whitelist, Alice computes
his public key PB and then computes EA, φA(PB),
and φA(QB) to form an elliptical curve EBA isoge-
nous to the original curve E

5A Alice computes K2, where K2 is the j −
invariant(jAB) of EAB

6A Alice passes K2 through through the HKDF to derive
a robust symmetric key Ksym,2

7A Alice encrypts K1 with the AES, using K2 as the
key

8A Alice invokes a transaction to send Bob the encrypted
Ksym,1

2B Bob derives K2 by mirroring Alice’s steps between
5A-7A and decrypts the encrypted K1

3B Bob uses K1 to decrypt the ciphertext
Because SIDH generates keypairs that are not compatible

with ECDSA, any distributed ledger platform that uses the
ECDSA is incompatible with this method. As such, a new
distributed ledger platform that utilises a 330-byte public key
must be implemented in order to achieve the same framework
mechanics of the previous two implementations.

IV. DISCUSSION

Whilst there are particular advantages and disadvantages to
each variation of implementation, some aspects hold more sig-
nificance than others. The underlying framework methodology
- regardless of implementation - also has both advantages and
disadvantages.

By using a blockchain platform, the ECC key-pairs can be
used in two ways; shared secret generation for encryption of
data, and digital signatures to ensure provenance and identity.
Existing platforms that use the ECDSA and smart contracts,
such as the Ethereum platform, can be used with the one-step
and two-step ECDH implementations.

The application of the framework this paper has analysed is
built with two existing technologies; the IPFS and Ethereum.
Neither technology required modification for the framework
to deliver the intended result. Hypothetically, any similar tech-
nologies can be used in place. For example, any blockchain
platform that utilises ECC and supports smart contracts can



be used in place of the Ethereum platform. Furthermore, any
distributed web platform can be used in place of the IPFS.

Once data is uploaded to the IPFS, it remains accessible
for as long as the network is running. Deletion of data is
impossible, unless all nodes on the network agreed to remove
all local copies; something that is infeasible to accomplish
if members of the network do not trust one another. Should
a breach of the encryption occur, or the symmetric key to
become public, or the Ethereum account of a recipient, it
becomes possible for the data to be accessed to anybody.

The SIDH implementations provide security against post-
quantum attacks. Due to the permanence of data on a public
distributed network, this is an increasingly important consider-
ation. Though quantum attacks are only hypothetical, quantum
computing technology continues to make rapid progress and
will one day pose a threat to the classical fields of cryptogra-
phy that are so common with the centralised web.

One of the major disadvantages with this framework is
the requirement of offline computation to perform encryption
tasks. Due to the nature of the blockchain, all processes
performed within a Solidity smart contract are visible to
anybody who wishes to see them; even private variables may
be accessed. For security purposes, it is strongly advised to
avoid placing any sensitive data into a smart contract i.e. a
unencrypted symmetric key.

The framework offers a lightweight solution to distributing
industrial data between stakeholders over trustless networks.
This is important to achieve in order to remove the financial
and logistical burdens of centralised networks. One particular
industry that could make use of such a framework is the
railway industry in the United Kingdom. With a highly priva-
tised railway industry, there are many competing companies
which leads to siloation; the segregation of whole Information
Technology (IT) systems into silos. This becomes a problem
when a company may be willing to share some data; an
entirely new piece of software must be issued in order to
extract the data of interest, whilst maintaining protection over
the data that it wishes to keep secret.

By storing data on a distributed network, the storage of data
will be shared amongst the stakeholders and will make data
accessibility easier. The framework will allow stakeholders
to choose which data to share and whom to share it with.
An example of where the framework could be applied is
sensor data; the stakeholder may only wish for whoever is
responsible for repairing particular aspects of the railway to
see the relevant data; thus they can establish a secure bond
of trust via the blockchain public keys whilst not having to
worry about where the data is stored on the network.

V. CONCLUSION

Taking all security and performance aspects into consid-
eration, it is predicted that the SIDH implementation of the
framework will be most suitable for use. This enables users
to achieve the original purpose of the framework - to encrypt
data in a public domain and share with selected individuals
- whilst providing post-quantum security. This is dependent

upon results which are still being collected upon submission
of this paper. Furthermore, this will be dependent upon years
of use and scrutiny of SIDH in order to ensure it is secure.

Nonetheless, a step towards moving industrial data away
from a centralised context has been theorised and imple-
mented. With the forthcoming years of confirming SIDH’s
security, there are aspects of the framework which can be
refined and improved. Looking to the future, there are a
number of areas of research identified from the results of
the framework discussed in this paper. One area of concern
is computation of symmetric keys, and whether this can be
shifted into a distributed context. This would alleviate the
need to compute the symmetric keys offline, resulting in a
framework where users can request and access data with no
need for the data’s creator to be online. This research will look
into modifications of the virtual machines and script languages
of the blockchain platforms in use.

Furthermore, research must be undertaken into how such a
framework can integrate with data processing. As of this paper,
the framework has the ability to store sensitive documents in
a public domain, but all other manipulation of the documents
must be performed offline.

REFERENCES

[1] K. Nguyen and T. Nguyen and Y. Kovchegov. A P2P
Video Delivery Network. Oregon State University. 2010.

[2] Institute of Network Cultures. Beyond Distributed
and Decentralized: What is a Federated Network?
http://networkcultures.org/unlikeus/resources/articles/
what-is-a-federated-network/. [Online; accessed 17-Sep-
2018].

[3] P. Baran. On Distributed Commincations. Research Mem-
orandum. Rand Corporation, Santa Monica, California,
1964.

[4] J. Benet. IPFS - Content Addressed, Versioned, P2P File
System. Protocol Labs. 2014.

[5] M. Roetteler, M. Naehrig, K. Svore, and K. Lauter.
Quantum resource estimates for computing elliptic curve
discrete logarithms. Cornell University. 2017.

[6] D. Jao and L. De Feo. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. In
Bo-Yin Yang, editor, Post-Quantum Cryptography, 4th
International Workshop, Taipei, 2011.

[7] J. Biasse, D. Jao, and A. Sankar. A quantum algorithm for
computing isogenies between supersingular elliptic curves.
University of Waterloo. 2016.

[8] S. Galbraith, C. Petit, B. Shani, and Y. Bo Ti. On the se-
curity of supersingular isogeny cryptosystems. University
of Waterloo. 2016.


