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Abstract—Deep learning is rapidly becoming a go-to tool for
many artificial intelligence problems due to its ability to out-
perform other approaches and even humans at many problems.
Despite its popularity we are still unable to accurately predict
the time it will take to train a deep learning network to solve
a given problem. This training time can be seen as the product
of the training time per epoch and the number of epochs which
need to be performed to reach the desired level of accuracy.
Some work has been carried out to predict the training time for
an epoch — most have been based around the assumption that
the training time is linearly related to the number of floating
point operations required. However, this relationship is not true
and becomes exacerbated in cases where other activities start
to dominate the execution time. Such as the time to load data
from memory or loss of performance due to non-optimal parallel
execution. In this work we propose an alternative approach in
which we train a deep learning network to predict the execution
time for parts of a deep learning network. Timings for these
individual parts can then be combined to provide a prediction
for the whole execution time. This has advantages over linear
approaches as it can model more complex scenarios. But, also, it
has the ability to predict execution times for scenarios unseen in
the training data. Therefore, our approach can be used not only
to infer the execution time for a batch, or entire epoch, but it can
also support making a well-informed choice for the appropriate
hardware and model.

Index Terms—Machine Learning, Benchmark, Performance,
Prediction

I. INTRODUCTION

Deep learning has flourished over recent years, in no small
part due to its super-human ability to learn patterns within
data. This has been demonstrated in tasks such as image
recognition [1] through to beating the world champion at
Go [2]. This ability to outperform humans has its price — that
of the computational cosﬂ of training these complex networks
and requiring significant volumes of data to reach the level
of accuracy required to ‘beat’ humans or just provide the
required level of accuracy. The situation is compounded by
many factors: identifying an ‘optimal’ network architecture
which has the chance to perform as desired, determining the
best set of hyper-parameters for the network, determining the
volume of data required for training along with determining

IReferred to here as execution time without loss of generality.
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a priori if the training can be performed within the required
cos envelope.

The prediction of execution time is significant as it will not
only allow us to predict the cost of performing the training
but also the number of scenarios and hyperparameter settings
that can be tested and thus eventually the accuracy of a
model itself. Therefore, it is desirable to understand what the
execution time and the associated costs will be a priori to
training in order to determine value for money or to alter one’s
strategy to reduce execution time and hence cost.

The prediction of execution time can be decomposed into
two main elements: the execution time of a single epoch — a
single forwards and backwards pass through all of the training
data — and predicting the number of epochs which will be
required in order to reach a desired level of accuracy. Both
are worthy of research. However, in this work we address the
former case of estimating epoch execution time. In the future
we will address the complementary secondary case.

Although our work here focuses on the training times for
deep learning networks our approach could be as easily applied
to predicting the execution time for using a trained deep
learning network to infer predictions by just looking at the
feed-forward phase of the training.

Prior work in the area of epoch execution time prediction
has focused on Big O() notation — primarily based on the
number of floating point operations performed within an
epoch. For example the PALEO [3]] system computes the
number of floating point operations required for an epoch and
multiplies this by a scaling factor derived from testing the
floating point operation speed on a given system. However,
this fails to take into account numerous other operations that
are performed which do not scale linearly with the number of
floating point operations. Nor does it take into account various
system limitations, for example, less than optimal performance
of the GPU due to data size or ability to make full use of all
GPU cores simultaneously.

By contrast, here we propose training a deep neural network
on ‘features’ derived from the computational resource used,
the network being trained and the data used for training. By
performing such a process we can ‘learn’ a representation

2Here we take a broad view of cost including financial and execution cost.
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Fig. 1. Overview for generating a timing prediction for a full epoch

of the training execution time which is more complex than
the linear models which have been used thus far. Further,
given enough training data from a wide-range of exemplar
computational resources, neural networks and input data sets,
it will, we believe, be possible to predict, to a reasonable level
of accuracy, the training execution time for a problem case not
previously seen by our approach — be this different hardware,
deep learning network, data or combination of these.

For our approach we build a generally applicable, data
driven model for predicting the execution time for commonly
used layers in deep neural networks. From this we deduce
the execution time required for one training step (forward and
backward pass) for processing an individual batch of data. The
overall execution time can then be calculated as the time per
batch multiplied by the number of batches — see Figure
In this figure each layer of the neural network is displayed
left to right and the figure concentrates on just one epoch.
Data is fed through the network in batches and it is the timing
of one single batch that we are predicting here. It should be
noted that although the figure here represents a fully connected
Multi-Layer Perceptron network we are not restricted to such
networks. Our approach works equally well for other network
layer types, such as convolutions or pooling layers.

