
One-Shot Learning on Attributed Sequences
Zhongfang Zhuang, Xiangnan Kong, Elke, Rundensteiner

Worcester Polytechnic Institute
{zzhuang, xkong, rundenst}@wpi.edu

Aditya Arora, Jihane Zouaoui
Amadeus IT Group

{aditya.arora, jihane.zouaoui}@amadeus.com

Abstract—One-shot learning has become an important re-
search topic in the last decade with many real-world applications.
The goal of one-shot learning is to classify unlabeled instances
when there is only one labeled example per class. Conventional
problem setting of one-shot learning mainly focuses on the data
that is already in a feature space (such as images). However, the
data instances in real-world applications are often more complex
and feature vectors may not be available. In this paper, we
study the problem of one-shot learning on attributed sequences,
where each instance is composed of a set of attributes (e.g., user
profile) and a sequence of categorical items (e.g., clickstream).
This problem is important for a variety of real-world applications
ranging from fraud prevention to network intrusion detection.
This problem is more challenging than the conventional one-
shot learning since there are dependencies between attributes
and sequences. We design a deep learning framework OLAS to
tackle this problem. The proposed OLAS utilizes a twin network
to generalize the features from pairwise attributed sequence
examples. Empirical results on real-world datasets demonstrate
the proposed OLAS can outperform the state-of-the-art methods
under a rich variety of parameter settings.

Index Terms—One-shot learning, Attributed Sequence

I. INTRODUCTION

Humans are capable of learning from one, or just a few
examples [1], and grasp the patterns. We recognize a person
even if we have seen this person’s photo only once [2].
Inspired by this capability, one-shot learning, where the goal
is to classify previously unseen instances based on only
one example per class, has become an important research
topic [3], [4], [5].

In the literature, conventional approaches to one-shot learn-
ing focus on using feature vectors as input in the learning
process [2], [6], [7], in which each instance is represented
as a fixed-size vector (e.g., images). However, data instances
in real-world big data applications are often more complex
and heterogeneously structured. In this work, we target at
one complex data composed of a variable length sequence of
categorical items (e.g., a user’s clickstream) along with a set of
attributes (e.g., a user’s profile). We refer to this complex data
as attributed sequences. Here are two examples of attributed
sequences:

Example 1 (Network Traffic as Attributed Sequences): Net-
work traffic can be modeled as attributed sequences. Namely,
it consists of a sequence of packages being sent or received
by the routers and a set of attributes indicating the context of
the network traffic (e.g., user privileges, security settings, etc).

Example 2 (Genes as Attributed Sequences): Genes can be
represented as attributed sequences, where each gene consists

Class 3: Application-layer Attack

Class 2: Man-in-the-Middle AttackIncoming Network Traffic

Class 1: Sniffer Attack

<latexit sha1_base64="ZA6ie3WGgeMM3w6IAB3LXYr10PI=">AAACFnicbVC7TsMwFHV4lvAqMLJYVEidoqQLsFViYaNIhFZqqspxblqrthPZDqKq+hcs/AoLAyBWxMbf4D4GaLmSraNz7vPEOWfa+P63s7K6tr6xWdpyt3d29/bLB4d3OisUhZBmPFOtmGjgTEJomOHQyhUQEXNoxoPLid68B6VZJm/NMIeOID3JUkaJsVS37EUyYzIBaXBE7Q+KyZ57LQHDAxE5BxxFbg4KU0609rrliu/508DLIJiDCppHo1v+ipKMFsK2nnZoB35uOiOiDKMcxm5UaMgJHZAetC2URIDujKZ3jfGpZRKcZso+u+CU/V0xIkLroYhtpiCmrxe1Cfmf1i5Met4ZMZkXBiSdDUoLjk2GJybhhCmghg8tIFQxuyumfaIItf5o15oQLJ68DMKad+EFN7VKvTp3o4SO0QmqogCdoTq6Qg0UIooe0TN6RW/Ok/PivDsfs9QVZ15zhP6E8/kDZwKe6g==</latexit>

Fig. 1: Network attack detection using one-shot learning on
attributed sequences. Each instance is composed of a user pro-
file as the attributes and a sequence of user actions (depicted
using different shapes). A system administrator is interested in
finding out if the incoming network traffic is malicious with
only one sample per class.

of a DNA sequence and a set of attributes (e.g., PPI, gene
ontology, etc.) indicating the properties of the gene.

Designing one-shot learning to work with attributed se-
quences promises to be beneficial for a wide range of critical
big data applications that require timely responses at scale,
such as financial fraud detection and network intrusion de-
tection. In the real-world scenarios, these applications often
work on large-scale datasets, yet very few data instances are
labeled. Continuing with our Example 1, to respond in a timely
fashion to potential network intrusion threats, one first has
to determine what the intrusion type of incoming potentially
malicious traffic even if only one or a few examples per
known intrusion type have been seen previously (as depicted
in Fig. 1). Despite its importance in real-world applications,
one-shot learning on attributed sequences remains unexplored
to date.

In this paper, we study this new problem of one-shot
learning on attributed sequences, with the goal of generating
a label for each unlabeled attributed sequence with only one
training example per known class. This problem is different
from previous one-shot learning work, as we now need to
extract feature vectors from not only the attributes but also
the structural information from the sequences and the depen-
dencies between attributes and sequences. We summarize the
specific challenges as follows:
• Attribute-sequence dependencies. Fundamental prob-

lems arise when learning to classify attributed sequence
data. Contrary to the simplifying assumption that the
attributes and sequences in these real-world scenarios
are independent, various dependencies between them can

ar
X

iv
:2

20
1.

09
20

2v
1

 [
cs

.L
G

]
 2

3
Ja

n
20

22

arise. For example, in network traffic data, one’s behavior
of sending/receiving TCP/UDP packets (i.e., sequences)
may depend on the device type (i.e., attributes). Since
conventional one-shot learning approaches focus on a
single data type, these dependencies would thus not be
captured.

• Generalization in complex data type. The key difficulty
in one-shot learning is to generalize beyond the single
training example. It is more difficult to generalize from a
more complex data type [8], such as attributed sequence
data, than from a simpler data type due to the larger
search space and slower convergence.

Our Approach. To address the above challenges, we pro-
pose an end-to-end one-shot learning model, called OLAS,
to accomplish one-shot learning for attributed sequences. The
OLAS model includes two main components: a CoreNet to
encode the information from attributes, sequences and their
dependencies and a PredictNet to learn the similarities and
differences between different attributed sequence classes. The
proposed OLAS model is beyond a simple concatenation of
CoreNet and PredictNet. Instead, they are interconnected
within one network architecture and thus can be trained
synchronously. Once the OLAS is trained, we can then use
it to make predictions for not only the new data but also for
entire previously unseen new classes. Our paper offers the
following core contributions:
• We formulate and analyze the problem of one-shot learn-

ing on attributed sequences.
• We develop a deep learning model that is capable of

inferring class labels for attributed sequences based on
one instance per class.

• We demonstrate that the OLAS network model trained on
attributed sequences significantly improves the accuracy
of label prediction compared to state-of-the-art methods.

We organize the rest as follows. We first define our problem
in Section II. We detail our study of this problem and solve it
using a distance metric learning-based solution in Sections III.
Next, we present the experimental methodology and results
in Section IV. We analyze related work in Section V. We
conclude our findings in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the key definitions and problem
formulation of one-shot learning on attributed sequences. The
important notations are summarized in Table I.

A. Preliminaries

Definition 1 (Sequence): Given a finite set I composed of
r categorical items, a sequence si =

(
x

(1)
i , · · · , x(ti)

i

)
is an

ordered list of ti items, where ∀x(t)
i ∈ I.

