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Abstract—Variations in High Performance Computing (HPC)
system software configurations mean that applications are typ-
ically configured and built for specific HPC environments.
Building applications can require a significant investment of
time and effort for application users and requires application
users to have additional technical knowledge. Linux container
technologies such as Docker and Charliecloud bring great benefits
to the application development, build and deployment processes.
While cloud platforms already widely support containers, HPC
systems still have non-uniform support of container technologies.
In this work, we propose a unified runtime framework – Build
and Execution Environment (BEE) across both HPC and cloud
platforms that allows users to run their containerized HPC
applications across all supported platforms without modification.
We design four BEE backends for four different classes of HPC
or cloud platform so that together they cover the majority of
mainstream computing platforms for HPC users. Evaluations
show that BEE provides an easy-to-use unified user interface,
execution environment, and comparable performance.

Index Terms—high performance computing; cloud computing;
container.

I. INTRODUCTION

High Performance Computing (HPC) systems have become
critical infrastructures for science and industry. For exam-
ple, domain experts use HPC systems to run large-scale
physical simulations, big data analysis, multi-layer artificial
neural networks, molecular dynamics experiments, and DNA
sequencing.

As different HPC systems typically have customized soft-
ware environments, HPC users must often configure and
build their application for each specific machine, which is
time consuming and can become a bottleneck to productivity.
Moreover, in some cases, years- or even decades-old legacy
applications still serve as key components in the process of
scientific or industry research. These legacy applications may
have no active support and often require specific deprecated
versions of libraries and/or hardware in order to make them
run correctly. It may be hard to find or build library imple-
mentations that meet the requirement of legacy applications
while remaining compatible with current HPC systems. These
requirements impose great challenges for HPC users.

Due to availability of shared computing environment, users
may need to frequently switch between computing systems.

This can be among different HPC platforms or even cloud plat-
forms. Differences in software environments may impede users
when choosing a platform that has different software/hardware
configurations. A consistent execution environment is also im-
portant for HPC application developers. Consistency between
developing, testing, and production environments can greatly
save developers’ time on fixing compatibility issues, that can
significantly accelerate the development process.

Virtualized environments, and particularly virtual machines
(VMs), have been thoroughly investigated for HPC systems
to provide more consistent, isolated, and secure environments
[1], [2]. For example, Huang, et al. [3] built a virtualized
HPC environment using Xen-based VMs. By leveraging high
performance I/O passthrough [4], VMs can achieve near-
native performance when running HPC benchmarks. In [5],
Zhang, et al. illustrated that current resource managers in
HPC systems cannot well supervise VMs and associated
critical resources, so they proposed Slurm-V, that extends
Slurm with virtualization-oriented capabilities. Huang, et al.
and Tikotekar, et al. [6], [7] characterized the performance
of running multiple kinds of applications on virtualized HPC
clusters. In [8], Huang, et al. proposed Inter-VM Communi-
cation (IVC), a VM-aware communication library to support
efficient shared memory communication among computing
processes on the same physical host and then they built an
MPI library that was IVC enabled.

However, managing application specific VM images is not
trivial, given that VM images need to contain files of the oper-
ating system, dependent libraries/packages, user applications,
and input/output data, that may take several gigabytes of disk
space. Migrating images between HPC systems or distributing
images among compute nodes can consume a lot of time. On
the other hand, Linux containers are more lightweight. Many
implementations of Linux containers have been proposed e.g.,
Docker [9], Charliecloud [10], Shifter [11], and Singularity
[12]. They provide consistent execution environments for de-
velopment, build, and deployment. By using Linux containers,
developers only need to build their application once in the
container on their local machine, and then the application can
run on any supported machine. For doing that, one only needs
to transfer the container image to the target execution machine.
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Fig. 1: BEE Backends

The container image usually only contains minimal operating
system composition, application-dependent libraries/packages,
and user applications, with much less space requirement than
VM images [13]. Also, since Linux containers allow the
guest application to share much of the host operating system
including the Linux kernel, the performance penalty is small
[14], [15].

It can be of great benefit to bring the advantages of Linux
containers, as realized in the cloud, to HPC users; however,
HPC systems have support of Linux containers in a non-
uniformed fashion. Some systems can natively support widely
used Docker containers; Some systems run incompatible older
Linux kernels that make them unable to support Linux con-
tainers [16]. Some systems cannot support Docker containers
but can support other Linux container implementations e.g.,
Charliecloud [10], Shifter [11] and Singularity [12]. This is
challenging for HPC users who want to take the benefits of
Linux containers and who already have their HPC applications
running in Linux containers on one system and need to mi-
grate to another one, since different Linux containers/runtimes
are not mutually compatible with each other. Even on an
HPC/cloud system where a certain kind of Linux container is
supported, running HPC applications still needs complicated
configuration, since Linux containers, by their nature, are built
for isolation, that is contrary to the sharing fashion adopted
by HPC applications.

