
An Application of Storage-Optimal MatDot Codes

for Coded Matrix Multiplication: Fast k-Nearest

Neighbors Estimation

Utsav Sheth1, Sanghamitra Dutta1, Malhar Chaudhari1, Haewon Jeong1, Yaoqing

Yang1, Jukka Kohonen2, Teemu Roos2, Pulkit Grover1

Abstract

We propose a novel application of coded computing to the problem of the nearest neighbor estimation using

MatDot Codes [2] that are known to be optimal for matrix multiplication in terms of recovery threshold under

storage constraints. In approximate nearest neighbor algorithms, it is common to construct efficient in-memory

indexes to improve query response time. One such strategy is Multiple Random Projection Trees (MRPT), which

reduces the set of candidate points over which Euclidean distance calculations are performed. However, this may

result in a high memory footprint and possibly paging penalties for large or high-dimensional data. Here we

propose two techniques to parallelize MRPT that exploit data and model parallelism respectively by dividing

both the data storage and the computation efforts among different nodes in a distributed computing cluster.

This is especially critical when a single compute node cannot hold the complete dataset in memory. We also

propose a novel coded computation strategy based on MatDot codes for the model-parallel architecture that, in

a straggler-prone environment, achieves the storage-optimal recovery threshold, i.e., the number of nodes that

are required to serve a query. We experimentally demonstrate that, in the absence of straggling, our distributed

approaches require less query time than execution on a single processing node, providing near-linear speedups

with respect to the number of worker nodes. Through our experiments on real systems with simulated straggling,

we also show that our strategy achieves a faster query execution than the uncoded strategy in a straggler-prone

environment.

Index Terms

Distributed Systems, K-NN search, Multiple Random Projection Trees, MatDot codes, Stragglers

1Carnegie Mellon University, Pittsburgh, USA. Corresponding Author Contact: pulkit@cmu.edu.
2University of Helsinki, Finland. Corresponding Author Contact: teemu.roos@cs.helsinki.fi.

This work is accepted as a short paper at the IEEE Big Data 2018 [1].

ar
X

iv
:1

81
1.

11
81

1v
1

 [
cs

.I
T

]
 2

8
N

ov
 2

01
8

I. INTRODUCTION

We consider the problem of finding the k nearest neighbors of a query point in a given high-

dimensional dataset. To solve this problem efficiently, our goal is to speed up an existing algorithm [3]

by parallelizing it, and to make it resilient to stragglers [4]. The k-nearest neighbor (k-NN) problem

is often a first step used in a variety of real world applications including genomics [5], personalized

search [6], network security [7], and web based recommendation systems [8].

In the era of Big Data, k-NN algorithms are often a bottleneck, as data and dimensionalities grow [9].

There is a rich body of work on fast nearest neighbor retrieval. The existing work can be broadly

classified into three categories. The first category of methods speeds up k-NN retrieval by reducing

the space over which exact distance calculations are performed, by employing space partitioning data

structures [10]–[12]. The second category of techniques improves retrieval times by system level paral-

lelism [13], [14]. Algorithms in the first and second categories are seldom scalable as they require that the

whole dataset is held in (shared) memory for optimal performance. For large high-dimensional datasets,

marshaling enough resources on a single system is challenging. The third category of methods aims to

overcome this challenge by parallelizing storage and computation in a distributed setting. PANDA [15]

and DSI sharding [16] are examples of data parallel implementations of distributed k-NN algorithms.

While these techniques rely on specialized or high-performance hardware (e.g. Edison supercomputer

for PANDA), the general trend in the distributed systems has been to use general purpose commodity

systems [17] [18]. These approaches also do not address a more serious issue — the effects of node

failures and slow nodes, or “stragglers”. Schroeder and Gibson [19] observed as many as 1,159 system

failures per year at the Los Alamos National Laboratory. Dean et al. [4] study a real Google service

and observe that the slowest 5% of requests are responsible for half of the total 99th percentile latency.

Recently “Coded Computing” [1], [2], [20]–[72] has been found to be very useful in combating

stragglers and faults, by the efficient use of novel erasure-codes to create redundancy in computing. In

this paper, we use one such coded computing technique called MatDot codes [2], [28] to speed up an

approximate k-NN algorithm called Multiple Random Projection Trees (MRPT) [3].

The problem of distributed matrix multiplication has always been of significant interest in the coded

computing community [2], [25], [26], [28], [30]–[32], [35], [40]. In our prior work [2], [28], we proposed

a novel coding technique called MatDot codes for the multiplication of two matrices (e.g. XTQ) that

outperform the recent Polynomial Codes [32] with respect to recovery threshold, i.e., the number of

worker nodes needed to wait for, out of the total nodes, under storage constraints. More specifically,

for the problem of distributed matrix multiplication under the storage constraint that each node can

only store a fixed 1
m

fraction of each matrix, MatDot codes achieve the optimal recovery threshold of

2m− 1 [2], [28] as compared to Polynomial codes that have a recovery threshold of m2.

We note that for matrix multiplication XTQ or matrix-vector product XTq under the constraint that

only 1
m

fraction of each operand can be stored at each node, MatDot codes use vertical block-partitioning

of the first matrix XT as compared to other existing strategies that use either horizontal partition or a

combination of both (see [30] for discussion on partitioning). Interestingly, as it turns out, the vertical

partitioning of the first matrix is better suited for the coded MRPT problem formulation. This is because

we are required to perform the multiplication X(S)TQ or X(S)Tq in a distributed fashion, where X(S)T

denotes a sub-matrix of XT consisting of the rows of XT indexed in a set S, such that, XT is known

in advance but the set S becomes available only in the online phase (real-time).