The subscript i is used to distinguish different instances. One
common method for preprocessing variable-length sequences
for deep learning is to first zero-pad each sequence to the
maximum length of the sequences in a dataset, followed by
one-hot encoding each sequence [9]. We adopt this approach

in this work. We denote the maximum length of sequences as
tmax. Learning models are capable of disregarding the padding
so that the padding has no effect in the training of models. We
denote the one-hot encoded form of sequence si as a matrix
si ∈ Rtmax×r.

Definition 2 (Attributed Sequence): An attributed sequence
pi is a pair composed of an attribute vector vi and a one-
hot encoded sequence si, denoted as pi = (vi, si). A u-
dimensional attribute vector vi is composed of u attributes
in the dataset.

B. Problem Definition

Inspired by the work in [10], we formulate our problem as
finding the parameters θ of a predictor Θ that minimizes the
loss Lone-shot. Given a training set of g attributed sequences
G = {(p1, c1), · · · , (pg, cg)}, where each attributed sequence
pi has a unique class label ci, we formulate the objective for
one-shot learning for attributed sequences as:

minimize
θ

∑
(pi,ci)∈G

Lone-shot (Θ (pi; θ) , ci) (1)

That is, we want to minimize the loss calculated using the
label predicted using parameter θ and the true label. One-shot
learning is known as a hard problem [2] mainly as a result
of unavoidable overfitting caused by insufficient data. With a
complex data type, such as attributed sequences, the number
of parameters that need to be trained is even larger, which
further complicates the problem.

III. THE OLAS MODEL

A. Approach

In this work, we adopt an approach from the distance metric
learning perspective. Distance metric learning methods are
well known for several important applications, such as face
recognition, image classification, etc. Distance metric learning
is capable of disseminating data based on their dissimilarities
using pairwise training samples. Recent work [2] has empir-
ically demonstrated the effectiveness of the distance metric
learning approach. In addition to the pairwise training samples,
there are two key components in distance metric learning: a
similarity label depicting whether the training pair is similar
and a distance function d. The similar and dissimilar pairs can
be randomly generated using the class labels [2]. We define
attributed sequence triplets in Definition 3.

Definition 3 (Attributed Sequence Triplets): An attributed
sequence triplet (pi, pj , `ij) consists of two attributed se-
quences pi, pj , and a similarity label `ij ∈ {0, 1}. The
similarity label indicates whether pi and pj belong to the
same class (`ij = 0) or different classes (`ij = 1). We
denote P = {(pi, pj , `ij)|`ij = 0} as the positive set and
N = {(pi, pj , `ij)|`ij = 1} as the negative set.
However, attributed sequences are not naturally represented
as feature vectors. Therefore, we define a transformation
function Ω(pi;ω) parameterized by ω as a part of the predictor
Θ. Ω uses attributed sequences as the inputs and generates
the corresponding feature vectors as the outputs. With two

TABLE I: Important Mathematical Notations

Notation Description
R The set of real numbers
r The number of possible items in sequences.
si A sequence of categorical items.
x

(t)
i The t-th item in sequence si.
tmax The maximum length of sequences in a dataset.
si A one-hot encoded sequence in the form of a matrix si ∈ Rtmax×r .

x(t)
i A one-hot encoded item at t-th time step in a sequence.
vi An attribute vector.
pi An attributed sequence. i.e., pi = (vi, si)
pi An n-dimensional feature vector of attributed sequence pi.
Ω A function transforming each attributed sequence to a feature vector.
d A distance function. e.g., Mahalanobis distance, Manhattan distance.
γ An activation function within fully connected neural networks.

Possible choices include ReLU and tanh.
σ A logistic activation function within LSTM, i.e., σ(z) = 1

1+e−z

attributed sequences pi and pj as inputs, the n-dimensional
feature vectors of the respective attributed sequences are:

pi = Ω(pi;ω)

pj = Ω(pj ;ω)

pi,pj ∈ Rn
(2)

The other key component in distance metric learning ap-
proaches is a distance function (e.g., Mahalanobis distance
[11], Manhattan distance [10]). A distance function is applied
to the feature vectors in distance metric learning.

Distance metric learning-based approaches often use the
Mahalanobis distance [11], [12], which can be equivalent to
the Euclidean distance [11]. Using the two feature vectors of
attributed sequences in Equation 2, the Mahalanobis distance
can be written as:

dω(pi,pj) =
√

(pi − pj)>Λ(pi − pj) (3)

where dω is a specific form of distance function d denoting
the inputs (i.e., pi,pj) are the results of transformations using
parameter ω. Λ ∈ Rn×n is a symmetric, semi-definite, and
positive matrix, and Λ can be decomposed as:

Λ = Γ>Γ, (4)

where Γ ∈ Rf×n, f ≤ n. By [13], Equation 3 is equivalent
to:

dω(pi,pj) =
√

(pi − pj)>Γ>Γ(pi − pj)

= ‖Γpi − Γpj‖2.
(5)

Instead of directly minimizing the loss of the predictor
function Θ predicting a label of each attributed sequence as
in Equation 1, we can now achieve the same training goal by
minimizing the loss of predicting whether a pair of attributed
sequences belongs to the same class using distance metric

learning-based methods. The overall objective can be written
as:

minimize
ω

∑
(pi,pj ,`ij)∈P∪N

L (dω (pi,pj) , `ij) (6)

In recent work on distance metric learning applications [10],
[11], deep neural networks are serve as the nonlinear transfor-
mation function Ω. Deep neural networks can effectively learn
the features from input data without requiring domain-specific
knowledge [2], and also generalize the knowledge for future
predictions and inferences. These advantages make neural
networks become an ideal solution for one-shot learning.

B. OLAS Model Design

We next describe the design of the two key components of
the OLAS model. First, we design a CoreNet for the nonlinear
transformation of attributed sequences. Then, a PredictNet is
designed to learn from the contrast of attributed sequences
with different class labels. The specific parameters of the
OLAS used in our experiments are detailed in Section IV.

The two main networks in CoreNet, a fully connected
neural network with m layers and a long short-term memory
(LSTM) network [14], correspond to the tasks of encoding
the information from attributes and sequences in attributed
sequences, respectively. By augmenting with another layer of
fully connected neural network on top of the concatenation of
the above networks, CoreNet is also capable of learning the
attribute-sequence dependencies.

Given the input of an attribute vector vk ∈ Ru, we define
a fully connected neural network with m layers as:

ααα1 = γ (W1vi + b1)

ααα2 = γ (W2ααα1 + b2)

...
αααm = γ (Wmαααm−1 + bm)

(7)

