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Abstract—This paper presents the methods and results used by
the ByoVoz team for the design of an automatic voice condition
analysis system, which was submitted to the 2018 Far East Memo-
rial Hospital voice data challenge. The proposed methodology is
based on a cascading scheme that firstly discriminates between
pathological and normophonic voices, and then identifies the type
of disorder. By using diverse feature selection techniques, a subset
of complexity, spectral/cepstral and perturbation characteristics
were identified for the proposed tasks. Then, several generative
classification methodologies based on Gaussian Mixture Models
and Gradient Boosting were employed to provide decisions about
the input voices in the binary classification, and using one-
vs-one classification systems based on Random Forests for the
categorization according to the type of disorder. By using a
4-folds cross-validation approach on the training partition a
sensitivity=0.93 and specificity=0.74 were obtained. Similarly, an
unweighted average recall of 0.63 and an accuracy of 66% was
obtained for the identification task. Using the scoring metric
proposed in the challenge the final resulting score considering
both detection and identification is of 0.77.

Index Terms—Voice pathology detection, voice pathology iden-
tification, Gradient boosting, Gaussian mixture models; Random
forest

I. INTRODUCTION

Voice impairments arise due to misuse, infections, physio-
logical or psychogenic causes, or due to the presence of other
systematic disorders (including neurological), vocal abuse,
surgery, trauma, congenital anomalies, irradiation, chemicals
affecting vocal folds, etc. [1]. The classical approach to detect
voice impairments consists on an instrumental (objective) and
perceptual (subjective) evaluation, which are complemented
by other types of examinations to determine the existence of
a voice disorder and its grade of impairment. The increasing
need of improving the diagnosis of voice pathologies has given
rise to an emerging field called Automatic Voice Condition
Analysis (AVCA), that aims at analysing, classifying and
quantifying the degree to which a patient is affected by a
voice disorder, providing advantages to traditional detection

procedures such as objectiveness or non-invasiveness due to
the use of speech signals [2]. This analysis is performed using
automatic systems that provide objective measurements of the
patient’s vocal condition, exploiting the close relationship that
exists between acoustic features extracted from the speech and
voice pathology [3]. This reduces the evaluation time and the
cost of diagnosis and treatment, providing extra advantages
such as the avoidance of invasive procedures thanks to the
employment of speech signals which are easily recorded by
inexpensive means [2].

With this in mind, the goal of this paper is to design an
AVCA system based on a wide range of features, which is em-
ployed for the differentiation of pathological and normophonic
states (binary detection task) and for the actual identification of
the disorder (categorization of the pathologies). The method-
ology followed has been delineated to be as much simple as
possible, and easily understandable from the physical point of
view, condition considered necessary to transfer the system to
the clinical setting.

Section II introduces the dataset and the methodology that
was followed in this paper. Section III presents the outcomes
of experiments performed on the training partition. Finally,
section IV introduces the discussions and conclusions.

II. EXPERIMENTAL SETUP

A. Corpus

A subset of the corpus previously described in [4] has been
supplied by the organizers of the challenge. The provided
dataset has been divided into a training and testing partition for
the purposes of performance evaluation. Voice samples were
recorded at the Far Eastern Memorial Hospital (FEMH) in Tai-
wan. Each register contains samples of the sustained phonation
of the vowel /a:/ recorded at a comfortable level of loudness,
with a microphone-to-mouth distance of approximately 15-20
cm, using a high-quality microphone (Model: SM58, SHURE,
IL), with a digital amplifier (Model: X2u, SHURE) under a
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Fig. 1. Procedure for the selection of relevant features for both identification
and detection purposes.

background noise level between 40 and 45 dBA. Recordings
were sampled at 44100 Hz with 16-bit resolution, and data
was stored in an uncompressed .wav format. The training
partition of the dataset includes 50 normophonic and 150
dysphonic voices. The pathological voices were grouped into
three clusters: Phonotrauma (including disorders such as vocal
nodules, polyps, and cysts); glottis neoplasm and unilateral
vocal paralysis. Likewise, the testing partition is comprised by
400 unlabelled voice samples belonging to the same categories
as in the training partition.