In this work, we design a unified build and execution
environment that overcomes the challenges when running
containerized applications in HPC systems. We call it Build
and Execution Environment (BEE).

1) Docker image support: Among all kinds of Linux
container implementations, Docker is one of the most
widely used implementations in the HPC community.
With the support of Docker image, current HPC users
can deploy their Dockerized application using BEE with
no modification.

2) Reproducibility: BEE aims to build up similar HPC-
friendly execution environments across different plat-
forms, allowing Dockerized applications to behave con-
sistently. This is accomplished through a series of spe-
cially design modules – BEE backends. Different
BEE backends target different classes of platform,
but they can build up execution environments with
similar hardware configuration and software stack.

3) Multiple platforms support: We design four BEE
backends that support four different classes of sys-
tems. For HPC systems, instead of using Docker con-
tainer runtime, we choose to use Charliecloud, a Linux
container implementation with much less usage re-
quirement than Docker and its runtime supports run-
ning Docker images. Charliecloud only needs execu-
tion systems to have Linux user namespace enabled,
and it is usually enabled by default on many cur-
rent and new HPC systems. Using Charliecloud, we
build our first BEE backend for HPC systems –
BEE-Charliecloud. For older HPC systems that
do not have Linux user namespace support, BEE pro-
vides another BEE backend – BEE-VM. It can run
Dockerized HPC applications through Docker runtime
via a specialized VM. In addition to HPC systems, we
also design two BEE backends to support running
HPC applications on cloud systems. These allow users
to run HPC applications when cloud platforms are
preferable computing resources for users. Specifically,
BEE provides BEE-AWS that allows Dockerized HPC
applications to run on Amazon Web Services (AWS)
platform and BEE-OpenStack for OpenStack-based
HPC or cloud infrastructures.

4) End-to-end automation: BEE provides end-to-end au-
tomation that hides all launching details from users.
Users only need to provide a BEE task description file
(beefile), Docker images, and run scripts in order to
launch a task on BEE. BEE will handle all the com-
plications including: connecting to the remote platform,
setting up suitable computing environment, configuring
network and storage, and launching applications.

5) Flexibility: BEE provides a unified user interface, so
together with BEE backends, BEE users have the
flexibility to switch between different platforms, as their
needs require, with no modification to their applications
and minimum modification to the task description file.

The rest of this paper is organized as follows: We discuss the
BEE framework design in section II. The designs of four BEE
backends are discussed in section III - VI. Performance
is evaluated in section VII. We showcase VPIC, a real HPC
application running in BEE in section VIII. In section IX, we
discuss related works and how BEE is unique. Finally, we
make our conclusion in section X.
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II. BEE DESIGN OVERVIEW

The goal of BEE is to enable unified experience for users
when launching HPC applications across different platforms.
This is manifested in two ways: (1) A unified user interface
that only requires minimum configuration to launch applica-
tions on a platform or switch between different platforms; (2)
Similar execution environments for applications on different
platforms that enable consistent application execution behav-
ior.

A. User interface

The unified user interface consists of three inputs when
launching an application using BEE:

1) A Docker image containing the application;
2) Run scripts;
3) Task description file – beefile;

The first input is the Docker image containing the applica-
tion. Then, to run the application when it is deployed on a
platform, users need to provide run scripts. Depending on the
application, the scripts can be in many forms e.g., Shell scripts,
Python scripts, etc. Both the Docker image and run scripts do
not need to be modified when switching between different
execution platforms. Finally, to hide most complications and
still provide enough capability of customization, we propose
to use a simple JSON-format task description file (beefile)
to handle all the communications between users and BEE.
Listing 1 shows the template of a beefile. Users need to
select the suitable execution platform (line 3), provide general
sequential run scripts (line 5 - 9) and MPI parallel run scripts
(line 10 - 14), information about Dockerized application (line
16 - 20), and finally provide necessary platform-specific in-
formation (line 21 - 26) e.g., node list, credential information.
Note different Docker containers, by default, do not share a
file system at runtime, but many HPC application processes
running on different nodes need to have a shared directory to
share data, so BEE needs users to specify a directory inside
the container (line 16) that will be mounted to a shared host
filesystem at runtime. When switching between platforms,
users only need to make modifications to the beefile.