CoreNet CoreNet

<latexit sha1_base64="n3sC9TC/OJs7VBjFVkIwrJ9moqA=">AAACEXicbVC7TgJBFJ3FF+ILtbSZCCbYkF0aHxXGRjuMIiRAyOxwFybMPpy5ayQbvsHGX7GxUGNrZ+ffODwKBU8yyck59+bOOW4khUbb/rZSC4tLyyvp1cza+sbmVnZ751aHseJQ5aEMVd1lGqQIoIoCJdQjBcx3JdTc/vnIr92D0iIMbnAQQctn3UB4gjM0Ujt72ER4QNdLLoMoxtMhPUNUwo0ROvQa7mIIONB81Hby7WzOLtpj0HniTEmOTFFpZ7+anZDHPgTIJdO64dgRthKmUHAJw0wz1hAx3mddaBgaMB90KxlHGtIDo3SoFyrzAqRj9fdGwnytB75rJn2GPT3rjcT/vEaM3nErEaO0JtvkkBdLiiEd9UM7QgFHOTCEcSXMXynvMcU4mhYzpgRnNvI8qZaKJ0XnqpQrF6ZtpMke2ScF4pAjUiYXpEKqhJNH8kxeyZv1ZL1Y79bHZDRlTXd2yR9Ynz8COp0h</latexit> <latexit sha1_base64="x3S8FUXV307er6Wc+EyiJxWHdnQ=">AAACEXicbVC7TgJBFJ3FF+ILtbSZCCbYkF0aHxXGRjuMIiRAyOxwFybMPpy5ayQbvsHGX7GxUGNrZ+ffODwKBU8yyck59+bOOW4khUbb/rZSC4tLyyvp1cza+sbmVnZ751aHseJQ5aEMVd1lGqQIoIoCJdQjBcx3JdTc/vnIr92D0iIMbnAQQctn3UB4gjM0Ujt72ER4QNdLLoMoxtMhPUNUwo0ROvQa7mIIONB81C7l29mcXbTHoPPEmZIcmaLSzn41OyGPfQiQS6Z1w7EjbCVMoeAShplmrCFivM+60DA0YD7oVjKONKQHRulQL1TmBUjH6u+NhPlaD3zXTPoMe3rWG4n/eY0YveNWIkZpTbbJIS+WFEM66od2hAKOcmAI40qYv1LeY4pxNC1mTAnObOR5Ui0VT4rOVSlXLkzbSJM9sk8KxCFHpEwuSIVUCSeP5Jm8kjfryXqx3q2PyWjKmu7skj+wPn8AA76dIg==</latexit>

<latexit sha1_base64="Yy3kCu74VkxG4nLfhriZf1UO42Y=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQiWHcFNy4rGFtoQplMJ+3QySTMo1BCf8ONCxW3fo07/8ZJm4W2Hhg4nHMv98yJMs6Udt1vp7KxubW9U92t7e0fHB7Vj0+eVGokoT5JeSp7EVaUM0F9zTSnvUxSnEScdqPJXeF3p1QqlopHPctomOCRYDEjWFspCBKsx1GcT+cDb1BvuE13AbROvJI0oERnUP8KhikxCRWacKxU33MzHeZYakY4ndcCo2iGyQSPaN9SgROqwnyReY4urDJEcSrtExot1N8bOU6UmiWRnSwyqlWvEP/z+kbHrTBnIjOaCrI8FBuOdIqKAtCQSUo0n1mCiWQ2KyJjLDHRtqaaLcFb/fI68a+at03v4brRbpVtVOEMzuESPLiBNtxDB3wgkMEzvMKbY5wX5935WI5WnHLnFP7A+fwBjkiRiA==</latexit> <latexit sha1_base64="rlsAlqAdUNSlNY4QsGdzbxkRT1M=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFclaQI1l3BjcsKxhaaUCbTSTt0MgnzKJTQ33DjQsWtX+POv3HSZqGtBwYO59zLPXOijDOlXffb2djc2t7ZrexV9w8Oj45rJ6dPKjWSUJ+kPJW9CCvKmaC+ZprTXiYpTiJOu9HkrvC7UyoVS8WjnmU0TPBIsJgRrK0UBAnW4yjOp/NBc1Cruw13AbROvJLUoURnUPsKhikxCRWacKxU33MzHeZYakY4nVcDo2iGyQSPaN9SgROqwnyReY4urTJEcSrtExot1N8bOU6UmiWRnSwyqlWvEP/z+kbHrTBnIjOaCrI8FBuOdIqKAtCQSUo0n1mCiWQ2KyJjLDHRtqaqLcFb/fI68ZuN24b3cF1vt8o2KnAOF3AFHtxAG+6hAz4QyOAZXuHNMc6L8+58LEc3nHLnDP7A+fwBj8uRiQ==</latexit>