As convolutions and fully connected layers (vector-matrix
multiplications) make up the most significant part of the execu-
tion time in the majority of deep neural networks, we focus on
these types of operations. However, we are confident that the
same process will be equally applicable to other layer types.
Further, as GPU cards are commonly used for performing deep
learning we focus this paper on the performance of these cards.
However, our approach would be equally applicable to CPU,
TPU or even IPU deep learning.

We see our contribution in this work to be:

o The categorisation of features which may influence the

performance of deep learning training execution times.

o Predicting the execution time for a deep learning network

through the use of deep learning.

o Comparison of performance of predicted execution times

for different hardware.

The rest of this paper is structured as follows. In Section

we discuss the related work to our approach. We present a
motivation for moving beyond a linear model in Section [T}
The different features which can be captured from a deep
learning network and the environment in which it runs are
discussed in Section Section [V] discusses the methodology
used in this work including how we combine individual
batches to compute the whole network execution time. We
define the experiments performed and the features used in
Section The results of our approach are presented and
discussed in Section Finally, we evaluate our approach
and provide conclusions in Section [VIII

II. RELATED WORK

The complexity of machine learning models, and in particu-
lar of deep learning models has been steadily increasing over
recent years. This is in no small part a consequence of the
increasing number of layers which are used within the deep
learning network — for example the the winner of ImageNet
in 2012 (AlexNet [4]) contained just 8 layers, whilst by 2015
this had increased to 152 layers (ResNet [5]). This is being
compounded by the fact that we are now throwing much more
data through these deep learning networks [6]].

With this rapid increase in complexity, along with the
volumes of data we wish to process, there is a corresponding
increase in the execution time required to train a network.
Irrespective of whether the network training is performed in
the cloud or on locally provisioned resources this will lead to
excessive training costs. Up-to-date GPUs provisioned in the
cloud for deep learning often cost several dollars per hour and
the expenditure for training a deep neural network on GPUs
can easily reach the order of thousands of dollars. Similarly,
the acquisition of locally provisioned resources plus expenses
for electricity and air conditioning can cause significant costs.

Despite there being a significant financial cost involved with
training a deep learning network, there has been little research
into predicting the execution time and the choice of optimal
hardware. Benchmarking initiatives like DAWNbench [7]] and
MLPe aim at quantifying performance of different hardware
chipsets when training a number of machine learning model
architectures. However, by design these approaches are limited
to a few reference architectures. Work has been done which
shows that one can predict the execution time for a new model
by attempting to compare the model to similar models which
have known performance [8]], however, this can only yield very
coarse estimates.

A different approach is to generate a performance prediction
from timings generated from the individual floating point
operations that are executed during a training step [3]]. This is
justified by the fact that most of the deep learning approach
is based around linear algebra operations using floating point
mathematics, where the number of floating point operations
performed can be easily computed. However, due to the lack
of perfect parallelism of computations on GPUs, the fact that
non-floating point operations are used and the data transfer

3https://mlperf.org/



times between the GPU and main memory, the execution
time only scales approximately linearly with the number of
floating point operations performed. Qi et al. [3] attempt to
compensate for this through a scaling derived from observing
real deep learning training, however, this still assumes an
even distribution of floating point and non-floating point work
across all deep learning.

III. MOTIVATION

The execution time required during a forward pass through a
neural network is bounded from below by the number of float-
ing point operations (FLOPs) [9]. This FLOP count depends
on the deep neural network architecture and the amount of
data. The time required for each of these FLOPs depends on
the hardware specifications. Similarly, communication times
have a generally linear relationship with data size, where data
transfers are properly managed and memory bandwidth is
properly utilised.

This type of linear model is where efforts have been
focused in recent literature [3]]. However, other features such as
activation functions and the optimizer used introduce sources
of nonlinearities into the system. Moreover, a full utilisation
of the available compute resources and memory bandwidth
cannot be achieved in all situations. Therefore, even more
sophisticated approaches yield unsatisfactory results and gen-
eralise badly for different kinds of hardware.