B. Execution environment

To build similar execution environments on different plat-
forms that can lead to consistent application execution be-
havior, BEE backends are proposed. A BEE backend is

Listing 1: Template of beefile
1 ” t a s k c o n f ” : {
2 ” task name ” : < t a s k name> ,
3 ” e x e c t a r g e t ” : bee cc | bee vm | bee aws |

bee os ,
4 ” g e n e r a l r u n ” : [
5 { ” s c r i p t ” : < s c r i p t 1> } ,
6 { ” s c r i p t ” : < s c r i p t 2> } , . . .
7 ] ,
8 ” mpi run ” : [
9 { ” s c r i p t ” : < s c r i p t 1> } ,

10 { ” s c r i p t ” : < s c r i p t 2> } , . . .
11 ]
12 } ,
13 ” d o c k e r c o n f ” : {
14 ” d o c k e r i m g t a g ” : <d oc ke r image > ,
15 ” docke r use rname ” : <username > ,
16 ” d o c k e r s h a r e d d i r ” : <d i r>
17 } ,
18 ” exec env con f ” : {
19 ” bee cc ” : { . . . } or
20 ” bee vm ” : { . . . } or
21 ” bee aws ” : { . . . } or
22 ” bee os ” : { . . . }
23 }

a module in BEE framework that can automatically build
up an HPC-friendly execution environment on a specific
class of platforms. We design different BEE backends
for different classes of platforms that can build up simi-
lar execution environment. As for now, there are four BEE
backends: BEE-Charliecloud, BEE-VM, BEE-AWS,
and BEE-OpenStack. These are built aiming at four dif-
ferent classes of platforms: BEE-Charliecloud supports
current and later HPC systems that have Linux user namespace
support; BEE-VM supports older HPC systems; BEE-AWS
supports AWS cloud platform; BEE-OpenStack supports
OpenStack-based HPC or cloud platforms.

Fig. 1 shows the hardware and software stack of the four
BEE backends. The bold rectangle on the top row of each
BEE backend indicates the execution environment that each
BEE backend provides. Below that are different technolo-



gies that are used to enable consistent execution environment.
Further below are the three components that are most critical
to HPC applications: computing, network, and storage. Each
BEE backend is designed to provide similar computing,
network, and storage environment for the runtime environment
that runs Dockerized HPC applications. This makes sure that
applications do not need to be modified to run on another
BEE backend and preserving the same execution behavior.
We will discuss the design details of each BEE backend in
the following sections.

C. Components in BEE framework

Finally, we introduce other components in the BEE
framework that help connect the user interface with BEE
backends. Fig. 2 shows the framework of BEE. The BEE
Launcher is the BEE frontend for users to launch a task
on BEE-supported platforms, using the three inputs mentioned
earlier. The core part of BEE is the BEE Orchestration
Controller, that is responsible for connecting the BEE
frontend and the four BEE backends. It takes the
task launching requests from BEE Launcher and initi-
ates task launching process through BEE backends. BEE
Orchestration Controller uses different threads to
manage different tasks at the same time. It also keeps track of
the status of each launching process.

III. BEE-CHARLIECLOUD

Charliecloud [10] is a Linux container runtime based on
Linux user namespaces. It offers all the necessary runtime
functionalities for HPC applications. It has three major benefits
that make it the ideal runtime for BEE on HPC systems: First,
it takes standard Docker images as input via the built-in image
flattener, so it helps maintain the same user interface as the
other three BEE backends. Second, Linux user namespaces
only bring minor performance overhead, full exposure of host
hardware resources, and no requirement of privileged oper-
ations or daemons. Third, Linux user namespaces is widely
supported by default on current HPC systems, making BEE
a highly usable framework. So, using Charliecloud we design
BEE-Charliecloud for HPC platforms.
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Fig. 3: Shared Storage Design using Virtual IO
When designing a BEE backend, one problem is identi-

fying the suitable balance point between sharing and isolation
of the runtime environment. Charliecloud offers comparable

runtime isolation to Docker, that enables the user to pack
all dependencies and tools in the image, avoiding additional
application-specific configuration in the runtime environment.
On the other hand, HPC applications usually require some
degrees of data sharing: sharing via network and sharing via
storage.

A. Network Design
Sharing via network means processes running on differ-

ent containers need to be able to share data via network.
Charliecloud by default exposes all hardware network in-
terfaces to its container runtime environment. Since HPC
systems usually have interconnected networks between nodes,
processes running in Charliecloud can communicate through
the network interfaces on each node and get the benefits
of any available network technology e.g., Infiniband. So, in
BEE-Charliecloud we choose to the keep the default
network settings.