<latexit sha1_base64="Ihh+/r+HKM4cHLBdTJEi+Qu0ZHM=">AAAB+nicbVDLSsNAFL3xWesr1qWbwSLUTUlEsO4KblxWMLbQxjCZTtqhkwczE2kJ+RU3LlTc+iXu/BsnbRbaemDgcM693DPHTziTyrK+jbX1jc2t7cpOdXdv/+DQPKo9yDgVhDok5rHo+VhSziLqKKY47SWC4tDntOtPbgq/+0SFZHF0r2YJdUM8iljACFZa8szaIMRq7AfZNPfsx6xhn+eeWbea1hxoldglqUOJjmd+DYYxSUMaKcKxlH3bSpSbYaEY4TSvDlJJE0wmeET7mkY4pNLN5tlzdKaVIQpioV+k0Fz9vZHhUMpZ6OvJIqlc9grxP6+fqqDlZixKUkUjsjgUpBypGBVFoCETlCg+0wQTwXRWRMZYYKJ0XVVdgr385VXiXDSvm/bdZb3dKtuowAmcQgNsuII23EIHHCAwhWd4hTcjN16Md+NjMbpmlDvH8AfG5w/SmJPP</latexit> <latexit sha1_base64="97kRXJW0kKEMqr4QvWElFK8Zla4=">AAAB+nicbVBNS8NAFHypX7V+xXr0EixCvZSkCNZbwYvHCsYW2lg22027dLMJuxtpCfkrXjyoePWXePPfuGlz0NaBhWHmPd7s+DGjUtn2t1Ha2Nza3invVvb2Dw6PzOPqg4wSgYmLIxaJno8kYZQTV1HFSC8WBIU+I11/epP73SciJI34vZrHxAvRmNOAYqS0NDSrgxCpiR+ks2zoPKb15kU2NGt2w17AWidOQWpQoDM0vwajCCch4QozJGXfsWPlpUgoihnJKoNEkhjhKRqTvqYchUR66SJ7Zp1rZWQFkdCPK2uh/t5IUSjlPPT1ZJ5Urnq5+J/XT1TQ8lLK40QRjpeHgoRZKrLyIqwRFQQrNtcEYUF1VgtPkEBY6boqugRn9cvrxG02rhvO3WWt3SraKMMpnEEdHLiCNtxCB1zAMINneIU3IzNejHfjYzlaMoqdE/gD4/MH1B2T0A==</latexit> <latexit sha1_base64="kM8oKWhhzKDJERkqTpNFWD99sLs=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBahbkqignVXcOOygrGFNobJdNIOnTyYmUhLyK+4caHi1i9x5984bbPQ1gMDh3Pu5Z45fsKZVJb1bZTW1jc2t8rblZ3dvf0D87D6IONUEOqQmMei62NJOYuoo5jitJsIikOf044/vpn5nScqJIujezVNqBviYcQCRrDSkmdW+yFWIz/IJrlnP2b1i7PcM2tWw5oDrRK7IDUo0PbMr/4gJmlII0U4lrJnW4lyMywUI5zmlX4qaYLJGA9pT9MIh1S62Tx7jk61MkBBLPSLFJqrvzcyHEo5DX09OUsql72Z+J/XS1XQdDMWJamiEVkcClKOVIxmRaABE5QoPtUEE8F0VkRGWGCidF0VXYK9/OVV4pw3rhv23WWt1SzaKMMxnEAdbLiCFtxCGxwgMIFneIU3IzdejHfjYzFaMoqdI/gD4/MH1aKT0Q==</latexit> <latexit sha1_base64="GzkhfZWM5HqOMKGjeMSHuHqGFKE=">AAAB+nicbVBNS8NAFHypX7V+xXr0EixCvZSkCNZbwYvHCsYW2lg22027dLMJuxtpCfkrXjyoePWXePPfuGlz0NaBhWHmPd7s+DGjUtn2t1Ha2Nza3invVvb2Dw6PzOPqg4wSgYmLIxaJno8kYZQTV1HFSC8WBIU+I11/epP73SciJI34vZrHxAvRmNOAYqS0NDSrgxCpiR+ks2zYfEzrzkU2NGt2w17AWidOQWpQoDM0vwajCCch4QozJGXfsWPlpUgoihnJKoNEkhjhKRqTvqYchUR66SJ7Zp1rZWQFkdCPK2uh/t5IUSjlPPT1ZJ5Urnq5+J/XT1TQ8lLK40QRjpeHgoRZKrLyIqwRFQQrNtcEYUF1VgtPkEBY6boqugRn9cvrxG02rhvO3WWt3SraKMMpnEEdHLiCNtxCB1zAMINneIU3IzNejHfjYzlaMoqdE/gD4/MH1CGT0A==</latexit> <latexit sha1_base64="TgZU06AA9LGXMjIv5liUpf8i3y8=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBahbkpSBOuu4MZlBWMLbSyT6aQdOnkwM5GWkF9x40LFrV/izr9x0mahrQcGDufcyz1zvJgzqSzr2yhtbG5t75R3K3v7B4dH5nH1QUaJINQhEY9Ez8OSchZSRzHFaS8WFAcep11vepP73ScqJIvCezWPqRvgcch8RrDS0tCsDgKsJp6fzrJh8zGtNy+yoVmzGtYCaJ3YBalBgc7Q/BqMIpIENFSEYyn7thUrN8VCMcJpVhkkksaYTPGY9jUNcUClmy6yZ+hcKyPkR0K/UKGF+nsjxYGU88DTk3lSuerl4n9eP1F+y01ZGCeKhmR5yE84UhHKi0AjJihRfK4JJoLprIhMsMBE6boqugR79cvrxGk2rhv23WWt3SraKMMpnEEdbLiCNtxCBxwgMINneIU3IzNejHfjYzlaMoqdE/gD4/MH1aaT0Q==</latexit> <latexit sha1_base64="Ens/GLATh6GeV391rUJ7O+XDqjw=">AAAB+nicbVDLSsNAFL3xWesr1qWbwSLUTUmqYN0V3LisYGyhjWUynbRDJw9mJtIS8ituXKi49Uvc+TdO2iy09cDA4Zx7uWeOF3MmlWV9G2vrG5tb26Wd8u7e/sGheVR5kFEiCHVIxCPR9bCknIXUUUxx2o0FxYHHaceb3OR+54kKyaLwXs1i6gZ4FDKfEay0NDAr/QCrseen02zQeExrF+fZwKxadWsOtErsglShQHtgfvWHEUkCGirCsZQ924qVm2KhGOE0K/cTSWNMJnhEe5qGOKDSTefZM3SmlSHyI6FfqNBc/b2R4kDKWeDpyTypXPZy8T+vlyi/6aYsjBNFQ7I45CccqQjlRaAhE5QoPtMEE8F0VkTGWGCidF1lXYK9/OVV4jTq13X77rLaahZtlOAETqEGNlxBC26hDQ4QmMIzvMKbkRkvxrvxsRhdM4qdY/gD4/MH1yuT0g==</latexit> <latexit sha1_base64="pe3lw1swGOW+Jl0NveI8yMPNqZ8=">AAAB+nicbVBNS8NAFHzxs9avWI9egkWol5KUgvVW8OKxgrGFNpbNdtMu3WzC7kZaQv6KFw8qXv0l3vw3btoctHVgYZh5jzc7fsyoVLb9bWxsbm3v7Jb2yvsHh0fH5knlQUaJwMTFEYtEz0eSMMqJq6hipBcLgkKfka4/vcn97hMRkkb8Xs1j4oVozGlAMVJaGpqVQYjUxA/SWTZsPKa15mU2NKt23V7AWidOQapQoDM0vwajCCch4QozJGXfsWPlpUgoihnJyoNEkhjhKRqTvqYchUR66SJ7Zl1oZWQFkdCPK2uh/t5IUSjlPPT1ZJ5Urnq5+J/XT1TQ8lLK40QRjpeHgoRZKrLyIqwRFQQrNtcEYUF1VgtPkEBY6brKugRn9cvrxG3Ur+vOXbPabhVtlOAMzqEGDlxBG26hAy5gmMEzvMKbkRkvxrvxsRzdMIqdU/gD4/MH2LCT0w==</latexit>

Identical
Parameters

<latexit sha1_base64="1OYgsjZtGf1Dg592BriH7LEJc8Y=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmLiiexyEW8kXDxi4goJbEi3dKGh265tl4Rs+B1ePKjx6p/x5r+xLHtQ8CVNXt+bycy8MOFMG9f9dkpb2zu7e+X9ysHh0fFJ9fTsUctUEeoTyaXqhVhTzgT1DTOc9hJFcRxy2g2n7aXfnVGlmRQPZp7QIMZjwSJGsLFS0JbCMiry37Bac+tuDrRJvILUoEBnWP0ajCRJYyoM4VjrvucmJsiwMoxwuqgMUk0TTKZ4TPuWChxTHWT50gt0ZZURiqSyTxiUq787MhxrPY9DWxljM9Hr3lL8z+unJmoGGRNJag8jq0FRypGRaJkAGjFFieFzSzBRzO6KyAQrTIzNqWJD8NZP3iR+o35b9+4btVazSKMMF3AJ1+DBDbTgDjrgA4EneIZXeHNmzovz7nysSktO0XMOf+B8/gBun5IK</latexit> <latexit sha1_base64="1OYgsjZtGf1Dg592BriH7LEJc8Y=">AAAB83icbVBNTwIxEJ3FL8Qv1KOXRmLiiexyEW8kXDxi4goJbEi3dKGh265tl4Rs+B1ePKjx6p/x5r+xLHtQ8CVNXt+bycy8MOFMG9f9dkpb2zu7e+X9ysHh0fFJ9fTsUctUEeoTyaXqhVhTzgT1DTOc9hJFcRxy2g2n7aXfnVGlmRQPZp7QIMZjwSJGsLFS0JbCMiry37Bac+tuDrRJvILUoEBnWP0ajCRJYyoM4VjrvucmJsiwMoxwuqgMUk0TTKZ4TPuWChxTHWT50gt0ZZURiqSyTxiUq787MhxrPY9DWxljM9Hr3lL8z+unJmoGGRNJag8jq0FRypGRaJkAGjFFieFzSzBRzO6KyAQrTIzNqWJD8NZP3iR+o35b9+4btVazSKMMF3AJ1+DBDbTgDjrgA4EneIZXeHNmzovz7nysSktO0XMOf+B8/gBun5IK</latexit>

<latexit sha1_base64="nFAu1dQGTzkB/CggC9gjxXn03nM=">AAAB/XicbVBNS8NAFNzUr1q/ouLJy2IRPJWkF+utIIjHCsYW2lA2m5d26WYTdjdCCAX/ihcPKl79H978N27bHLR1YGGYeY99M0HKmdKO821V1tY3Nreq27Wd3b39A/vw6EElmaTg0YQnshcQBZwJ8DTTHHqpBBIHHLrB5Hrmdx9BKpaIe52n4MdkJFjEKNFGGtonNxnnOaaJEEA1hJiTHOTQrjsNZw68StyS1FGJztD+GoQJzWIQmnKiVN91Uu0XRGpGOUxrg0xBSuiEjKBvqCAxKL+Ynz/F50YJcZRI84TGc/X3RkFipfI4MJMx0WO17M3E/7x+pqOWXzCRZhoEXXwUZRzrBM+6wCGTJrSJHzJCJTO3YjomkpgipKqZEtzlyKvEazauGu5ds95ulW1U0Sk6QxfIRZeojW5RB3mIogI9o1f0Zj1ZL9a79bEYrVjlzjH6A+vzB4qOlWE=</latexit>