This coded computing problem ensues from our broader goal in this work, which is to speed up

MRPT by employing data and model parallelism and straggler-tolerant computing techniques. We

differentiate here between data parallelism and model parallelism. In data parallelism, different nodes

process different pieces of data, but each node performs all the computations relevant to the entire

model. In model parallelism, the model itself is parallelized across nodes.

MRPT partitions the search space to retrieve approximate k nearest neighbors of the query q. It uses

a combination of random projection trees and voting to achieve fast queries and high accuracy. In this

paper, we propose two enhancements to the MRPT algorithm by parallelizing it in a distributed setting.

Our contributions are as follows:

• We propose a distributed implementation of MRPT exploiting data parallelism that experimentally

demonstrates faster queries than a single node implementation, even when using CPUs with lower

clock speeds. Additionally, the cloud-based virtual machines we use in our experiments for parallel

MRPT have a non-zero steal time, i.e., they may be required to wait while others are being served.

• We formulate a coded computing problem for MRPT, and then apply coded matrix multiplication

strategies, namely MatDot and Systematic MatDot codes to further reduce the query time for the

model parallel architecture in a system that is prone to straggling.

The rest of the paper is organized as follows. In Section II we explain the MRPT algorithm and

describe how it reduces the search-space through projections and voting. In Section III we introduce the

Data Parallel Model Implementation of MRPT. In Section IV we introduce our proposed model parallel

implementation of MRPT and then describe the application of MatDot codes and systematic MatDot

codes in our model parallel architecture to achieve a lower recovery threshold [2] under straggling.

The model parallel architecture is ideal for applications where system components are unreliable and

accuracy is important. In Section V we experimentally demonstrate the advantages of our approach. A

conclusion is provided in Section VI.

II. PRELIMINARIES

A. MRPT Algorithm

This section briefly describes the two stages of the MRPT algorithm: (i) off-line index construction

stage and (ii) on-line query stage. Assume that we are given a d-dimensional dataset X consisting of

N points, represented as a d×N matrix X. Given a query point q, the problem of k-nearest neighbors

involves finding a set of points κ ⊆ X such that |κ| = k and dist(x,q) ≤ dist(y,q) for each x ∈ κ,

y ∈ X\κ, and the function dist(·) is the distance function in the d-dimensional Euclidean space given

by:

dist(u,v) = ‖u− v‖ =
√
‖u‖2 + ‖v‖2 − 2u · v, (1)

where u and v are two vectors in this space.

In the MRPT algorithm, a sparse d-dimensional random projection vector r is chosen, in which each

entry ri is sampled from the following distribution:

ri =

N (0, 1) with probability a

0 with probability 1− a.

Typically, the sparsity parameter a can be chosen as 1√
d
, as in [3], to obtain good accuracy. Now, each

d-dimensional data-point p ∈ X is then projected onto the sparse vector r. The dataset X is then divided

into two subsets at the median point of the projected values. The process is then repeated recursively

for every subset at a level, with a new random vector r chosen for that tree level, until depth ` is

reached. Thus, for every tree t ∈ T , the entire dataset X is partitioned into 2` cells (or leaves), denoted

as L1, L2, . . . , L2l , all of which contain dN
2`
e or bN

2`
c data-points.

Online Query Stage in MRPT: Given a d-dimensional query vector q, the first step in the MRPT

query stage is to generate a candidate set of indices (pruned data-point indices) S ⊂ {1, 2, . . . , N} such

that |S| � N .

For each Random Projection (RP) tree t ∈ T , at each level the query vector q is projected onto the

random vector r for that level and then assigned a branch based on whether its value is greater than

or less than the median of the projections of all other data-points with r. This process is then repeated

recursively until a leaf is reached.

Each tree had already partitioned the dataset X into 2l cells or leaves. For 1 ≤ t ≤ T , let ft(·) be

defined as:

ft(x : q) =
2`∑
i=1

1(x ∈ Li,q ∈ Li), (2)

where 1(x ∈ Li,q ∈ Li) denotes the indicator function that returns 1 if both x and q reside in the

same cell. Let F (·) be a function that returns the number of trees in which x and q occur in the same

leaf, defined as follows:

F (x;q) =
T∑
t=1

ft(x,q). (3)

The candidate set of indices (pruned points) S can then be finally chosen as follows:

S = {j ⊂ {1, 2, . . . , N} : xj ∈ X and F(xj;q) ≥ ν}. (4)

Here, ν is a pre-configured parameter known as the voting threshold. Thus, the set S denotes the set

of indices ⊂ {1, 2, . . . , N} for which at least ν trees have found the corresponding data-point xj in the

same cell as q.

Finally, exact distance calculations are performed for each xj with j ∈ S, to obtain the approximate

k nearest neighbors to the query-vector q. The algorithm for this stage is mentioned in Algorithm 1.

Here, TREE_QUERY(q, t) is a function corresponding to tree t that returns the pruned collection of

the indices of the data-points that lie in the same cell (or leaf) as q. Thus, TREE_QUERY(q, t) gives

{j ⊂ {1, . . . , N} : 1(xj ∈ Li,q ∈ Li) = 1 for some Li}. The exact distance calculation is discussed

again in Section IV.

Algorithm 1 The MRPT Query Phase
1: procedure APPROXIMATE KNN(q, k, T , ν)

2: S ← ∅

3: Let votes = [0, . . . , 0] be a new n-dimensional array

4: for t in T do

5: for point in TREE_QUERY(q, t) do

6: votes[point] ← votes[point] + 1

7: if votes[point] = ν then

8: S ← S ∪ {point}

9: return EXACT_KNN(q, k, S)

B. Coded Matrix Multiplication

Coded computing combines distributed numerical algorithms and error correcting codes (ECCs) to

mitigate unreliable processors and randomness in their response time. In this work, we focus on coded

matrix multiplication as matrix multiplication is the main bottleneck in MRPT algorithm. Coded com-

puting has been used extensively for different computation objectives such as neural-network training,

FFT, iterative computing, distributed regression, and convolutions (see [20] for review).