B. Storage Design
Sharing via storage is not natively supported by Char-

liecloud. By default each container only mounts the filesystem
in the flattened input image. To enable sharing via storage, we
use the --bind option at container launch time to mount an
user-specified host directory to a shared directory inside the
container as mentioned in the user interface section. Since
HPC systems usually have shared filesystem among nodes,
processes can share data via the shared directory inside each
container as shown in Fig. 3 After each container is con-
figured, BEE-Charliecloud automatically executes user’s
runscripts via the Charliecloud command ch-run. When
initiating MPI parallel jobs, BEE-Charliecloud wraps
mpirun command outside ch-run together with necessary
MPI launching options. When deployed on HPC systems
with Slurm resource manager, BEE-Charliecloud can
interact with Slurm frontend to configure computing resources
automatically. Algorithm 1 shows the launching logic of
BEE-Charliecloud.

Algorithm 1 BEE-Charliecloud launching logic

Require: Dockerized application (Docker image/Dockerfile)
Require: BEE configuration file (beefile)
Require: Run scripts

1: pull/build_docker(beefile)
2: flattened_tar_file ←
ch-docker2tar(docker_image)

3: flattened_filesystem ←
ch-tar2dir(flattened_tar_file)

4: compose_ch-run_options()
5: for each sequential run script in beefile do
6: slurm_allocate_resources()
7: ch-run(script)
8: end for
9: for each parallel run script in beefile do

10: slurm_allocate_resources()
11: mpirun_ch-run(mpi_script)
12: end for



IV. BEE-VM DESIGN

To support BEE on older HPC systems that do not have
Linux user namespace enabled, we design a second BEE
backend for HPC system - BEE-VM, so that together with
BEE-Charliecloud they make BEE support majority of
the current HPC systems. BEE-VM creates a VM layer on
top of the host and then deploys Docker on the VM layer; as
shown in Fig. 1. VM brings the isolation that enables us to run
Docker even on a system with constraint. It utilizes Kernel-
based Virtual Machine (KVM) (on by default in Linux), a
hardware accelerated hypervisor, to provide bare-metal per-
formance. As shown in Fig. 4, we run one VM per HPC host
node and one Docker container per VM.

Similar to BEE-Charliecloud, besides running appli-
cations in isolated environment, another goal of the BEE-VM
design is enabling two kinds of sharing, sharing via network
and sharing via storage, between Docker container applica-
tions running on different machines.

A. Network Design

The network design of BEE-VM mainly targets two func-
tions: (1) BEE needs to remotely login and control each
VM via SSH; (2) MPI needs network to share data between
processes.

In order to enable the SSH connection to the VM through
the host, the hypervisor is configured to create dedicated
virtual network interface card (vNIC) used for port forwarding
that maps an unused port on the host to the SSH port on
the VM. As for MPI, it cannot use the vNIC for SSH, since
it usually uses a different (random) port for communication,
so we cannot use port forwarding on a specific port. To
handle this problem, we have two solutions. For a system
with regular Ethernet, we create a second vNIC on each VM
and connect all of them in a virtual subnet (i.e., multicast or
P2P connection). We choose this over more straight forward
approaches (e.g., bridging) because this approach does not
require any administrative privilege to the system. For a
system with InfiniBand, we adopt Single Root Input/Output
Virtualization (SR-IOV) to connect all VMs. To connect all
the Docker containers together, we choose to start the Docker
container in ’host network’ in which all network configurations
are exposed to the container, so that each container has the
same connectivity as VM.

B. Storage Design

To share data between processes in Docker containers, we
need to first build a shared filesystem between different VMs.
Here, we use the Virtio feature [17] in QEMU to map a host
directory to a directory inside VMs. It only requires minimum
configuration at VM boot time. Since HPC systems usually use
shared filesystem (via NFS, Luster, etc.), each VM will also
have the same file-sharing capability as long as they map to
the same host directory. For data sharing in the Docker layer,
we use the data volume mount feature in Docker to mount
the shared folder inside VM to a directory in Docker. Since
Docker runs as a process at the VM layer, mounting the data
volume adds negligible overhead.
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Fig. 4: Shared Storage Design using Virtual IO

C. BEE-VM Deployment

Algorithm 2 shows the launching logic of BEE-VM. Before
using BEE-VM the first time, users need to use the image
builder provided by BEE to build the base VM image. The
image is customized for BEE-VM that includes pre-installed
softwares and settings. It only need to be done once. After
that each VM will only work on a copy of the base image
without any modification to the base image. During launch,
BEE-VM first deploys VM on each HPC node (line 1 - 6).
Next, the hostfile on each VM is setup in order to let each
VM communicate with each other without using complicated
IP addresses. The virtio storage is mounted in line 14. In the
next stage, depending on what the user provides, BEE-VM will
either pull the Docker image from public/private registries or
build a new Docker image from a Dockerfile loaded into the
local VM. Finally, BEE starts the application by launching
from the first node (i.e., master node).