Our work aims to fill this gap by providing a prediction
framework that is capable of dealing with these non-linearities,
providing accurate results while also generalising to previously
unseen neural network models or hardware.

IV. TRAINING FEATURES

We define here the features which could influence the
prediction of execution times when performing training. We
categorise these features into layer features, layer specific
features, implementation features and hardware features. Each
of these categories can contain an almost endless list of
features. As such we define here a core subset of those features
but argue that other features could easily be added. A full
analysis of all available features and the impact they have on
the accuracy of prediction is beyond the scope of this work.

A. Layer Features

These relate to those features of a particular layer within
the neural network and in particular to the hyperparameters
related to that layer. These include, but are not limited to:

o Activation function used on the individual neurone.
These can include none, ReLU, softmax, sigmoid and
tanh. They can be encoded into the feature set using one-
hot encoding.

o Optimiser used for locating a minima within the loss
function space. These can include Gradient Descent,
Adadelta, Adagrad, Momentum, Adam and RMS Prop.
They can be encoded into the feature set using one-hot
encoding.

« Batch size representing the number of training samples

which are processed together as part of the same batch.

It should be noted that each individual layer within the

network may possess different values for these features. As
each layer is predicted independently this is not a problem.

B. Layer Specific Features

Here we discuss the features which are unique to a particular
type of layer within the neural network.

1) MLP features: as this represents a fully connected layer
within the network we are concerned here with the number
of neurones not only within this layer but the preceding and
following layers too.

o Number of inputs to the layer. As all layers are fully
connected this value is effectively the number of outputs
from the previous layer.

o Number of neurones within this layer. Which is equiv-
alent to the number of outputs of the layer.

2) Convolutional features: relate to those features relevant

for convolutional layers within a network. These include:

o Matrix size representing the size of the input data to be
trained on.

o Kernel size representing the size of the filter applied to
the image data.

o Input depth is the number of channels or layers in the
input data.

o Output depth is the number of channels or layers in the
output data.

o Stride size the size of the stride to be made with the
convolution kernel.

o Input padding the number of border layers of zeros
added to the outside of the matrix in order to allow proper
analysis of edge pixels.

3) Pooling features: are those features unique to the pool-

ing layer within a network.

The features include:

o Kernel size the size of the pooling kernel.

o Stride size the size of the stride to be made with the
pooling kernel.

o Input padding the number of border layers of zeros
added to the outside of the matrix in order to allow proper
analysis of edge pixels.

4) Recurrent features: representing those features which
define a RNN. A RNN will contain the same features outlined
for MLP - i.e. number of inputs and number of neurones. In
addition they also include:

o Recurrence type as there are many types of recurrence
we define a one-hot encoding of these types, including:
default, LSTM, and GRU.

« Bidirectional a binary value indicating if the RNN is
bidirectional or not.

Additional feature sets and individual features can be added
to our model, however, these are considered to be the core
features covering the majority of deep neural network in use
today.



C. Hardware Features

Hardware features are those describing both the GPU
card(s) used and the system these cards are housed within:

o GPU technology identifying the chip manufacturer and
the chip technology used. This can include the NVIDIA
microarchitectures Turing, Volta, Pascal, Maxwell, and
Kepler, but also other manufacturers. This can be encoded
as a one-hot encoding. It should be noted that this only
describes the GPU technology not the individual cards.
Thus allowing for cards from the same generation to be
grouped together.

e GPU count the number of GPUs in the system. If there
are multiple GPUs per card then this is the number of
GPUs.

o GPU memory is the memory available per GPU card. In
the case of multiple GPUs built into a single card this is
the memory per GPU.

o GPU clock speed recorded in Hz.

o GPU memory bandwidth recorded in GB/s.

e GPU core count the number of processing units. In the
case of NVIDIA GPUs this is the number of cuda cores.

¢ GPU peak performance recorded in GFLOPS, a result
of GPU clock speed and GPU core count.

o Card connectivity this is a one-hot encoding of the
different interconnects available for the GPU. This can
include: PClIe3.0 x16, PCle3.0 x4, NVLink.

Although the focus here is on GPU based deep learning
this set of features could easily be expanded to cater for other
hardware types.

D. Training Space

It should be noted that as this feature space contains an
extremely large number of possible combinations it is not
feasible to train a network on all values. As such we train our
networks through a random subsample of the feature space.