System Model: We want to compute C = AB where A and B are N -by-N matrices. A master node

distributes the computation to P worker nodes. A worker node has limited memory/computing power,

so each node can receive the 1/m-th fraction of matrices A and B. After completing its computation,

a worker reports the result to a fusion node. Recovery threshold is defined as the worst-case number of

workers needed to recover the final result.

Let K be the number of workers needed to complete the computation if all worker nodes are reliable

(K is different depending on how we split the matrix). In reality, some processors are significantly

slower than the others due to queuing delays or random faults in the processor [25]. Without any

reliability measure to alleviate straggler problems, computation completion time would be dominated

by few stragglers. Our aim is to use more than K worker nodes by adding some redundancies, which

are carefully designed by applying the ideas from coding theory, so that the whole computation can be

resilient to stragglers.

MatDot codes: The matrix A is split vertically into m column blocks, and B is split horizontally

into m row blocks:

A = [A1 A2 . . . Am] , B =

B1

...

Bm

 , (5)

where Ai,Bi (i = 1, . . . ,m) are N ×N/m and N/m×N dimensional submatrices, respectively.

The matrices A and B are then encoded as polynomials:

pA(x) =
m∑
i=1

Aix
i−1, pB(x) =

m∑
j=1

Bjx
m−j. (6)

A master node distributes encoded matrices, pA(αi) and pB(αi) to the i-th worker node (i = 1, . . . , P).

Then the i-th worker node computes the following product at x = αi:

pC(x) =
m∑
i=1

m∑
j=1

AiBjx
m−1+(i−j), (7)

and returns the result to the master node. Note that the coefficient of xm−1 in pC(x) is C =
∑m

i=1AiBi.

Since pC(x) is a polynomial of degree 2m − 2, its coefficients can be recovered by the master node

as soon as it receives the values of pC(x) at any 2m− 1 distinct points. Hence the recovery threshold

is K = 2m − 1. This is provably the optimal recovery threshold, when a worker node can store 1
m

-th

fraction of each input matrix [2], [28].

Systematic MatDot codes: A code is called systematic if, for the first m worker nodes, the output of

the r-th worker node is the product ArBr. We refer to the first m worker nodes as systematic worker

nodes. Having systematic nodes is useful because if all the systematic nodes complete their computation

in time, there is no need for decoding. Systematic MatDot codes are achieved by applying different

encoding polynomials. Let pA(x) =
∑m

i=1AiLi(x) and pB(x) =
∑m

i=1BiLi(x) where Li(x) is defined

as follows for i ∈ {1, . . . ,m}:

Li(x) =
∏

j∈{1,...,m}\{i}

x− xj
xi − xj

. (8)

Using these polynomials, the worst-case recovery threshold remains the same as non-systematic MatDot

codes [2], [28].

Remark (1) MatDot and Systematic MatDot codes use vertical partitioning of the first matrix which is

well suited for the problem of coded MRPT as compared to strategies that use horizontal partitioning or

a combination of horizontal and vertical partitioning for the first matrix. This is because in the coded

MRPT formulation, we are required to perform the multiplication X(S)TQ or X(S)Tq in a distributed

fashion, where X(S)T denotes a sub-matrix of XT consisting of the rows of XT indexed in a set S,

such that the set S is available only in the online phase (real-time).

III. DATA PARALLEL MRPT

Now, we model MRPT as a problem in data parallelism and describe our first strategy to parallelize

the algorithm. Consider a distributed computing cluster having a single master node and P worker

nodes as shown in Fig. 1.

Given a d × N matrix X representing the set of data-points X and a cluster with P worker nodes,

we randomly split X vertically into P disjoint, vertical partitions Xi for i ∈ {1, 2, . . . , P}.Thus, X =[
X1|X2| . . . |XP

]
, where each Xi is of dimension d× N

P
.

We distribute each partition Xi across the P worker nodes in the cluster such that the worker Wi

contains partition Xi. Each worker then runs the MRPT index construction algorithm described in

Section II-A to build a local MRPT set of trees Ti from its partition Xi of X.

Given a query q, the master node transmits q to each worker node Wi. Then Wi uses the MRPT

query algorithm described in Section II-A on its trees Ti to determine the τ nearest neighbors of q. We

use the same voting threshold ν in all workers. After local voting, a local exact distance calculation step

is performed to narrow down to τ data-points. Finally, each worker node Wi then returns the indices of

its set of τ (≥ k) nearest neighbors Ni, from the partition Xi of X, to the master node along with their

exact distances from the query q. Then, the master node determines the final set of k nearest neighbors

Fig. 1: Data Parallel MRPT Architecture.

to q from all the Pτ candidate data-point indices received from all the worker nodes, i.e., the indices

of all the data-points in the set ∪Pi=1Ni, by sorting the data-points based on their exact distances.

Remark (2) : Recall that κ ⊆ X (with |κ| = k) is the set of the true k nearest neighbors of q. We

let κi ⊆ κ be the set of the true nearest neighbors to q that lie in worker Wi. To achieve maximum

accuracy, we must have κi ⊆ Ni and therefore the value of ν chosen for the system must be such that |κi|

is much less than τ . In fact, a higher value of τ implies higher chance of containing the desired set κi,

though it comes with increased communication cost from worker to master and increased computation

at the master node.

IV. MODEL PARALLEL MRPT

In this section we discuss a model parallel architecture for approximate k nearest neighbor search

using MRPT. We then propose two enhancements to the model parallel architecture that apply coded

distributed matrix multiplication techniques that achieve the optimal recovery threshold in a system that

is prone to straggling.