V. BEE-AWS DESIGN

AWS is one of the most widely used commercial cloud
computing platforms. It offers great configuration flexibility
towards computing software/hardware environment, network,
storage, and security. Many researchers from both HPC and
cloud community use AWS to run large scale applications.
However, configuring the desired computing environment on
AWS is tedious and can impede experiment workflow, es-
pecially for users with less knowledge or experience on
AWS. Although many tools offer the ability to automate the
computing environment setup process, they usually cannot
create an environment suitable for HPC applications. Even
though tools such as StarCluster [18], do offer the capability
of creating HPC-friendly environment on AWS, it suffers
from two drawbacks. First, they do not offer the support
of automatic Docker container deployment and execution.
Users still need to manually deploy and run their applications.
Second, they usually do not offer HPC/cloud cross-platform
support.

Here we design BEE-AWS as another BEE backend.
BEE-AWS enables the same end-to-end automation on AWS
as provided in BEE-Charliecloud and BEE-VM on HPC
systems. Most importantly, BEE-AWS offers the same user
interface and execution environment as BEE-VM, so the user



Algorithm 2 BEE-VM launching logic

Require: Pre-built QEMU Img. (only need to build once)
Require: Allocated host nodes: H1, H2,..., Hk

Require: Dockerized application (Docker image/Dockerfile)
Require: BEE configuration file (beefile)
Require: Run scripts

1: for i in 1 to beefile.num of nodes do
2: node_i.copy_img()
3: node_i.compose_qemu_arg(storage_dir)
4: node_i.compose_qemu_arg(network_conf)
5: node_i.start_vm()
6: end for
7: wait_for_all_vm_to_become_ready()
8: for i in 1 to beefile.num of nodes do
9: node_i.set_hostname()

10: for j in 1 to beefile.num of nodes do
11: node_j.setup_hostfile(node_i.ip())
12: end for
13: end for
14: for i in 1 to beefile.num of nodes do
15: node_i.mount_via_virtio()
16: end for
17: for i in 1 to beefile.num of nodes do
18: node_i.pull/build_docker(beefile)
19: node_i.conf_docker_storage(efs_mnt)
20: node_i.conf_docker_network(host_mode)
21: node_i.start_docker(’ssh daemon’)
22: end for
23: for each sequential run script in beefile do
24: node_0.docker_exec(script)
25: end for
26: for each parallel run script in beefile do
27: node_0.docker_exec(mpi_script)
28: end for

only needs to make minimum modifications to the BEE
configuration file (beefile) in order to switch to AWS.

The computing resources are based on Xen-based VMs
and they also known as EC2 instances. Since EC2 instances
are VM-based, users are given full control inside each VM.
So, here we configure them (via customized AMI) to enable
Docker runtime. Users of BEE can specify desired instance
type via BEE configuration file (beefile). Same as on the
HPC platform, data sharing via network and storage also need
to be handled.

A. Network Design

EC2 instances by default have network interconnect capa-
bility via the network in their infrastructures. However, they
still need to be customized for HPC applications. First, as
mentioned in BEE-VM design, MPI commonly uses random
port for communication, so we need to create an EC2 se-
curity group that has a range of ports opened based on the
MPI implementation specification. Second, for fast network
interconnection, EC2 instances need to be placed in the same
placement group. This makes sure the physical hardware

allocated for each EC2 instance are close to each other so that
the network is optimized for low latency and high throughput.
As for network interconnection between Docker containers,
we follow a similar choice made using BEE-VM, that enables
’host network’ mode at launch time.

B. Storage Design

By default EC2 instances do not share filesystems. To
enable file sharing, we choose to create Elastic File System
(EFS) and mount EFS to each EC2 instance. This design
has better performance than the master-slave based Network
File System (NFS) adopted in Starcluster. We use the volume
mounting feature of Docker to enable file sharing between
Docker containers similar to BEE-VM.

Algorithm 3 shows that launching logic of BEE-AWS. We
use Boto API to remotely launch EC2 instances on AWS (line
7 - 15). After that we use SSH connection to control each
instance.

VI. BEE-OPENSTACK DESIGN

OpenStack is a cloud operating system that is able to man-
age large pools of computing, storage, and network resources.
It has been widely deployed in both research facilities and
cloud computing environments. To bring the same unified ex-
ecution environment and end-to-end automation to OpenStack,
we build BEE-OpenStack as another BEE backend.

Unlike AWS, the computing sources of OpenStack can be
either bare-metal machines or VM. In either case, users are
given full control inside the operating system. So, similar to
BEE-AWS we enable Docker runtime inside each OpenStack
instance.