B. Methodology

The system relies on a short-term analysis of the voice
recordings and on an estimation of a final score for each
speaker. Fig. 1 presents graphically the framework used to
estimate the short-term relevant features. The initial feature
set considers a wide range of complexity, noise, and spec-
tral/cepstral based parameters, which are pruned according
to different feature selection schemes to obtain the most
significant feature set. Likewise, a graphic summarizing the
proposed detection and identification system is presented in
Fig. 2.

As observed in Fig. 1, a preprocessing stage is firstly
applied. In this regard, the training and testing partitions have
been semi-automatically segmented using the voice activity
detection (VAD) algorithm described in [5]. This method relies
on the computation of source and filter-based features and
the employment of an artificial neural network to distinguish
voices from low-amplitude background noise and silences. The
resulting samples after having applied the VAD procedure
were revised and corrected, as the algorithm is unable to
eliminate high-amplitude noise samples or voices masked by
background noise. Next, all registers are down-sampled to 20
kHz and max-normalized.

The proposed methodology is based on a short-time analysis
of the voice for which a framing and windowing methodology
is then followed. Since the optimum length of the window
depends on the characteristic that is extracted, the different sets
of features -all descriptors of vocal quality- that are considered
in this work are presented firstly [2]:

• Perturbation features that measure the presence of addi-
tive noise resulting from an incomplete glottal closure of
the vocal folds, and the presence of modulation noise
which is the result of irregularities in the movements
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Fig. 2. Methodology for the construction of the detection and identification
systems.

of the vocal folds: Normalised Noise Entropy (NNE),
Cepstral Harmonics-to-Noise Ratio (CHNR) and Glottal-
to-Noise Excitation Ratio (GNE).

• Spectral and cepstral features that measure the harmonic
components of the voice: Mel-Frequency Cepstral Co-
efficients (MFCC), Smoothed Cepstral Peak Prominence
(CPPS) and Low-to-High Frequency Spectral Energy Ra-
tio (LHr).

• Features based on modulation spectrum relying on the
computation of the modulation spectrum, to characterize
the modulation and acoustic frequencies of input voices:
Modulation Spectrum Homogeneity (MSH), Cumulative
Intersection Point (CIL), Rate of Points above Linear
Average (RALA) and Modulation Spectrum Percentiles
(MSP) [6], [7].

• Complexity features that characterize the dynamics of the
system and its structure. These include dynamic invariants
such as the Correlation Dimension (D2), the Largest
Lyapunov Exponent (LLE), and the Recurrence Period
Density Entropy (RPDE); features which measure long-
range correlations, such as Hurst Exponent (He) and
Detrended Fluctuation Analysis (DFA); regularity esti-
mators such as Approximate Entropy (ApEn), Sample En-
tropy (SampEn), Modified Sample Entropy (mSampEn),
Gaussian Kernel Sample Entropy (GSampEn) and Fuzzy
Entropy (FuzzyEn); and other entropy/complexity estima-
tors such as the Permutation Entropy (PE), the Lempel-
Ziv Complexity (LZC) and the Shannon (s) and Rényi
(r) estimators of the Markov Chain Entropy (HMC),
Conditional Hidden Markov Process Entropy (HHMP )
and Recurrence State Entropy (HRSE) [8], [9]. Similarly



to the ApEn and mSampEn estimators, which use the
correlation sum for two different embedding dimensions,
some modifications of the measures HMC , HHMP and
HRSE , which consist of averaging the entropy esti-
mations over two different embedding dimensions are
also considered. These measures are called Averaged
Markov Chain Entropy (AMC), Averaged Conditional
Hidden Markov Process Entropy (AHMP ) and Averaged
Recurrence State Entropy (ARSE).

Hamming windows of 40 ms are employed for the pertur-
bation and spectral/cepstral features to ensure that each frame
contains at least three pitch periods. Likewise, windows of 55
ms length are used with the complexity features as suggested
in [8]. Finally, for the experiments in the modulation spectrum
set, frames of 180 ms are utilized as suggested in [6], [7].