A. Problem Formulation for Model Parallel MRPT

Consider the d-dimensional dataset X as before. In the model parallel architecture, given a query

q, we first find the possible candidate set of indices (pruned indices) S using the recursive algorithm

described in Section II-A. Now the search space for the true nearest neighbors κ reduces to the set of

data-points whose indices are in S, i.e., κ ⊆ {xj : j ∈ S}.

Fig. 2: Partitioning the data matrix X and the query vector q in Model Parallel MRPT.

To find the set κ, we compute the exact Euclidean distance from each data-point xj (for j ∈ S) to

the query point q. Examining the terms constituting the Euclidean distance in (1), the Euclidean norm

‖xj‖ for each xj ∈ X can be precomputed and the same can be done to get ‖q‖. We must now only

compute the dot product xj · q to obtain the Euclidean distances from each xj to q.

To do this, we first represent the data-points indexed in the set S as a d × |S| matrix X(S) that

contains only the data-points xj (columns of X) such that j ∈ S. The transpose of this matrix is the

|S| × d matrix X(S)T that essentially denotes all the rows of the matrix XT indexed in S.

Consider the column vector w such that w = X(S)Tq. Note that each element of the vector w

corresponds to the dot-product xj · q = xT
j q for some j ∈ S. The Euclidean distance from xj to q can

now be determined as all the terms in (1) are known to us, which includes the individual norms as well

as the dot product xj · q.

The problem thus reduces to the following: compute the vector w = X(S)Tq in a distributed

computing cluster where XT is known in advance but the set of indices S become available only

in the online phase (real-time). Since the computation w = X(S)Tq is the only stage of the algorithm

that must be done at runtime (in the online stage) and scales linearly with d, we now discuss several

scalable strategies that compute vector w in a distributed setting.

B. Uncoded Distributed Matrix-Vector Multiplication

We split XT into P equal partitions as follows (see Fig. 2):

XT =
[
XT

1 XT
2 . . . XT

P

]
. (9)

Now consider a cluster consisting of one master node and P worker nodes as shown in Fig. 3. Each

partition XT
i is distributed across the worker nodes such that worker Wi stores the partition Xi

T in

advance (off-line).

Fig. 3: Model Parallel Architecture with Uncoded Distributed Matrix Multiplication.

Note that, if XT is partitioned using the strategy just discussed, the matrix X(S)T also gets partitioned

as follows:

X(S)T =
[
X1(S)

T X2(S)
T . . . XP (S)

T .
]

(10)

In the online phase, we only split the query q into P equal partitions, {qi : i ∈ {1, . . . , P}} (again see

Fig. 2). The product w can then be expressed as:

w =
P∑
i=1

Xi(S)
Tqi. (11)

Given a query q for which the k nearest neighbors must be determined, the master node first computes

the possible candidate set S for q from its MRPT index set of trees T and then transmits the set S and

partition qi of q to worker node Wi. For every S, each worker node Wi only fetches the matrix Xi(S)
T

from XT
i already stored in its memory. It then computes the product Xi(S)

Tqi and returns the resulting

vector to the master node. The master node can thus compute the vector w by adding the results using

(11), and determine the k nearest neighbors using the exact distances.

C. Coded Distributed Matrix-Vector Multiplication using MatDot Codes

In order to successfully compute the vector w using the strategy described in Section IV-B, the master

node must wait for every worker node Wi to successfully return the product Xi(S)
Tqi. In a straggler-

prone environment, this might cause unprecedented delays in computation. Thus, to avoid waiting for

all nodes and be able to recover the matrix-vector product by only waiting for some out of all workers

to finish, we will now apply the MatDot-based distributed matrix multiplication strategy [2].

Fig. 4: Model Parallel Architecture with MatDot Codes.

We partition the matrix XT vertically again, but into m partitions instead of P as follows:

XT =
[
XT

1 XT
2 . . . XT

m

]
. (12)

We then use the following encoding polynomial:

PXT (β) =
m∑
j=1

XT
j β

j−1. (13)

The rows of PXT (β) indexed in set S actually represent the following polynomial:

PX(S)T (β) =
m∑

j=1

Xj(S)
Tβj−1. (14)

We will be referring to this observation later.

Now, given a cluster with a master node and P worker nodes, as shown in Fig. 4, each worker node

Wi is initialized with a different βi, using which it computes the polynomial PXT (βi) in (13). This

encoding step can be performed off-line as XT is known in advance.

During the online stage, given a query q for which the k nearest neighbors must be determined, the

master node first partitions q into m parts: {qj : j ∈ {1, 2, . . . ,m}}. We then use the following encoding

polynomial:

Pq(β) =
m∑

j=1

qjβ
m−j. (15)

As in Section IV-B, the master node first determines the candidate set S. It then transmits S and the

encoded query Pq(βi) obtained from (15) to worker Wi. The worker Wi then fetches only the matrix

PX(S)T (βi) from its stored PXT (βi) (recall (14)) which essentially denotes all the rows of PXT (βi)

indexed in S. Then, it computes the product PX(S)T (βi)Pq(βi) and returns the result to the master node.

The coefficient of βm−1 in the polynomial PX(S)T (β)Pq(β) turns out to be our desired desired matrix-

vector product X(S)Tq =
∑m

j=1Xj(S)
Tqj from the property of MatDot codes. We need to evaluate

the polynomial at only 2m− 1 distinct points so as to determine the coefficient for every power of β.

The master node must therefore wait for at least 2m−1 worker nodes following which it can determine

the term
∑m

i=1Xi(S)
Tqi using polynomial interpolation. We then follow the strategy of comparing the

exact distances in Section IV-A to obtain the set of the k nearest neighbors to q.