A. Network Design

On our OpenStack test environment (Chameleon
Cloud), network interconnects are enabled by default
between instances. So, we do not need to further configure it.
For OpenStack infrastructures that need customized network,
BEE will configure it automatically to ensure network
interconnect capabilities between instances. The detail is
omitted here. Similar to before, we use ’host network’ mode
for Docker containers.

B. Storage Design

Similar to AWS, by default, OpenStack instances do
not share filesystems. On our OpenStack test environment
(Chameleon Cloud), there is no OpenStack-managed stor-
age system. So, we adopt NFS based file sharing between
master instance (first instance) and worker instances. We use
the volume mounting feature of Docker to enable file sharing
between Docker containers similar to BEE-VM and BEE-AWS

Algorithm 4 shows the launching logic of
BEE-OpenStack. Here we first use OpenStack CLI
client to launch a pre-built Stack template for BEE, and then
use SSH to control each instance.



Algorithm 3 BEE-AWS launching logic

Require: Pre-built AMI (only need to build once)
Require: Dockerized application (Docker image/Dockerfile)
Require: BEE configuration file (beefile)
Require: Run scripts

1: if user given EFS name not exist then
2: request_creating_efs(efs_name)
3: while efs_status(efs_name) != active do
4: sleep()
5: end while
6: end if
7: initialize_ec2_service_connection()
8: bee_sg = create_security_group()
9: bee_sg.authroize_ingress(’tcp’, ’22’)

10: bee_pg = create_placement_group()
11: for i in 1 to beefile.num of nodes do
12: bee_ec2_i = create_ec2(bee_sg,

bee_pg)
13: bee_ec2_i.start()
14: end for
15: wait_for_all_instance_to_become_ready()

16: for i in 1 to beefile.num of nodes do
17: bee_ec2_i.set_hostname()
18: for j in 1 to beefile.num of nodes do
19: bee_ec2_j.setup_hostfile(bee_ec2_i.ip)
20: end for
21: end for
22: for i in 1 to beefile.num of nodes do
23: bee_ec2_i.create_efs_mount_point()
24: bee_ec2_i.mount_to_efs(efs_name)
25: bee_ec2_i.pull/build_docker(beefile)
26: end for
27: for i in 1 to beefile.num of nodes do
28: bee_ec2_i.pull/build_docker(beefile)
29: bee_ec2_i.conf_docker_storage(efs_mnt)

30: bee_ec2_i.conf_docker_network(host_mode)

31: bee_ec2_i.start_docker(’ssh daemon’)
32: end for
33: for each sequential run script in beefile do
34: bee_ec2_0.docker_exec(script)
35: end for
36: for each parallel run script in beefile do
37: bee_ec2_0.docker_exec(mpi_script)
38: end for

Algorithm 4 BEE-OpenStack launching logic

Require: Pre-built OpenStack Img. (only need to build once)
Require: Dockerized application (Docker image/Dockerfile)
Require: BEE configuration file (beefile)
Require: Run scripts

1: initialize_nova_service_connection()
2: create_new_sshkey()
3: launch_bee_stack(beefile)
4: wait_for_all_instance_to_become_ready()
5: for i in 1 to beefile.num of nodes do
6: bee_os_i.set_hostname()
7: for j in 1 to beefile.num of nodes do
8: bee_os_j.setup_hostfile(bee_os_i.ip)
9: end for

10: end for
11: bee_os_0.create_nfs_mount_point()
12: for i in 1 to beefile.num of nodes do
13: bee_os_i.mount_to_nfs(bee_os_0.ip())
14: end for
15: for i in 1 to beefile.num of nodes do
16: bee_os_i.pull/build_docker(beefile)
17: end for
18: for i in 1 to beefile.num of nodes do
19: bee_os_i.pull/build_docker(beefile)
20: bee_os_i.conf_docker_storage(nfs_mnt)
21: bee_os_i.conf_docker_network(host_mode)

22: bee_os_i.start_docker(’ssh daemon’)
23: end for
24: for each sequential run script in beefile do
25: bee_os_0.docker_exec(script)
26: end for
27: for each parallel run script in beefile do
28: bee_os_0.docker_exec(mpi_script)
29: end for

VII. EVALUATION

We evaluate the four BEE backends on four different
platforms: For BEE-Charliecloud and BEE-VM, we test
them on the bare-metal envionment on Chameleon Cloud
at Texas Advanced Computing Center (TACC). Each node
is equipped with two Intel Xeon E5-2670 v3 CPU (clock
frequency at 2.30 GHz) with 128 GB DRAM. Each node
is connected with Mellanox ConnectX-3 Infiniband card with
peak transfer speed at 10 Gbps. For BEE-AWS, we choose
to use c3.4xlarge EC2 type at AWS Oregon region. Each
node is equipped with Intel Xeon E5-2680 v2 CPUs and 30GB
DRAM. On BEE-OpenStack, we choose the OpenStack
environment at Chameleon Cloud@University of Chicago.
We focus on evaluating three kinds of performance that are
most important for HPC applications: computation, storage,
and network. For each test, the comparison baseline is the
native performance provided on each platform without using
BEE or any additional encapsulated runtime system. Note: all
platforms, except AWS, provide access to the bare-metal hard-
ware, so baseline performance is the native performance on



the hardware. For AWS, its Xen-based VM is an inseparable
part of the platform and the underlying physical hardware is
inaccessible to general users, so its baseline is the performance
inside VMs.