V. METHODOLOGY
A. General Considerations

Our approach here is to break up each deep learning network
into single components, considering individual layers as the
atomic operations we are going to use for performance predic-
tion (see Figure [T). We construct a random selection of these
atomic operations embedded within the simplest network we
can produce. Each of these atomic operations is then executed
either using forward or forwards and backwards passes and the
execution times are recorded from multiple executions. The
feature set for the atomic operation along with the execution
timings are then used to train a fully connected feed forward
network. This network can then be used for predicting the
execution time for a new operation based just on the feature
set.

Once a prediction has been made for an individual operation
these can be combined together and across layers in order to
provide a prediction for the overall performance of the deep
learning network. By working with these atomic operations we

help to reduce the computational time to train our approach
whilst also maximising the range of layer types that we can
predict. Moreover, to add a new layer type is a simple case of
benchmarking batches of that layer type and the re-training a
deep learning model with this extra feature and performance
information added. As the deep learning predictor network
is relatively simple the re-training time is not seen as being
significant.

B. Model Architecture and Training Procedure

In order to obtain a prediction model for the execution
time for training a deep learning network we have developed
our own fully connected feed forward deep learning network
which is trained on the feature sets defined above and results
from actual training runs of deep learning networks. Our neural
network architecture consists of m layers with j,, neutrons in
layer n. Each of these layers is followed by a dropout layer,
only used in training, with the final dense layer producing a
single output.

In order to produce an accurate deep learning predictor we
evaluated numerous runs of our predictor using various pa-
rameters. The parameters considered during this optimization
process were; m, j, (n € [0,m]), dropout rate, loss function
and the model optimizer.

C. Full Model Predictions

To predict the computation time for a single epoch of a deep
network we can first compute the time that is required for a
forward and backward pass on a single batch:

!
Ty = bar
i=0

where [ is the number of layers in the deep neural network
and bypy(;) is the batch execution time estimate, generated by
our prediction approach, for layer 4, where M (i) is of type
of layer 7. It should be noted here that by;(;) should also be
parameterised by the other features we use when training our
network, however, for simplicity we have not listed those here.
Then to compute the total execution time for a single epoch
of the deep learning network we can compute:

E:pr

where p is the number of batches required to process the data.
To compute the total time for training a network would
also require a prediction for the number of epochs required —
which is beyond the scope of this work. However, as many
deep learning users currently use a fixed number of epochs (for
example 100) an estimate of this form can easily be made.

D. Comparison Metrics

In order to evaluate our approach we compare for a given
(unseen) test data set the predicted execution times along with
the actual execution times. If our approach is efficient we
will see a strong correlation between these two data sets. In
addition to comparing actual values we also look at the root
mean squared error (RMSE) between the predicted and actual
values, where smaller values indicate better predictions.



Name | Provisioning | Cuda cores | Clock (boost) | Memory | GPU memory bandwidth | Bus
V100 Local 5120 1455 MHz 16 GB HBM2 900 GB/s NVLink
P100 Cloud 3584 1303 MHz 16 GB HBM2 732 GB/s PCle
GTX1080Ti Local 3584 1582 MHz 11 GB GDDRS5X | 484 GB/s PCle
M60 Cloud 4096 1178 MHz 16 GB GDDRS 320 GB/s PCle
K80 Cloud 2496 875 MHz 12 GB GDDRS5 240 GB/s PCle
K40 Local 2880 875 MHz 12 GB GDDRS5 288 GB/s PCle
TABLE 1

SPECIFICATION OF HARDWARE TESTED

VI. EXPERIMENTAL SETUP

We describe here the layers, and hardware we used for
the evaluation of our approach. As the number of hardware
platforms available for testing was relatively small we train
models both on individual GPU cards as well as on a combined
set of GPU cards and use this to compare between the different
approaches. We anticipate that with the inclusion of more
platforms a single model would not only be as accurate, but
would be able to predict for previously unseen hardware.
However, as our available hardware is relatively limited we
anticipate that at present the combined model may not achieve
a favourable accuracy when compared to individual models.

A. Hardware

Table [ outlines the different hardware used for exper-
imentation. We shall use the name when referring to the
hardware in the following discussion; provisioning indicates if
the hardware was locally owned or provisioned from a Cloud
provider, whilst specification indicates the main characteristics
of the system tested.