D. Coded Distributed Matrix-Vector Multiplication using Systematic MatDot Codes

In our prior work [2], [28] where we proposed MatDot Codes, we also introduced their systematic

variant. Their advantage is that, while for MatDot Codes the recovery threshold is always 2m− 1, for

systematic MatDot Codes one might sometimes only need m nodes to finish, although 2m − 1 is the

worst-case value. In this section, we apply the systematic MatDot code to the MRPT problem.

Similar to the previous case, we first partition XT vertically into m partitions, but then use a different

encoding function:

PXT (β) =
m∑
j=1

XT
j Lj(β), (16)

where Lj(β) is given by:

Lj(β) =
∏

r∈{1,2,...,m}\j

β − βr
βj − βr

. (17)

Consider a cluster consisting of one master node and P worker nodes. Worker Wi is assigned a value βi

using which it computes the polynomial in (16). This encoding is performed in advance, in the off-line

stage. Interestingly, the workers {Wi : i = 1, 2, . . . ,m} turn out to be the systematic worker nodes,

which contain uncoded partitions of XT .

In the online phase, given a query q, the master node first partitions q into m partitions and then

uses the following encoding function:

Pq(β) =
m∑
j=1

qjLj(β), (18)

where Lj(β) is given by (17). The master node then transmits candidate set S and Pq(βi) to each

worker node. Worker Wi is responsible for computing the product PX(S)T (βi)Pq(βi). We first consider

the case when the first m workers to successfully complete their computation are the systematic worker

nodes. We can then obtain the vector w as follows:

w =
m∑
i=1

PX(S)T (βi)Pq(βi). (19)

If the results of the first 2m−1 successful workers do not contain results from the m systematic nodes,

then the master interpolates the polynomial PX(S)T (β)Pq(β). It then computes this polynomial product

at each βi ∈ {β1,β2,. . . ,βm}. Finally, it computes the vector w using (19). Note that in the ideal case,

i.e., when all the systematic worker nodes finish first, we only needed m nodes to finish as opposed to

the worst-case recovery threshold of 2m − 1. We can now proceed with the steps of comparing exact

distances (see Section IV-A) to retrieve the k nearest neighbors of q.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of data and model parallel MRPT in terms of both

accuracy and speed. All of our experiments were conducted on Amazon Elastic Compute Cloud in-

stances [73].

The STL-10 dataset [74] is a dataset of N = 100000 images each of dimension d = 9216 used in

unsupervised image classification algorithms, while GIST [75] is a popular dataset with N = 1000000

and d = 960 used in ANN algorithms. These datasets provide us with a good mix of dimensionality

and number of datapoints to evaluate our proposed strategies. The MRPT parameters used for the

experiments are provided in Table I.

TABLE I: MRPT Parameters

Dataset ` ν Number of Trees Projection Sparsity

STL-10 7 25 900 0.01

GIST 9 10 900 0.032

We evaluate the accuracy of our implementation using recall defined as:
|κMRPT ∩ κ|

k
, where q is the

query whose true k nearest neighbors is the set κ and κMRPT is the set of k nearest neighbors returned

by the algorithm.

For the single node MRPT baseline, we used a compute optimized c5.large instance with two

3GHz Intel Xeon Platinum processors and 4 GB of memory. For the data parallel and model parallel

architectures, we used t2.medium instances with two 2.3 GHz Intel Broadwell processors and 4 GB

of memory. All instances are provisioned with 40GB HDD secondary storage. Note that the hardware

used for our baseline experiments is superior to that used to evaluate our parallel strategies. In all

experiments we ran 500 queries sequentially with k = 10. We consider the average result of 50 runs

for each experiment. The experiments were conducted in a cluster consisting of 1 master node and 16

worker nodes.

In the experiments with MatDot codes and systematic MatDot codes, we used encoding polynomials

of degree 2.

A. System Constraints

All our experiments are conducted on systems with limited memory. Thus the MRPT algorithm has

to use the disk to hold the index T and the actual data points. In comparison, the data parallel and

model parallel architectures use less memory and avoid disk penalties. In the data parallel architecture,

we reduce the amount of points each worker must hold by a factor of P. Additionally, the MRPT

indexes become smaller as each worker holds a smaller fraction of the dataset. In the model parallel

architecture, the master node can discard the components for each point after tree construction; it only

needs the index. At each worker node, the memory requirement is at least halved.

B. Simulating Stragglers on Amazon Web Services

To demonstrate the effects of stragglers in the model parallel architecture, we sample the minimum

time Ti a worker Wi must take to complete a matrix multiplication for a query from the shifted

Exponential [25], [26] and Weibull distributions [27], [52] shown in (20) and (21) respectively.

Pr[Ti ≤ t] = 1− e−
µi
li
(t−aili) (20)

Pr[Ti ≤ t] = 1− e
(
−µi
li
(t−aili)

)αi
(21)

Here, li is the number of row vectors loaded at worker Wi for matrix multiplication, ai > 0 is the

shift parameter, αi > 0 is the shape parameter for the Weibull distribution, µi > 0 is the straggling

parameter for Wi, and t ≥ aili. For our experiments, we set each µi, ai, and αi to some constants µ, a,

and α to maintain homogeneity in minimum computation times across workers. The parameters chosen

are as follows: Shifted Exponential (a = 0.0000001, µ = 15) and Weibull (a = 0.2, µ = 2, α = 0.5) for

both the datasets. Note that, for model parallel MRPT, li = |S|. We use a similar strategy to simulate

straggling in data parallel MRPT with li set to the average of |S| for the set of test queries.