<latexit sha1_base64="nFAu1dQGTzkB/CggC9gjxXn03nM=">AAAB/XicbVBNS8NAFNzUr1q/ouLJy2IRPJWkF+utIIjHCsYW2lA2m5d26WYTdjdCCAX/ihcPKl79H978N27bHLR1YGGYeY99M0HKmdKO821V1tY3Nreq27Wd3b39A/vw6EElmaTg0YQnshcQBZwJ8DTTHHqpBBIHHLrB5Hrmdx9BKpaIe52n4MdkJFjEKNFGGtonNxnnOaaJEEA1hJiTHOTQrjsNZw68StyS1FGJztD+GoQJzWIQmnKiVN91Uu0XRGpGOUxrg0xBSuiEjKBvqCAxKL+Ynz/F50YJcZRI84TGc/X3RkFipfI4MJMx0WO17M3E/7x+pqOWXzCRZhoEXXwUZRzrBM+6wCGTJrSJHzJCJTO3YjomkpgipKqZEtzlyKvEazauGu5ds95ulW1U0Sk6QxfIRZeojW5RB3mIogI9o1f0Zj1ZL9a79bEYrVjlzjH6A+vzB4qOlWE=</latexit>

PredictNet

Fig. 2: The network architecture of OLAS. The concatenation only happens after the last time step of the sequence so the
information of the complete sequence is used.

where γ is a nonlinear transformation function. Although we
use hyperbolic tangent tanh in our model, other nonlinear
functions such as rectified linear unit (ReLu) [15] can also
be used depending on the empirical results. We denote the
weights and bias parameters as:

WF = [W1, · · · ,Wm]>,bF = [b1, · · · ,bm]> (8)

Note that the choice of m is task-specific. Although neural
networks with more layers are better at learning hierarchical
structure in the data, it is also observed that such networks are
challenging to train due to the multiple nonlinear mappings
that prevent the information and gradient passing along the
computation graph [16].

WF and bF are used to transform the input of each layer
to a lower dimension. This transformation is imperative given
the often large number of dimensions of attribute vectors in
real-world applications. Different from attribute vectors, the
categorical items in the sequences in attributed sequences obey
temporal ordering. The information of sequences is not only in
the item values, but more importantly, in the temporal ordering
of these items. In this vein, the CoreNet utilizes an LSTM
network. LSTM is capable of handling not only the ordering
of items, but also the dependencies between different items in
the sequences. Given a sequence si as the input, we use an
LSTM [14] to process each item x

(t)
k in this sequence as:

i(t) = σ
(
Wix

(t)
k + Uih

(t−1) + bi

)
f (t) = σ

(
Wfx

(t)
k + Ufh

(t−1) + bf

)
o(t) = σ

(
Wox

(t)
k + Uoh

(t−1) + bo

)
g(t) = tanh

(
Wcx

(t)
k + Uch

(t−1) + bc

)
c(t) = f (t) � c(t−1) + i(t) � g(t)

h(t) = o(t) � tanh
(
c(t)
)

(9)

where σ is a sigmoid activation function, � denotes the bitwise
multiplication, i(t), f (t) and o(t) are the internal gates of the
LSTM, c(t) and h(t) are the cell and hidden states of the
LSTM. Without loss of generality, we denote LSTM kernel
parameters WL, recurrent parameters UL and bias parameters
bL as:

WL = [Wi,Wf,Wo,Wc]
>

UL = [Ui,Uf,Uo,Uc]
>

bb = [bi,bf,bo,bc]
>

(10)

The attribute vectors and sequences are processed simulta-
neously and the outputs of both networks are concatenated
together. Instead of using the outputs of the LSTM at every
time step, we only concatenate the last output from the
LSTM to the output of the fully connected neural network
so that the complete sequence information is used. After that,
another layer of fully connected neural network is used to
capture the dependencies between attributes and sequences.
Given the output dimensions of αααm and h(t) as nm and nl,
respectively, the concatenation and the last fully connected
layer of CoreNet can be written as:

pi = γ
(
Wp

(
αααm ⊕ h(ti)

)
+ bp

)
(11)

where ⊕ represents the concatenation of two vectors, Wp ∈
Rn×(nm+nl) and bp ∈ Rn denote the weight matrix and
bias vector in this fully connected layer for an n-dimensional
output. In summary, the CoreNet can be written as:

Ω :
(
Ru,Rtmax×r

)
7→ Rn (12)

The two outputs of CoreNet (pi and pj) are first generated.
Then, pi, pj and the similarity label `ij , are used by the
PredictNet to learn the similarities and differences between
them. The PredictNet is designed to utilize a contrastive
loss function [17] so that attributed sequences in different
categories are disseminated. The contrastive loss function is

Algorithm 1 Training using attributed sequence triplets

INPUT: A positive set P and a negative set N of attributed
sequence triplets, the number of layers in fully connected
neural networks m, learning rate λ, number of iterations
φ and convergence error ε.

OUTPUT: Parameters of OLAS ({WF,bF,WL,UL,bL}).
1: Initialize OLAS network.
2: for each φ′ = 1, · · · , φ do . φ is the maximum number of

training epochs.
3: for each (pi, pj , `ij) ∈ P ∪N do
4: pi ← Ω(pi;ω).
5: pj ← Ω(pj ;ω).
6: Compute dω . . Equation 5.
7: Compute the loss Lφ′(pi,pj , `ij). . Equation 13.
8: if |Lφ′(pi,pj , `ij)− Lφ′−1(pi,pj , `ij)|< ε then
9: break . Early stopping to avoid overfitting.

10: else
11: Compute ∂L

∂dω
, ∂dω∂Ω . . Equation 16, 17.

12: Compute ∇L. . Equation 14.
13: Update network parameters. . Equation 18.
14: end if
15: end for
16: end for

composed of two parts: a partial loss for the dissimilar pairs
and a partial loss for similar pairs. The specific form of
contrastive loss of PredictNet can be written as:

L(pi,pj , `ij) =
1

2
`ij

[
max (0, ξ− dω(pi,pj))

]2
︸ ︷︷ ︸

Partial loss for dissimilar pairs.

+
1

2
(1− `ij)d2

ω(pi,pj)︸ ︷︷ ︸
Partial loss for similar pairs

(13)

where ξ is a margin parameter used to prevent the dataset
being reduced to a single point [13]. That is, the attributed
sequences with `ij = 1 are only used to adjust the parameters
in the transformation function Ω if the distance between them
is larger than ξ. The architecture of OLAS is illustrated in
Fig. 2.

C. OLAS Model Training

With the contrastive loss L computed using Equation 13, we
can now calculate the gradient ∇L, which is used to adjust
parameters in the network as:

∇L ≡
[
∂L
∂WF

,
∂L
∂bF

,
∂L
∂WL

,
∂L
∂UL

,
∂L
∂bL

]
(14)

With the transformation function Ω and distance function d,
the explicit form of ∇L can be written as:

∇L =
∂L
∂dω

∂dω
∂Ω

[
∂αααm
∂WF

,
∂αααm
∂bF

,
∂h(ti)

∂WL
,
∂h(ti)

∂UL
,
∂h(ti)

∂bL

]
(15)

where
∂L
∂dω

= −`ij max(0, ξ−dω(pi,pj))

+ (1− `ij)dω(pi,pj)
(16)

∂dω
∂Ω

= (pi − pj) · (1− (pi − pj)) (17)

where 1 is a vector filled with ones.
We present the derivation of OLAS update functions in

our network in Appendix A. With the learning rate λ, the
parameters WF,WL,UL,bF and bL can be updated by the
following equation until convergence is achieved:

WF = WF − λ
∂L
∂WF

bF = bF − λ
∂L
∂bF

WL = WL − λ
∂L
∂WL

UL = UL − λ
∂L
∂UL

bL = bL − λ
∂L
∂bL

(18)

We summarize the algorithms for updating the OLAS network
in Algorithm 1.