B. Test Case: Fully Connected Layer

In order to evaluate our deep learning predictor for fully
connected layers we used the Tensorflow implementation
tensorflow.layers.dense to generate fully connected layers. We
tested 25,000 of the possible parameter combinations from a
search space of 30,064,771,072 possible combinations. These
were derived from batch sizes in the range 1 to 64, input and
output dimensions in the range 1 to 4096.

C. Test case: Convolutional Neural Layer

To assess convolutional layers we tested the
tensorflow.layers.conv2d operation with different batch
sizes in the range of 1 to 64, matrix sizes in the range of 1x1
to 512x512, kernel sizes in the range of 1x1 to 7x7, and up
to —10990— input and output layers. Moreover, we tested the
convolutional layers under the condition of different stride
sizes, input paddings and with or without adding a bias.
Out of 10,038,745,006,080 possible combinations of these
parameters we benchmarked up to 50,000 randomly chosen
combinations and used these results to train our deep neural
network to then predict arbitrary parameter settings.

D. Data Collection and Preparation

Feature sets were selected at random using a uniform
distribution approach with no interdependence on previously
selected features. For each feature set we performed 5 bench-
mark runs and used the median result as input to our model.
The collected data was split into a training data set (80%), a
test data set (10%) and a validation data set (10%).

E. Deep Learning Prediction Network

We performed a parameter search of different fully con-
nected feed forward deep learning networks and identified
different required depths for different problems. Likewise,
having one dropout layer after the final hidden layer along
with using the ReLU [10] activation function and using L2
regularisation [I1] with a regularisation constant of 10~°, used
in every layer of the network, helped to maximise the general-
isability and the overall accuracy. To emphasize the importance
of accurate results on frequently occurring computationally
cheap operations we used a root mean square logarithmic error
in the loss function. The Adam [12] optimiser with a decaying
learning rate was used to minimise the loss.

The model was trained for 300 epochs with a batch size of
128 for each of the benchmark runs. The initial learning rate
of 0.1 was reduced every 40 epochs by a factor of 2. The loss
on the test set was calculated after each epoch of training on
the full test data set. All hyperparameter tuning was performed
based on the loss returned from the test data.

F. Implementation Details

To allow comparability throughout all tested systems we
containerised our code using Docke We aimed at developing
a model that is capable of predicting a wide range of common
operations used in the Tensorflow machine learning framework
on different GPUs. We used the containerised version of
tensorflow1.10.1-gpu as provided on Dockerhu for all our

experiments.

For all experiments we generated training data
from the model to be predicted using a randomly
selected activation function from a choice of:
none, tensorflow.nn.relu, tensorflow.nn.sigmoid and
tensorflow.nn.tanh. We also randomly selected the

optimizers from: tensorflow.train.{ GradientDescentOptimizer,
AdadeltaOptimizer, AdagradOptimizer, MomentumOptimizer,

4All resources are available on https:/github.com/CDECatapult/ml-
performance-prediction.git
Shttps://hub.docker.com/r/tensorflow/tensorflow/



AdamOptimizer, RMSPropOptimizer}. 50% of all experiments
were performed as pure forward passes without any
backpropagation.

VII. RESULTS

We present here results for training models using the
features we have defined previously within this work. We
first demonstrate the capability of our approach to predict the
performance of a GPU when trained on data only from that
GPU and compare our approach against a linear regressor. We
then test our deep learning predictor when it has been trained
on data from multiple GPU types. In this second case we use
the trained model to predict execution times for a GPU type
not seen as part of the training process. In the last case we
evaluate how good our approach is by predicting the entire
training execution time for a single batch across all layers of
a real deep learning network. In all experiments dropouts were
not used unless otherwise specified.

A. Estimating the training time for a fully connected or
convolutional layer

Here we train a deep learning predictor for each GPU type
separately from each other. This allows us to validate if our
approach will allow us to predict the execution time without
taking the features of hardware into account. Thus, this is both
a simpler model and removes the issue that we had relatively
few cards on which to train. It was anticipated that these
predictions would be more accurate than those generated for
a combined model of multiple GPU types.

We first assess the minimal complexity of a prediction
model that is required to predict the execution times for con-
volutional layers. Figure [2] depicts the RMSE when predicting
performance of an NVIDIA Tesla V100 GPU using models
with different numbers of hidden layers. Although five layers
has the lowest RMSE the benefit over a four layer network
is negligible in comparison to the increase in training time.
Following these results we use neural networks with four
hidden layers to predict the performance of individual GPUs.