C. Results

Our experimental results are provided in Tables II and also illustrated in Fig. 5. For completion, we

also include our obtained recall values here:

STL-10: Data Parallel (0.9632), Model Parallel (0.9648).

GIST: Data Parallel (0.9430), Model Parallel (0.9350).

TABLE II: Runtime Statistics in seconds for MRPT on STL-10 and GIST datasets over 50 Runs

Experiment Type Mean (STL-10) Std. Dev.(STL-10) Mean (GIST) Std. Dev.(GIST)

Single Node 762.272 69.147 2795.791 173.395

Data Parallel, Shifted-Exponential Runtime 349.309 14.672 1091.010 44.261

Data Parallel, Weibull Runtime 305.046 14.44 1082.638 39.081

Uncoded Model Parallel, Shifted-Exponential Runtime 419.114 17.217 1260.504 49.566

Uncoded Model Parallel, Weibull Runtime 408.814 13.625 1261.980 62.259

Coded Model Parallel (MatDot), Shifted-Exponential Runtime 179.082 7.956 608.496 38.406

Coded Model Parallel (MatDot), Weibull Runtime 179.075 8.312 618.515 39.270

Coded Model Parallel (Systematic MatDot), Shifted-Exponential 168.869 6.865 604.546 22.951

Coded Model Parallel (Systematic MatDot), Weibull Runtime 171.428 8.526 622.716 22.495

In all our experiments, both data and model parallel MRPT outperform the single node implementa-

tion. As shown in Fig. 5a and Fig. 5b, data parallel MRPT is significantly faster than single node MRPT.

This is due to the smaller size of the MRPT index and absence of disk penalties at workers. It can be

seen that the data parallel strategy has better performance when compared to uncoded model parallel

strategy because of its embarrassingly parallel design. Owing to this design, the data parallel strategy

could scale linearly with the number of nodes. However, these scaling benefits in query execution come

at a cost, as the random projection trees computed at each node do not contain all the data points

and hence the candidate set generated by each node could contain lesser true positives. To offset this

condition, we might have to lower the voting threshold in-order to generate a better candidate, while

causing more communication overheads and hence lower query execution time. The note mentioned in

Section III explains this case in more detail. For our experiments, we do not lower the voting threshold

as the loss in recall for STL-10 and GIST is not significant.

The model parallel architecture results in a high communication cost as the candidate set has to

be transmitted to each worker node. However, we find that if the MRPT parameters for a dataset

are sufficiently tuned, Algorithm 1 will generate a smaller candidate set over which exact distance

calculations must be performed. For our experiments, the algorithm was able to reduce the search space

for STL-10 from 100000 datapoints to 3025 and for GIST from 1000000 to 14934 datapoints on average

per query. Additionally, the model parallel strategy does not suffer from the accuracy related issues as

compared to the data parallel architecture as the candidate set is generated using the entire dataset and

not parts of it separately.

Both the strategies outperform baseline single node MRPT despite running on inferior hardware. The

(a) Execution Times: Single Node & Data Parallel (STL-10). (b) Execution Times: Single Node & Data Parallel (GIST).

(c) Execution Times: Single Node & Model Parallel (STL-

10).

(d) Execution Times: Single Node & Model Parallel

(GIST).

(e) Effect of Coded Matrix Multiplication for STL-10. (f) Effect of Coded Matrix Multiplication for GIST.

Fig. 5: Experimental Results of MRPT in different configurations.

parallel strategies are not limited by memory constraints as in the case of single node MRPT. These

strategies are therefore very useful when large datasets do not fit in memory. The coded model parallel

strategy also makes the algorithm tolerant to slow nodes and failures in a distributed setting.

Fig. 5c and Fig. 5d show that model parallel MRPT outperforms single node MRPT. They also

outperform data parallel MRPT under simulated straggling. This is of significance to real world systems

where straggling may manifest as unreliable nodes or network delays. Fig. 5e and Fig. 5f show the

benefits of coded matrix multiplication as opposed to the uncoded model parallel architecture under

simulated straggling. Both MatDot codes and systematic MatDot codes are consistently faster than the

uncoded approach. Fig. 5e also shows that systematic MatDot codes is able to outperform MatDot codes

owing to its lower recovery threshold.

VI. CONCLUSIONS

We proposed two approaches to parallelize the MRPT algorithm in a distributed setting. We also

applied the MatDot code based distributed matrix multiplication strategy to reduce the recovery threshold

in a system that is prone to stragglers. We showed that our parallelization strategies can achieve faster

queries than the single node MRPT algorithm under limited memory. Our results demonstrate the benefits

of applying MatDot code and systematic MatDot code to the model parallel architecture in a system

with simulated stragglers. In our experiments we observed large floating point errors when inverting

high degree Vandermonde matrices for polynomial interpolation. As future work, we will experiment

with strategies to reduce the condition number of a Vandermonde matrix [76] so that we can employ

polynomials of higher degrees, and thus apply the MatDot code and systematic MatDot code with a

larger number of worker nodes. Another possibility is to perform the computations in exact rational

arithmetic. This would eliminate rounding errors, but the effect on runtime needs to be analyzed.

ACKNOWLEDGEMENTS

This work was supported by NSF CNS-1702694, the Academy of Finland under the WiFIUS program,

the Academy of Finland COIN CoE and NSF CCF 1350314.

REFERENCES

[1] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T. Roos, and P. Grover, “An Application of Storage-Optimal

MatDot Codes for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation,” in IEEE Big Data (Short Paper), 2018.

[2] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix

multiplication,” in Communication, Control, and Computing (Allerton), 2017, pp. 1264–1270.

[3] V. Hyvönen, T. Pitkänen, S. Tasoulis, E. Jääsaari, R. Tuomainen, L. Wang, J. Corander, and T. Roos, “Fast nearest neighbor search

through sparse random projections and voting,” in IEEE Big Data, 2016, pp. 881–888.