A. Computational Performance
Computational performance of a platform is one of the most

important capabilities for HPC applications. In this section,
we compare the computational performance of all four BEE
backends with the baseline. We choose one compute in-
tensive benchmark test and one memory intensive benchmark
test from the OpenMP version NAS Parallel Benchmarks
(NPB)[19] in our evaluation. We test each benchmark running
one to 32 threads (cores) to further show the computational
performance on multi-thread environment.

1) Compute intensive workload: For compute intensive
workload, we choose Block Tri-diagonal solver (BT) bench-
mark test with input matrix size of 1023 (problem size: class
B).

As we can see in Fig. 5(a), for compute intensive workload,
all four BEE backends have low performance overhead:
BEE-Charliecloud 0.4% - 0.6% (avg. 0.5%); BEE-VM
4.8% - 5.2% (avg. 5.0%); BEE-AWS 0.2% - 1.6% (avg. 0.8%);
BEE-OpenStack 0.3% - 0.9% (avg. 0.6%).

2) Memory intensive workload: For memory intensive
workload, we choose Integer Sort (IS) test suit with 134217728
input integer (problem size : class C).

As we can see in Fig. 5(b), for memory intensive work-
load all four BEE backends also have low performance
overhead: BEE-Charliecloud 0.6% - 0.9% (avg. 0.7%);
BEE-VM 6.9% - 7.7% (avg. 7.1%); BEE-AWS 0.9% - 1.8%
(avg. 1.1%); BEE-OpenStack 0.5% - 1.7% (avg. 1.0%). In
addition, both kinds of workload also exhibit similar speedup
comparing with their baseline counterparts when we increase
the number of threads.

B. Storage I/O
Storage I/O is another key component for many HPC

applications. For example, large-scale simulations often need
to first load large datasets before computation and frequently
dump checkpoints during computation and once the simulation
has concluded. Later, these results may be used for other sim-
ulations or for analytics. I/O performance plays an important
role for the overall performance of HPC applications.

To evaluate the storage I/O performance of the four BEE
backends and compare with the baseline performance, we
use the Linux built-in command – dd. Specifically, to bench-
mark write performance, we use the dd command to write a
file with data from /dev/zero. As for read performance,
we use the dd command to read out the file just saved and
write to /dev/null. To avoid reading from cache, we use
echo 3 > /proc/sys/vm/drop_caches command to
force the system to clear all cached data between each write
and read. Usually this file is read-only inside a container, so
we issue the command outside the container, achieving the
same cache flushing effect. The file used for write and read
is placed in the directory that is shared between instances or
containers. We test different file sizes ranging from 1 MB to 1

GB. To eliminate noise and variation, we repeat each test 1000
times. Fig. 6 shows the read and write performance on the
four BEE backends comparing with the baseline (i.e., the
IO performance on each platform without using BEE). As we
can see, BEE-Charliecloud produces negligible read and
write overhead ( 0.08%). BEE-VM uses both VM and Docker,
so it produces relative higher overhead, 13.1% - 17.5% (avg.
15.2%) for read and 15.1% - 20.1% (avg. 17.1%) for write.
BEE-AWS produces steady 0.4% overhead for read and 0.3%
overhead for write. BEE-OpenStack produces 1.7% - 7.6%
(avg. 5.0%) for read overhead and 2.7% - 6.4% (avg. 4.1%)
for write overhead.

C. Network

Finally, we evaluate the network performance of the four
BEE backends. We use the HPCBench [20] to measure
the bandwidth and latency when transferring data of different
sizes between two processes in containers or on the plat-
form without using BEE. BEE-VM and BEE-OpenStack
use the Infiniband (IB) on Chameleon Cloud via SR-
IOV. BEE-Charliecloud and BEE-AWS use the Ethernet
connection. Fig. 7 and Fig. 8 show the point-to-point (P2P)
network performance. MPI communication function calls be-
tween two nodes (one process per node) were used to test
the average throughput and latency when transferring different
message sizes. It can be seen that all four BEE backends
can provide similar network bandwidth and latency compared
to the baseline. Fig. 9 also show the latencies of all-to-all
collective communication in MPI. It shows that all four BEE
backends still provide similar network performance large
scale.