D. Labeling Attributed Sequences

Once we have trained the OLAS network to recognize the
similarities and dissimilarities between exemplars of attributed
sequence pairs. The OLAS is then ready to be used to assign
labels to unlabeled attributed sequences in one-shot learning.
Given a test attributed sequence pk from a set K of unlabeled
instances, a set G = {pg}Gg=1 of attributed sequences with G
categories, in which there is only one instance per category,
and the goal is to classify pk into one of G categories. We
can now use the OLAS network with only one forward pass to
calculate the distance between pk with each of the G attributed
sequences and the label of the instance that is closest to pk is
then assigned as the label of pk. This process can be defined
using maximum similarity as:

ĉk = argmin
g

dω(pk,pg) (19)

where ĉk is the predicted label of pk.

IV. EXPERIMENTS

A. Datasets

Our solution has been motivated in part by use case scenar-
ios observed at Amadeus related to attributed sequences. For
this reason, we now work with the log files of an Amadeus [18]
internal application. Also, we apply our methodology to real-
world, public available Wikispeedia data [19]. We summarize
the data descriptions as follows:
• Amadeus data (AMS1∼AMS6). We sampled six

datasets from the log files of an internal application at

TABLE II: Number of Classes in Datasets

Dataset Training One-shot Learning
AMS1, WS1 6 4
AMS2, WS2 12 8
AMS3, WS3 18 12
AMS4, WS4 24 16
AMS5, WS5 30 20
AMS6, WS6 36 24

TABLE III: Compared Methods

Name Data Used Note
OLAS Attributed Sequences This Work

OLASEmb Attributed Sequence Embeddings This work + [22]
ATT Attributes Only [2]
SEQ Sequence Only [23] + [2]

Amadeus IT Group. Each attributed sequence is com-
posed of a user profile containing information (e.g.,
system configuration, office name) and a sequence of
function names invoked by web click activities (e.g.,
login, search) ordered by time.

• Wikispeedia data (WS1∼WS6). Wikispeedia is an on-
line game requiring participants to click through from a
given start page to an end page using fewest clicks [19].
We select the finished path and extract several properties
of each path (e.g., the category of the start path, time
spent per click). We also sample six datasets from Wik-
ispeedia. The Wikispeedia data is available through the
Stanford Network Analysis Project1 [20].

Following the protocols in recent work [2], we utilize the
attributed sequences associated with 60% of categories to
generate attributed sequence triplets and use them in training.

The class labels used in training and one-shot learning are
disjoint sets. Similar to the strategy in [21], where the authors
designed a 20-way classification task that attempts to match an
alphabet with one of the twenty possible classes, we randomly
select one instance in the one-shot learning set and attempt to
give it a correct label. We selected 2000 instances for each
set used in one-shot learning and compute the accuracy. We
summarize the number of classes in Table II.

B. Compared Methods

We focus on one-shot learning methods on different data
types. We summarize the compared methods in Table III.
Specifically, we compare the performance of the following
one-shot learning methods:

• OLAS: We first evaluate our proposed method using
attributed sequences data.

• OLASEmb: Instead of using the attributed sequence
instances as input, we use the embeddings of attributed
sequences as the input. We want to find out whether a
simpler heuristic combination of state-of-the-art would
achieve better performance.

1https://snap.stanford.edu/data/wikispeedia.html

Algorithm 2 One-shot learning for attributed sequences.

INPUT: Trained networks CoreNet Ω and PredictNet, a
set of unlabeled attributed sequences K, a set of labeled
attributed sequence with one example per class G and a
distance function d.

OUTPUT: A set of labeleled attributed sequences K′.
1: K′ ← ∅
2: for each pk ∈ K do
3: ε← +∞ . Set initial minimum distance to +∞
4: pk ← Ω(pk;ω)
5: for each (pg, cg) ∈ G do
6: pg ← Ω(pg;ω)
7: if d(pk,pg) ≤ ε then
8: ε← dω(pk,pg) . Using PredictNet.
9: ĉk ← cg . Assign the same label of pg to pk.

10: end if
11: K′ ← (pk, ĉk)
12: end for
13: end for
14: return K

• ATT: This is the state-of-the-art method [2] using only
attributes of the data.

• SEQ: We combine the state-of-the-art in one-shot learn-
ing [2] with sequence-to-sequence learning [23] to be able
to utilize sequences in one-shot learning.

C. Experiment Settings

1) Protocols: The goal of one-shot learning is to correctly
assign class labels to each instance. In order to compare with
state-of-the-art work [2], [10], we also use accuracy to evaluate
the performance. A higher accuracy score means a method
could make more correct class label predictions. For each
experiment setting, we repeat ten times and report the median,
25 percentile and 75 percentile of the results using error bars.
For each training process using attributed sequence triplets,
we hold out 20% of the training data as the validation set.
The holdout portion is not limited to the instances with certain
labels, but instead, they are randomly chosen from all possible
classes.

2) Network Initialization and Settings: Gradient-based
methods often require a careful initialization of the neural
networks. In our experiments, we use normalized random
distribution [24] to initialize weight matrices WF and WL,
orthogonal matrix is used to initialize recurrent matrices UL
and biases are initialized to zero vector 000. Specifically, the m-
th layer of the fully connected neural network is initialized
as:

Wm ∼ Uniform

[
−

√
6√

nm−1 + nm+1
,

√
6√

nm−1 + nm+1

]

where nm is the output dimension of the m-th layer. There are
three layers used in our experiments. Meanwhile, the weight

10000 20000 30000 40000 50000
Number of Training Triplets

0.3

0.5

0.7
Ac

cu
ra

cy

(a) Dataset AMS1

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(b) Dataset AMS2

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

Ac
cu

ra
cy

(c) Dataset AMS3

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

Ac
cu

ra
cy

(d) Dataset AMS4

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(e) Dataset AMS5

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(f) Dataset AMS6
Fig. 3: Accuracy of the label prediction on AMS datasets using Euclidean distance function.

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(a) Dataset WS1

200 400 600 800 1k
Number of Training Triplets

0.3

0.5

0.7

Ac
cu

ra
cy

(b) Dataset WS2

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

(c) Dataset WS3

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(d) Dataset WS4

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(e) Dataset WS5

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(f) Dataset WS6
Fig. 4: Accuracy of the label prediction on Wikispeedia datasets using Euclidean distance function.

matrices Wi,Wf,Wo,Wc are initialized as:

Wi,Wf,Wo,Wc ∼ Uniform
[
−
√

6

nl
,

√
6

nl

]
where nl is the dimension of the output. In our experiments,
we use 50 dimensions for both nl and nm. We utilize `2-
regularization with early stopping to avoid overfitting. The
validation set is composed of 20% of the total amount of
attributed sequence triplets in the training set.

D. Performance Studies
In this section, we present the performance studies of the

proposed OLAS network and compare it with techniques in
the state-of-the-art.

1) Varying number of training triplets: Fig. 3 and 4 present
the results where each setting has a fixed number of labels
while the number of training triplets increases. Based on the
experiment result figures, we have the following observations:
• As more triplets being used in the training process, the

accuracy of one-shot learning keeps increasing with the

trained OLAS network. Intuitively, with more examples
demonstrated to the OLAS, it could better gain a better
capability of generalization, even though the data in-
stances used in one-shot learning are previously unseen.

• Overfitting challenges the performance of all one-shot
learning approaches. Although we use early stopping and
`2-regularization in all experiments, overfitting can still
be challenging due to there is only one example per class
in the one-shot learning.