RMSE (ms)

3 4 5
# layers

Fig. 2. RMSE of execution time predictions for convolutional layers on an
V100 GPU using models with different numbers of hidden layers

Figure [3] depicts the comparison between predicted and
actual execution training times for four different GPU cards
for convolutional layers. Namely a) NVIDIA Tesla V100, b)
NVIDIA Tesla P100, c¢) NVIDIA Tesla M60, d) NVIDIA
Tesla K80, ¢) NVIDIA Tesla K40, and f) NVIDIA Geforce
GTX1080Ti. These result in a RMSE in each case, respec-
tively, of a) 1.73 ms, b) 3.32 ms, ¢) 6.07 ms, d) 7.84 ms, e)
11.90 ms, and f) 2.55 ms. It should be noted that older GPUs
show longer execution times, and accordingly larger absolute
deviations in the predictions.

The execution times for the fully connected layers were
predicted similarly. Hence, we do not present the graphs here.
We do report the RMSE as a) 0.048 ms, b) 0.033 ms, c) 0.031
d) 0.145 ms, e) 0.167 ms, and f) 0.034 ms respectively. These
relatively small errors can be explained by smaller average
execution times for the fully connected layers tested.

B. Comparison with other prediction approaches

We compare our approach here with a simple linear regres-
sion model [13]]. As the linear regression model is not able
to handle our one-hot encoded features we cannot use them
here. Thus, we separately evaluate predictions for only forward
passes (Figure[h,b), and predictions for forward and backward
passes with stochastic gradient descent (Figure [.d).
In both cases we use the number of required floating point
operations as additional input feature to the linear model to
mitigate the non-linearities. We assess the accuracy of the
models by comparing the predicted execution time with the
actual execution time for different convolutional layers.

Figure [@p depicts the results for using our deep learning
predictor to predict the execution time for a feed-forward pass,
whilst Figure@p is for the linear regressor. The linear regressor
clearly fails to capture the complexity of the model and
produces a large inaccuracy (RMSE 2.42 ms). By contrast the
deep learning predictor produces a fairly consistent prediction
in comparison to the actual training time (RMSE 0.83 ms).
This indicates that a deep learning based predictor is much
better to use for such cases. This is likely to be a consequence
of the linear regressor being unable to account for non-linear
relationships between features and execution time.

Figure Pk demonstrates that our deep learning predictor
consistently generates good estimates for the execution times
for forward and backward passes across the range of actual
execution times with a root mean squared error of 3.18 ms.
However, Figure [dd shows that the linear regression method
becomes progressively worse as the actual execution time
increases, leading to a RMSE of 8.95 ms. Again, the linear
regression approach is modelling for the majority of observed
data points and missing the non-linear effects of longer run-
times.

While additional feature engineering that goes beyond the
number of floating point operations might overcome some of
the problems with the linear model, it cannot be expected to
capture the full complexity of the execution time prediction.
Moreover, by using just forward passes or a single optimiser
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Fig. 3. Predicted time for convolutions versus measured time. a) Tesla V100, RMSE of prediction 1.73 ms. b) Tesla P100, RMSE 3.32 ms. ¢) Tesla M60,
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may be beneficial for a linear approach, our deep learning
approach can also handle different optimisers simultaneously.

C. A general model constructed from multiple cards

We now evaluate the results for our model trained on data
from multiple GPUs. The features of the model were expanded
to include GPU memory bandwidth, GPU clock frequency and
the number of CUDA cores. Since these additional features
might require a more complex model we reassess the required
number of hidden layers for this case. The results shown in
Figure [5] suggest that using 6 hidden layers yield the best
results.

We first trained our model on data from all available GPUs
to test the viability of this approach. Since the limited memory
of some of the GPUs did not allow for using larger batch sizes,
in this experiment we only used data with batch sizes of up
to 32. Figure [6] depicts the comparison between predicted and
actual execution training times for this setting. The quality
of the predictions with a RMSE of 3.88 ms shows that this
model is capable of inferring executions times of convolutions
on different GPUs.

The more interesting case, however, is predicting of the
performance of different, unseen hardware, using just the
above features. To test whether our approach can be used for
this general performance prediction, we trained a model on
the data from just five of the GPUs. The data for the sixth
GPU was held back to provide an unseen hardware case.