To determine the most significant features three filter se-
lection methodologies were employed: Maximal Information
Maximisation (MIM), Minimal Redundancy Maximal Rele-
vance (mRMR) and Joint Mutual Information (JMI) [10].
Additionally, a wrapper feature selection was also consid-
ered: Sequential Floating Feature selection (SFFS), using a
quadratic linear discriminant analysis function for performance
evaluation purposes.

As observed in Fig. 2, the proposed system relies on a
cascading scheme on which a discrimination between nor-
mophonic and dysphonic states is firstly carried out (binary
detection task). The actual identification of the pathologies
is followed in a further classification stage (categorization of
pathologies task).

In this manner, and during the binary detection task, 28
features were chosen according to a consensus of the filter
and wrapper feature selection algorithms, having selected
those characteristics that were included by any of the 4
considered feature selection criteria. Then, Gaussian Mixture
Model (GMM) and a Gradient Boosting Tree (GBT) (80 trees)
binary classifiers are employed for decision making purposes,
producing scores obtained in a per-file basis. For the final
detection of pathology, the scores obtained from the binary
classifiers were used to feed a second classification stage based
on a soft voting procedure with 4 classifiers: a GBT using 10
trees, a radial-basis function Support Vector Machine (SVM),
a k-nearest neighbor classifier (knn) considering 5 neighbors
and a Random Forest (RF) with 20 trees. The final detection
decision is then obtained according to the class that provides
the largest joint probability among the 4 classifiers. The aim
of this combination is to reduce the variance of the detector.
Moreover, by merging the outputs of every single detector, a
reduction in the bias can also be achieved.

For the identification of pathologies (categorization of
pathologies task) a one-vs-one classification scheme was fol-
lowed, using a RF with 100 trees. This approach was chosen
because it allows each binary classifier to be trained with a
different subset of features. In this case, different subsets were
chosen according to the feature selection procedure described
previously, but considering pairs of impairments.

Finally, and for the experiments involving the testing parti-
tion, the whole system was retrained 10 times, obtaining each
time a decision about the membership of the testing samples.
The mode of the repetitions is then used as a final label.

The evaluation metrics defined in the challenge for the
detection of pathologies are the sensitivity and specificity,
while the unweighted average recall (UAR) is employed for
the classification task. Additionally, a score assessing the
global performance of the system is defined as a weighted
combination of sensitivity (40%), specificity (20%), and UAR
(40%).

III. RESULTS

Table I lists the features that were chosen for the different
binary detection tasks: the normophonic vs. dysphonic detec-
tion; and for each of the one-vs-one systems. Likewise, the
results of the detection and identification systems are presented
in Table III using the metrics specified in the challenge (sensi-
tivity, specificity, UAR, and score). The variability due to the
cross-validation is also represented. The resulting confusion
matrix of the identification system is shown in Fig. 3.

TABLE I
FEATURES CHOSEN BY THE FEATURE SELECTION ALGORITHMS AND

EMPLOYED IN THE DETECTION AND IDENTIFICATION SYSTEMS.

Normophonic vs.
Pathological

Neoplasm vs.
Phonotrauma

Phonotrauma vs.
Vocal Palsy

Neoplasm vs.
Vocal Palsy

MFCC(2) MFCC(1) MFCC(1) MFCC(1)
MFCC(3) MFCC(4) MFCC(2) MFCC(3)
MFCC(4) MFCC(5) MFCC(5) MFCC(4)
MFCC(5) MFCC(6) MFCC(6) MFCC(6)
MFCC(7) MFCC(8) MFCC(7) MFCC(7)
MFCC(8) MFCC(9) MFCC(8) MFCC(9)
MFCC(9) MFCC(11) MFCC(9) MFCC(10)
MFCC(10) MFCC(12) MFCC(12) MFCC(11)
MFCC(11) MFCC(14) MFCC(13) MFCC(12)
MFCC(12) MSP75 CPPS MFCC(14)
MFCC(13) CPPS LHr LHr
CPPS LZC CIL ARSEs