• OLAS can achieve better performance than other baseline
methods when there are more possible classes. While
OLAS maintains a stable performance outperforming
state-of-the-art under various parameter settings, OLAS
can achieve a better performance when the classification
task become harder with more possible class labels.

2) Observations using different datasets: Different from the
synthetic datasets, the real-world applications often consist
of diverse and noisy data instances. It is also interesting to
examine the results using different real-world datasets. We find

10000 20000 30000 40000 50000
Number of Training Triplets

0.3

0.5

0.7

0.9
Ac

cu
ra

cy

(a) Dataset AMS1

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(b) Dataset AMS2

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

Ac
cu

ra
cy

(c) Dataset AMS3

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

Ac
cu

ra
cy

(d) Dataset AMS4

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(e) Dataset AMS5

10000 20000 30000 40000 50000
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(f) Dataset AMS6
Fig. 5: Accuracy of the label prediction on AMS datasets using Manhattan distance function.

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(a) Dataset WS1

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

(b) Dataset WS2

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

0.9

Ac
cu

ra
cy

(c) Dataset WS3

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(d) Dataset WS4

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7

Ac
cu

ra
cy

(e) Dataset WS5

200 400 600 800 1k
Number of Training Triplets

0.1

0.3

0.5

0.7
Ac

cu
ra

cy

(f) Dataset WS6
Fig. 6: Accuracy of the label prediction on Wikispeedia datasets using Manhattan distance function.

that the performance of OLAS remains superior when we use
the twelve datasets sampled from two real-world applications.

3) Advantage of the end-to-end model: Although it is
possible to use attributed sequence embeddings [22] with one-
shot learning, the experiment results have proven that the
performance of the end-to-end solution in this work is far
superior to and more stable than OLASEmb. Specifically,
the performance of our closest baseline method OLASEmb
has varied more compared to all other methods. Building
an end-to-end model allows the back-propagation of gradient
throughout all layers in the OLAS model. On the other hand,
the two gradients in OLASEmb, i.e., the gradient in the model
for generating attributed sequence embedding and the gradient
in one-shot learning model, are independent and thus the
parameters within this method cannot be better adjusted than
our solution OLAS.

4) Effect of different distance functions. : Recent work [10]
has observed significant differences in performance when
using different distance functions. Here, we substitute the Eu-

clidean distance function with the Manhattan distance function
to see the performance of all compared methods. We observe
that the proposed OLAS model is capable of achieving the
best results despite which one of the two distance functions is
used.

V. RELATED WORK

A. One-shot learning

One-shot learning, where the goal is to classify instances
with only one example per class, has been the center of many
applications [2], [4], [10], [25], [26], [27], [28], [29], [30],
[31]. It has been a useful approach to classification when
the number of labeled instances is scarce. While conventional
approaches to one-shot learning often involve Bayesian and
shared probability densities [3], [5], recent works [2], [10] take
advantage of the feature learning capability of neural networks
to further one-shot learning. The common objective of these
tasks is to train a model so that the distance between instances
from different classes is enlarged as much as possible [2],

[10]. Siamese network structure [2], [10] is often used in
such models, where two instances are taken as input, and
the difference between them is learned. This example-based
learning schema is flexible and has been applied to image
classification tasks. However, these works focus on one-shot
learning with only one type of data. In this paper, we further
the state-of-the-art one-shot learning methods to learn from a
more complicated data type (i.e., attributed sequence).

B. Distance Metric Learning

Distance metric learning, where the goal is to learn a
distance metric from pairs of similar and dissimilar examples,
has been extensively studied [13], [32], [33], [34], [35], [36],
[11], [37], [38], [39]. These tasks share a common objective
of learning a distance metric, which could be used to reduce
the distance between similar pairs of instances and increase the
distance between dissimilar pairs of instances. Distance metric
learning has shown its powerfulness in various tasks [13],
[32], [33]. Many applications in various domains require
distance metric learning to achieve a good performance, such
as identifying patient similarity in health informatics [34],
image recognition [2], face verification [35], [36], [11], and
sentence semantic similarity analysis [37], [38]. With the
recent advancement in deep learning, distance metric learning
has expanded to use various deep learning architectures to
achieve its goal [2], [37], [11].

C. Deep learning

Deep learning has attracted a significant amount of research
interest in recent years due to its capability of extracting
features. Deep learning models, with a number of layers,
are capable of learning features at various granularities. The
capability of effective feature learning has advanced various
research topics, including image recognition [12], [40] and
sequence learning [41], [23], [42], [38], [43]. It has also been
applied in diverse problem domains, such as medical [44] and
traffic flow prediction [45]. Many of these applications involve
only one type of data [23], [42] while some applications
make use of two types of data [12], [40]. However, none of
these works has focused on this new data type of attributed
sequence nor performing one-shot learning tasks on attributed
sequences.

VI. CONCLUSION

In this paper, we study this new problem of one-shot
learning for attributed sequences. We present the OLAS net-
work design to tackle the challenges of utilizing this new
data type in one-shot learning. OLAS incorporates two sub-
networks, CoreNet and PredictNet, that integrated into one
structure together effectively learn the patterns hidden in this
data type using only one example per class. OLAS uses this
trained knowledge to generate labels for incoming unlabeled
instances. Our experiments on real-world datasets demonstrate
that OLAS on attributed sequences outperforms state-of-the-
art one-shot learning methods.

APPENDIX
GRADIENTS AND BACK-PROPAGATION IN OLAS

For the m-th layer in a fully connected neural network, we
employ the following update functions:

∂αααm
∂Wm

= αααm (1−αααm)αααm−1

∂αααm
∂bm

= αααm (1−αααm−1)

(20)

Here we use three steps to explain how OLAS back-
propagates the gradients. We use a δµ,ν function to simplify
the equations with µ = {i, f, o} and ν = {i, f, o, c}:

δµ,ν =

{
1, if µ = ν
0, otherwise (21)

First, we have the following equations for h(t) and c(t):

∂h(t)

∂Wν
=
∂o(t)

∂Wν
� tanh (c(t)) + o(t)

� (1− tanh2(c(t)))
∂c(t)

∂Wν

∂h(t)

∂Uν
=
∂o(t)

∂Uν
� tanh(c(t)) + o(t)

� (1− tanh2(c(t)))
∂c(t)

∂Uν

∂h(t)

∂bν
=
∂o(t)

∂bν
� tanh(c(t)) + o(t)

� (1− tanh2(c(t)))
∂c(t)

∂bν

(22)

∂c(t)

∂Wν
=
∂f (t)

∂Wν
� c(t−1) + f (t) � ∂c(t−1)

∂Wν
+

∂i(t)

∂Wν
� g(t) + i(t) � ∂g(t)

∂Wν

∂c(t)

∂Uν
=
∂f (t)

∂Uν
� c(t−1) + f (t) � ∂c(t−1)

∂Uν
+

∂i(t)

∂Uν
� g(t) + i(t) � ∂g(t)

∂Uν

∂c(t)

∂bν
=
∂f (t)

∂bν
� c(t−1) + f (t) � ∂c(t−1)

∂bν
+

∂i(t)

∂bν
� g(t) + i(t) � ∂g(t)

∂bν

(23)

Then, we have the following equations for i(t), f (t) and o(t):

∂∆µ

∂Wν
= ∆µ(1−∆µ)α(t)δµ,ν

∂∆µ

∂Uν
= ∆µ(1−∆µ)h(t−1)δµ,ν

∂∆µ

∂bν
= ∆µ(1−∆µ)δµ,ν

(24)

where ∆i = i(t), ∆f = f (t) and ∆o = o(t).