[4] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[5] S. H. Bouazza, N. Hamdi, A. Zeroual, and K. Auhmani, “Gene-expression-based cancer classification through feature selection with

KNN and SVM classifiers,” in IEEE Intelligent Systems and Computer Vision (ISCV), 2015, pp. 1–6.

[6] K. Swati and A. J. Patankar, “Effective personalized mobile search using KNN,” in IEEE International Conference on Data Science

& Engineering (ICDSE), 2014, pp. 157–160.

[7] M. Govindarajan and R. Chandrasekaran, “Intrusion detection using k-Nearest Neighbor,” in International Conference on Advanced

Computing, 2009, pp. 13–20.

[8] B. Wang, Q. Liao, and C. Zhang, “Weight based KNN recommender system,” in International Conference on Intelligent Human-

Machine Systems and Cybernetics, vol. 2, 2013, pp. 449–452.

[9] Z. Xiong, W. Luo, L. Chen, and L. M. Ni, “Data vitalization: a new paradigm for large-scale dataset analysis,” in IEEE International

Conference on Parallel and Distributed Systems (ICPADS), 2010, pp. 251–258.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of dimensionality,” in ACM symposium on

Theory of computing, 1998, pp. 604–613.

[11] W. Cen and K. Miao, “An improved algorithm for locality-sensitive hashing,” in IEEE International Conference on Computer Science

& Education (ICCSE), 2015, pp. 61–64.

[12] B. Zhang and S. N. Srihari, “Fast k-nearest neighbor classification using cluster-based trees,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 4, pp. 525–528, 2004.

[13] S. Liang, C. Wang, Y. Liu, and L. Jian, “CUKNN: A parallel implementation of k-nearest neighbor on CUDA-enabled GPU,” in

IEEE Youth Conference on Information, Computing and Telecommunication, 2009, pp. 415–418.

[14] L. Huang, Z. Liu, Z. Yan, P. Liu, and Q. Cai, “An implementation of high performance parallel KNN algorithm based on GPU,” in

IEEE International Conference on Networking and Distributed Computing (ICNDC), 2012, pp. 30–30.

[15] M. M. A. Patwary et al., “PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures,” in IEEE Parallel and

Distributed Processing Symposium, 2016, pp. 494–503.

[16] Z. Yu, Y. Liu, X. Yu, and K. Q. Pu, “Scalable distributed processing of K nearest neighbor queries over moving objects,” IEEE

Transactions on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1383–1396, 2015.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,” in IEEE Symposium on Mass Storage

Systems and Technologies (MSST), 2010, pp. 1–10.

[18] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The Google cluster architecture,” IEEE Micro, no. 2, pp. 22–28,

2003.

[19] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance computing systems,” IEEE Transactions on

Dependable and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[20] V. Cadambe and P. Grover, “Codes for Distributed Computing: A Tutorial,” IEEE Information Theory Newsletter, vol. 67, no. 4,

pp. 3–15, 2017.

[21] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in content download from coded distributed storage systems,”

IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 989–997, 2014.

[22] D. Wang, G. Joshi, and G. Wornell, “Using Straggler Replication to Reduce Latency in Large-scale Parallel Computing,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 43, no. 3, 2015, pp. 7–11.

[23] D. Wang, G. Joshi, and G. Wornell, “Efficient Task Replication for Fast Response Times in Parallel Computation,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 42, no. 1, 2014, pp. 599–600.

[24] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,”

in IEEE International Symposium on Information Theory (ISIT), 2016, pp. 1143–1147.

[25] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,”

IEEE Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[26] S. Dutta, V. Cadambe, and P. Grover, “Short-Dot: Computing Large Linear Transforms Distributedly Using Coded Short Dot

Products,” in Advances in Neural Information Processing Systems (NIPS), 2016, pp. 2092–2100.

[27] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and distributed computing within a deadline,” in IEEE

International Symposium on Information Theory (ISIT), 2017, pp. 2403–2407.

[28] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix

multiplication,” arXiv preprint arXiv:1801.10292, 2018.

[29] S. Dutta, Z. Bai, T. M. Low, and P. Grover, “Codenet: Training Large Neural Networks in presence of Soft-Errors,” Submitted, 2018.

[30] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A Unified Coded Deep Neural Network Training Strategy based on Generalized

PolyDot codes for Matrix Multiplication,” arXiv preprint arXiv:1811.10751, 2018.

[31] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,” in IEEE International Symposium on

Information Theory (ISIT), 2017, pp. 2418–2422.

[32] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix

Multiplication,” in Advances in Neural Information Processing Systems (NIPS), 2017, pp. 4403–4413.

[33] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding,” in Machine Learning Systems Workshop, Advances

in Neural Information Processing Systems (NIPS), 2016.

[34] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient Coding: Avoiding Stragglers in Distributed Learning,” in

International Conference on Machine Learning (ICML), 2017, pp. 3368–3376.

[35] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and

optimal coding,” arXiv preprint:1801.07487, 2018.

[36] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,” in Communication, Control, and Computing (Allerton), 2015,

pp. 964–971.

[37] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic mds codes and expander graphs,” arXiv preprint

arXiv:1707.03858, 2017.

[38] N. Azian-Ruhi, A. S. Avestimehr, F. Lahouti, and B. Hassibi, “Consensus-based distributed computing,” in Information Theory and

Applications Workshop, 2017.

[39] Y. Yang, P. Grover, and S. Kar, “Fault-tolerant distributed logistic regression using unreliable components,” in Communication,

Control, and Computing (Allerton), 2016, pp. 940–947.