LHr RPDE MSH AHMPr

GNE CIL RALA He
D2 CHNR DFA CIL
DFA
PE
HMCs

HMCr

AMCs

AMCr

AMMPs

AHMPr

ARSEs

LZC
MSH
CIL
RALA
MSP95

IV. DISCUSSIONS AND CONCLUSIONS

This paper has presented the methodology that has been
followed by the ByoVoz team in the 2018 FEMH challenge.
The proposed system relies in a cascading scheme that firstly
differentiates between normophonic and dysphonic voices, and



TABLE II
RESULTS OF THE DETECTION

Detection Sensitivity 0.93 ± 0.05
Specificity 0.74 ± 0.07

Identification UAR 0.63 ± 0.05
Accuracy 0.66 ± 0.03

Score 0.77 ± 0.03
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Fig. 3. Confusion matrix

then identifies the actual pathologies (neoplasm, phonotrauma
or vocal palsy) in a second classification stage.

As the supplied corpus was contaminated by background
noise, a VAD procedure was employed to differentiate voices
from silences and low-amplitude noise. This procedure permit-
ted a rapid preprocessing of the input dataset, although it did
not serve to differentiate highly contaminated voice samples
or signals suffering from saturation. It was then necessary to
manually correct the recordings in order to provide reasonable
speech samples that then served as input to the classification
machines.

One interesting observation extracted from Table I is the
importance of MFCC features in both detection and classifi-
cation tasks as assessed by the feature selection algorithms.
In all cases there were regarded as highly relevant for dif-
ferentiation purposes. Another relevant pair of features in the
spectral/cepstral set are the CPPS and the LHr, which have
been found relevant in all the classification tasks With regards
to the modulation spectrum features, CIL was deemed as
highly relevant for both detection and classification. Finally,
and in reference to the complexity features it can be observed
that the entropy measures based on Markov-Chains are highly
relevant in detection tasks where 7 of them are considered
informative according to the feature selection algorithms. By
contrasts, its importance for identification is diminished.

To provide information about the performance of the identi-
fication task, the resulting scores after having divided the train-
ing partition into a training and a validation set are presented
in Fig. 4 and Fig. 5 respectively. As observed, there is a large
separability between normophonic and pathological scores in

the training partition, but a more irregular behaviour can be
observed in the validation set. In general terms the separability
is good, although is difficult to establish a frontier that serves
to separate normophonic from dysphonic behaviour, specially
due to the large likelihood scores that are present in the
normophonic class (see Fig. 5). Having chosen a margin
(results in Table III) that maximizes the sensitivity served to
provide a good sensitivity (0.93) at the expense of a decreased
specificity (0.74).
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Fig. 4. Scores distribution of the training sample of the training partition.

0.0 0.2 0.4 0.6 0.8 1.0
Likelihood score

0.000

0.002

0.004

0.006

0.008

De
ns

ity
 e

st
im

at
io

n

Validation Scores Density

Normal scores
Pathological scores

Fig. 5. Scores distribution of the validation sample of the training partition.

With regards to the identification task, the confusion matrix
in Fig. 3 indicates the performance of the system in relation to
the true and the predicted labels. Results indicate that the neo-
plasm class was most likely confused with the normophonic
and the phonotrauma class, whereas for phonotrauma, the
largest errors arose in relation to the neoplams and the vocal
palsy classes. Similarly for the vocal palsy class, most of the
errors appeared with the phonotrauma and neoplasm classes,
whereas the normophonic class was most likely confused with
the phonotrauma class. Results in Table III are in line with the
diagonals of the confusion matrix, presenting an accuracy of



0.66 and UAR of 0.63. At the end, the score that resulted from
the proposed system is 0.77.

The present paper has presented an AVCA system based
on the extraction of descriptors of vocal quality from voice
samples. Through different signal processing and machine
learning methodologies it was possible to design a scheme that
differentiates between normophonic states and pathology with
an sensitivity of 0.94 and specificity of 0.74. In identification
tasks an UAR of 0.63 was obtained.
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