Finally, we have the gradients for g(t) as:

∂g(t)

∂Wν
= (1− (g(t))2)α(t)δc,ν

∂g(t)

∂Uν
= (1− (g(t))2)h(t−1)δc,ν

∂g(t)

∂bν
= (1− (g(t))2)δc,ν

(25)

REFERENCES

[1] B. Lake, R. Salakhutdinov et al., “One shot learning of simple visual
concepts,” in Proceedings of the Cognitive Science Society, vol. 33,
2011.

[2] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in ICML Deep Learning Workshop, 2015.

[3] L. Fei-Fei et al., “A bayesian approach to unsupervised one-shot
learning of object categories,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2003, pp. 1134–1141.

[4] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object cate-
gories,” IEEE transactions on pattern analysis and machine intelligence,
vol. 28, no. 4, pp. 594–611, 2006.

[5] E. G. Miller, N. E. Matsakis, and P. A. Viola, “Learning from one
example through shared densities on transforms,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, vol. 1.
IEEE, 2000, pp. 464–471.

[6] J. Wang, A. Kalousis, and A. Woznica, “Parametric local metric learning
for nearest neighbor classification,” in Advances in Neural Information
Processing Systems, 2012, pp. 1601–1609.

[7] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classifica-
tion,” ACM Sigkdd Explorations Newsletter, vol. 12, no. 1, pp. 40–48,
2010.

[8] X.-W. Chen and X. Lin, “Big data deep learning: challenges and
perspectives,” IEEE access, vol. 2, pp. 514–525, 2014.

[9] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[10] L. Bertinetto, J. F. Henriques et al., “Learning feed-forward one-shot
learners,” in Advances in Neural Information Processing Systems, 2016,
pp. 523–531.

[11] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning for
face verification in the wild,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 1875–1882.

[12] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3128–3137.

[13] E. P. Xing, M. I. Jordan et al., “Distance metric learning with application
to clustering with side-information,” in Advances in Neural Information
Processing Systems, 2003, pp. 521–528.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in International Conference on Machine Learn-
ing, 2010, pp. 807–814.

[16] T. Pham, T. Tran et al., “Column networks for collective classification.”
in AAAI, 2017, pp. 2485–2491.

[17] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2006, pp. 1735–1742.

[18] Amadeus, “Amadeus IT Group,” http://www.amadeus.com, accessed:
2017-09-23.

[19] R. West, J. Pineau, and D. Precup, “Wikispeedia: An online game for
inferring semantic distances between concepts,” in International Joint
Conference on Artificial Intelligence, 2009.

[20] J. Leskovec, “Wikispeedia navigation paths,” https://snap.stanford.edu/
data/wikispeedia.html, accessed: 2018-04-09.

[21] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum, “One-shot learning
by inverting a compositional causal process,” in Advances in neural
information processing systems, 2013, pp. 2526–2534.

[22] Z. Zhuang, X. Kong et al., “Attributed sequence embedding,” in Sub-
mission.

[23] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, 2014, pp. 3104–3112.

[24] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[25] A. Santoro, S. Bartunov et al., “Meta-learning with memory-augmented
neural networks,” in International conference on machine learning,
2016, pp. 1842–1850.

[26] W.-S. Zheng, S. Gong, and T. Xiang, “Towards open-world person re-
identification by one-shot group-based verification,” IEEE transactions
on pattern analysis and machine intelligence, vol. 38, no. 3, pp. 591–
606, 2016.

[27] W.-L. Chao, S. Changpinyo et al., “An empirical study and analysis
of generalized zero-shot learning for object recognition in the wild,” in
European Conference on Computer Vision. Springer, 2016, pp. 52–68.

[28] M. Kopicki, R. Detry et al., “One-shot learning and generation of dex-
terous grasps for novel objects,” The International Journal of Robotics
Research, vol. 35, no. 8, pp. 959–976, 2016.

[29] Y. Duan, M. Andrychowicz et al., “One-shot imitation learning,” in
Advances in neural information processing systems, 2017, pp. 1087–
1098.

[30] H. Altae-Tran, B. Ramsundar et al., “Low data drug discovery with one-
shot learning,” ACS central science, vol. 3, no. 4, pp. 283–293, 2017.

[31] Y. Wu, Y. Lin et al., “Exploit the unknown gradually: One-shot video-
based person re-identification by stepwise learning,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 5177–5186.

[32] D.-Y. Yeung and H. Chang, “A kernel approach for semisupervised
metric learning,” IEEE Transactions on Neural Networks, vol. 18, no. 1,
pp. 141–149, 2007.

[33] J. V. Davis, B. Kulis et al., “Information-theoretic metric learning,” in
International Conference on Machine Learning, 2007, pp. 209–216.

[34] F. Wang, J. Sun, and S. Ebadollahi, “Integrating distance metrics
learned from multiple experts and its application in patient similarity
assessment,” in International Conference on Data Mining. SIAM, 2011,
pp. 59–70.

[35] A. Mignon and F. Jurie, “Pcca: A new approach for distance learning
from sparse pairwise constraints,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012, pp. 2666–2672.

[36] M. Koestinger, M. Hirzer et al., “Large scale metric learning from
equivalence constraints,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2012, pp. 2288–2295.

[37] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for
learning sentence similarity.” in Association for the Advancement of
Artificial Intelligence, 2016, pp. 2786–2792.

[38] P. Neculoiu, M. Versteegh et al., “Learning text similarity with siamese
recurrent networks,” Proceedings of the 1st Workshop on Representation
Learning for NLP, p. 148, 2016.

[39] Z. Zhuang, X. Kong et al., “Mlas: Metric learning on attributed
sequences,” in Submission.

[40] K. Xu, J. Ba et al., “Show, attend and tell: Neural image caption gen-
eration with visual attention,” in International Conference on Machine
Learning, 2015, pp. 2048–2057.

[41] K. Cho, B. van Merrienboer et al., “Learning phrase representations
using rnn encoder–decoder for statistical machine translation,” in Em-
pirical Methods in Natural Language Processing, 2014, pp. 1724–1734.

[42] Y. Xu, J. H. Lau et al., “Decoupling encoder and decoder networks for
abstractive document summarization,” MultiLing 2017, p. 7, 2017.

[43] Z. Zhuang, X. Kong, and E. Rundensteiner, “Amas: A ttention m odel
for a ttributed s equence classification,” in Submission.

[44] J. Sun, D. Sow et al., “Localized supervised metric learning on temporal
physiological data,” in International Conference on Pattern Recognition.
IEEE, 2010, pp. 4149–4152.

[45] Y. Lv, Y. Duan et al., “Traffic flow prediction with big data: a deep
learning approach,” IEEE Transactions on Intelligent Transportation
Systems, vol. 16, no. 2, pp. 865–873, 2015.

http://www.amadeus.com
https://snap.stanford.edu/data/wikispeedia.html
https://snap.stanford.edu/data/wikispeedia.html

	I Introduction
	II Problem Formulation
	II-A Preliminaries
	II-B Problem Definition

	III The OLAS Model
	III-A Approach
	III-B OLAS Model Design
	III-C OLAS Model Training
	III-D Labeling Attributed Sequences

	IV Experiments
	IV-A Datasets
	IV-B Compared Methods
	IV-C Experiment Settings
	IV-C1 Protocols
	IV-C2 Network Initialization and Settings

	IV-D Performance Studies
	IV-D1 Varying number of training triplets
	IV-D2 Observations using different datasets
	IV-D3 Advantage of the end-to-end model
	IV-D4 Effect of different distance functions.

	V Related Work
	V-A One-shot learning
	V-B Distance Metric Learning
	V-C Deep learning

	VI Conclusion
	Appendix: Gradients and Back-propagation in OLAS
	References