[40] Y. Yang, P. Grover, and S. Kar, “Computing Linear Transformations With Unreliable Components,” IEEE Transactions on Information

Theory, vol. 63, no. 6, 2017.

[41] Y. Yang, P. Grover, and S. Kar, “Fault-tolerant parallel linear filtering using compressive sensing,” in IEEE International Symposium

on Turbo Codes and Iterative Information Processing (ISTC), 2016, pp. 201–205.

[42] Y. Yang, P. Grover, and S. Kar, “Coding for a single sparse inverse problem,” in IEEE International Symposium on Information

Theory (ISIT), 2018, pp. 1575–1579.

[43] Y. Yang, P. Grover, and S. Kar, “Computing Linear Transformations With Unreliable Components,” in IEEE International Symposium

on Information Theory (ISIT), 2016, pp. 1934–1938.

[44] Y. Yang, P. Grover, and S. Kar, “Coded Distributed Computing for Inverse Problems,” in Advances in Neural Information Processing

Systems (NIPS), 2017, pp. 709–719.

[45] S. Li, M. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A Fundamental Tradeoff Between Computation and Communication in

Distributed Computing,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 109–128, 2018.

[46] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A Unified Coding Framework for Distributed Computing with Straggling Servers,”

in Globecom Workshops (GC Wkshps), 2016, pp. 1–6.

[47] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded TeraSort,” in IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), 2017, pp. 389–398.

[48] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded Distributed Computing: Straggling Servers and Multistage Dataflows,” in

Communication, Control, and Computing (Allerton), 2016, pp. 164–171.

[49] M. Aktas, P. Peng, and E. Soljanin, “Effective Straggler Mitigation: Which Clones Should Attack and When?” ACM SIGMETRICS

Performance Evaluation Review, vol. 45, no. 2, pp. 12–14, 2017.

[50] M. Aktas, P. Peng, and E. Soljanin, “Straggler Mitigation by Delayed Relaunch of Tasks,” ACM SIGMETRICS Performance

Evaluation Review, vol. 45, no. 2, pp. 224–231, 2018.

[51] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded Computation Against Straggling Decoders for Network Function Virtualization,”

arXiv preprint arXiv:1709.01031, 2017.

[52] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded computation over heterogeneous clusters,” in IEEE International

Symposium on Information Theory (ISIT), 2017, pp. 2408–2412.

[53] W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving Distributed Gradient Descent Using Reed-Solomon Codes,”

arXiv preprint arXiv:1706.05436, 2017.

[54] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,” in IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 2890–2894.

[55] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler Mitigation in Distributed Optimization through Data Encoding,” in Advances

in Neural Information Processing Systems (NIPS), 2017, pp. 5440–5448.

[56] A. Reisizadeh and R. Pedarsani, “Latency Analysis of Coded Computation Schemes over Wireless Networks,” arXiv preprint

arXiv:1707.00040, 2017.

[57] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded computation for multicore setups,” in IEEE International

Symposium on Information Theory (ISIT), 2017, pp. 2413–2417.

[58] H. Jeong, T. M. Low, and P. Grover, “Masterless Coded Computing: A Fully-Distributed Coded FFT Algorithm,” Communication,

Control, and Computing (Allerton), 2018.

[59] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing massive-scale distributed matrix multiplication with d-

dimensional product codes,” in IEEE International Symposium on Information Theory (ISIT), 2018, pp. 1993–1997.

[60] G. Suh, K. Lee, and C. Suh, “Matrix sparsification for coded matrix multiplication,” in Communication, Control, and Computing

(Allerton), 2017, pp. 1271–1278.

[61] A. Mallick, M. Chaudhari, and G. Joshi, “Rateless Codes for Near-Perfect Load Balancing in Distributed Matrix-Vector Multiplica-

tion,” arXiv preprint arXiv:1804.10331, 2018.

[62] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” arXiv preprint arXiv:1802.03430, 2018.

[63] S. Wang, J. Liu, N. Shroff, and P. Yang, “Fundamental Limits of Coded Linear Transform,” arXiv preprint arXiv: 1804.09791, 2018.

[64] A. Severinson, A. G. i Amat, and E. Rosnes, “Block-diagonal and lt codes for distributed computing with straggling servers,” IEEE

Transactions on Communications, 2018.

[65] M. Ye and E. Abbe, “Communication-computation efficient gradient coding,” arXiv preprint arXiv:1802.03475, 2018.

[66] F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alphabet matrix-vector multiplication,” in IEEE International

Symposium on Information Theory (ISIT), 2018, pp. 1625–1629.

[67] F. Haddadpour, Y. Yang, M. Chaudhari, V. R. Cadambe, and P. Grover, “Straggler-resilient and communication-efficient distributed

iterative linear solver,” arXiv preprint arXiv:1806.06140, 2018.

[68] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed computation,” in Communication, Control, and Computing

(Allerton), 2016, pp. 954–960.

[69] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in IEEE International Symposium on Information Theory (ISIT),

2018, pp. 1620–1624.

[70] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to data shuffling,” arXiv preprint arXiv:1701.05540, 2017.

[71] J. Kosaian, K. Rashmi, and S. Venkataraman, “Learning a code: Machine learning for approximate non-linear coded computation,”

arXiv preprint arXiv:1806.01259, 2018.

[72] H. Jeong, F. Ye, and P. Grover, “Locally Recoverable Coded Matrix Multiplication,” in Communication, Control, and Computing

(Allerton), 2018.

[73] “Amazon AWS,” http://aws.amazon.com/.

[74] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature learning,” in AISTATS, 2011, pp.

215–223.

[75] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011.

[76] E. E. Tyrtyshnikov, “How bad are hankel matrices?” Numerische Mathematik, vol. 67, no. 2, pp. 261–269, 1994.