In Figure [7] we evaluate the ability for this mixed model
to predict the execution times for training on an unseen
card. We assessed the prediction accuracy for every GPU
separately, i.e. for each of the six GPUs we trained a model
using data from the other five GPUs. While we observe
some small but systematic discrepancies between predicted
and measured results, the overall results are very encouraging,
especially since additional training data from other GPUs can
be expected to further improve the accuracy. The uncertainty of
predictions can be expected to be particularly large for GPUs
with specifications that don’t fall into the range of known
hardware. Therefore, we observe an over-prediction of the
execution time for the NVIDIA Tesla V100, the newest GPU
that has been tested here. The same problem does not arise at
the lower border of the performance spectrum, since the two
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oldest GPUs, the NVIDIA Tesla K80 and K40, have quite
similar characteristics.

D. Inferring a full model prediction

Here we aim to predict the execution time for an entire
epoch of a deep learning network. We choose the VGG-16
[15] network to test our prediction model. We first predict
the execution time for a forward or a forward and backward
pass through each layer within the network. Then, we combine
these results to predict the execution time for the entire deep
neural network. Our model is trained with the data from all
six different GPUs that we have been using.

It should be noted that although here we evaluate our model
against benchmarks of the VGG-16 model, our approach is as
equally valid for predicting the execution time for any deep
learning network that primarily depends on convolutions and
matrix multiplications. Similar to Section [VII-C| this method-
ology can also be expanded to different hardware setups.

Our model allows for inferring the execution time for each
layer of a deep learning model. It therefore can be used to
predict the effect of arbitrary changes to the model architecture
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Fig. 6. Predicted time for convolutions versus measured time for a model
that has been trained on data from all available GPUs. The RMSE is 3.88 ms.

or parameters such as the batch size or the optimiser used (see
Figure [8| where we vary the batch size used and the optimizer).

Our deep learning predictor approach nicely demonstrates
the different scaling properties of the compute time for the
different batch sizes and different layers. While the batch
size only has a small effect on the execution time for fully
connected layers, the execution time for convolutional layers
grows strongly with the batch size. Therefore, fully connected
layers dominate the overall processing time in the case of
small batch sizes, while convolutional layers dominate at larger
batch sizes. These different characteristics can be explained by
the large amount of weights that need to be written to GPU
memory for fully connected layers, while the execution time
for convolutional layers is dominated by the computation time.

We can now combine individual layer times to predict exe-
cution times for forward and backward passes of independent
batches through a complete deep neural network. Figure
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depicts the comparison between predicted and actual execution
time for a range of batch sizes, using forward pass only,
SGD and Adam optimizer. While these results show some
variation especially for large batch sizes, they allow us to draw
conclusions on the computational complexity of the given
model and estimate the training time for one epoch. Moreover,
it allows us to predict the effects that different hardware and
different model characteristics, such as the optimizer, have on
the resulting execution time.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we have demonstrated a deep learning model
that is capable of accurately predicting the required execution
time for a wide range of the most frequently used components
of neural networks. This model extends upon previous works
by additionally considering nonlinear components of neural
networks, which up to this point have been largely ignored.
The results from this model can be used to predict execution
times for complete deep neural networks. Thereby, the model
can provide a good foundation for informed choices when
selecting appropriate hardware to train a model or infer pre-
dictions, while additionally helping to inform decisions around
model design and layout.

Our model provides an extensible framework, allowing
anyone to easily incorporate their own model architecture
along with hardware specific training data. It can also be
easily extended to different machine learning frameworks and
programming languages. Furthermore, with additional data
this model can be expanded to 16 bit floating point as well
as lower precision fixed point computations. This allows for
straightforward generation of prediction models either for
specific use cases or, where the data is available, a more
general model that is capable of predicting over a broader
range of different configurations.

In future work, our model will benefit from additional
benchmarking on a wider array of hardware along with further

investigation into an expanded set of appropriate ‘features’
used for training the model. This additional work will even-
tually provide a highly flexible model, able to generalise very
well across varying network models, data sizes and hardware
configurations. We aim to make this model framework a tool
that can be used by researchers as well as interested individuals
and industry. We will provide all code relevant and make
it available on an open platform, allowing the sharing of
benchmark results to further improve generalization of the
model.
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