VIII. VECTOR PARTICLE-IN-CELL CASE STUDY

In this section, we showcase a widely used HPC application,
Vector Particle-In-Cell (VPIC) plasma physics code [21], [22],
[23], on the four BEE backends. VPIC is a general purpose
particle-in-cell plasma simulation code for modeling kinetic
plasmas in multiple spatial dimensions. VPIC is a memory
bound application that runs on multiple nodes using MPI and
pthreads. It has been optimized for modern computing ar-
chitectures by using short-vector, single-instruction-multiple-
data (SIMD) instructions and cache optimization. Before the
simulation begins, VPIC needs to load an input deck and user
configuration files. When computation is finished, VPIC writes
the output. With flexible checkpoint-restart semantics, VPIC
allows checkpoint files to be read as input for subsequent
simulations. Moreover, VPIC has a native I/O format that
interfaces with the high-performance visualization software
Ensight and Paraview.

We test VPIC on different BEE backends using 1 to 256
processes. As shown in Fig. 10, all four BEE backends
exhibit similar speedup compared with the baseline i.e.,
the speedup we can get on the bare-metal environment on
Chameleon Cloud at Texas Advanced Computing Center
(TACC).
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Fig. 5: Performance overhead compare with native performance provided on each corresponding platform.
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Fig. 6: Storage I/O read/write speed overhead compare with native speed provided on each corresponding platform.

1

10

100

1000

10000

2^
0

2^
2

2^
4

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

Th
ro

ug
hp

ut
 (M

bp
s)

Message Size (byte)

Baseline
BEE-Charliecoud 1

10

100

1000

10000

2^
0

2^
2

2^
4

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

Th
ro

ug
hp

ut
 (M

bp
s)

Message Size (byte)

Baseline
BEE-VM 1

10

100

1000

10000
2^

0
2^

2
2^

4
2^

6
2^

8
2^

10
2^

12
2^

14
2^

16
2^

18
2^

20
2^

22

Th
ro

ug
hp

ut
 (M

bp
s)

Message Size (byte)

Baseline
BEE-AWS 1

10

100

1000

10000

2^
0

2^
2

2^
4

2^
6

2^
8

2^
10

2^
12

2^
14

2^
16

2^
18

2^
20

2^
22

Th
ro

ug
hp

ut
 (M

bp
s)

Message Size (byte)

Baseline
BEE-OpenStack

Fig. 7: P2P Network Throughput Comparison
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Fig. 8: P2P Network Latency Comparison

IX. RELATED WORK

A. StarCluster

StarCluster [24] is an open source cluster launching tool
for AWS that aims to automation the process of creating a
HPC cluster-like computing environment on AWS. It uses a
configuration file to let users specify desired configuration of
the cluster e.g., number of instances. Similar to BEE-AWS
it uses BOTO APT [25] to communicate to AWS regards
creating and launching EC2 instances and other resources.
Although it offers automation, it suffers from three major
drawbacks. First, it does not offer automatic deployment
of Dockerized application. Current Docker users still need

to manually copy Dockerized application to EC2 instances,
configure the network and storage of each Docker container,
then launch the application. Second, even not using Docker,
users still need to manually login to the EC2 instances to
deploy and launch their applications. Finally, it does not have
HPC/cloud cross-platform portability.

B. Amazon Elastic Container Service

Amazon Elastic Container Service (ECS) [26] offers the
capability of automating creating a cluster of EC2 instances
on AWS and then deploying the Docker container on each
instance. However, it does not create a shared file system
automatically; users still need to manually configure EFS or
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S3 storage. In addition, it only targets AWS platform with no
portability to other platforms.

C. Kubernetes
Kubernetes [27] is widely used open-source system for au-

tomating deployment of containerized applications. It supports
many mainstream cloud platforms e.g., AWS, Google Com-
pute Engine, Azure, IMB Cloud, etc. However, as discussed
in [28], Kubernetes is designed for service-based workload on
those platforms, so they are not suitable HPC applications. In
addition, it has limited support on HPC systems.

X. CONCLUSIONS

In this work, we first discussed several workflow and
productivity problems that current HPC users are facing. Then,
we analyzed the potential of integrating commonly used Linux
container technology into the existing HPC systems to build
a consistent container environment for HPC users. Following
this goal, we proposed a container-enabled framework, BEE,
and four BEE backends for HPC and cloud systems that
allow users to use the compute resources of both HPC systems
and cloud computing systems with little extra configuration.
Experiments show that BEE can achieve comparable perfor-
mance. Finally, a case study on a widely used VPIC simulation
tool was tested on BEE for performance comparison.
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