
The University of Manchester Research

Small Is Beautiful

DOI:
10.1109/BigData.Congress.2013.49

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Alper, P., Belhajjame, K., Goble, C., & Karagoz, P. (2013). Small Is Beautiful: Summarizing Scientific Workflows
Using Semantic Annotations. 318-325. Paper presented at 2013 IEEE International Congress on Big Data
(BigData Congress). https://doi.org/10.1109/BigData.Congress.2013.49

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:28. Apr. 2024

https://doi.org/10.1109/BigData.Congress.2013.49
https://research.manchester.ac.uk/en/publications/1863356f-1714-4896-b862-f71aa58e8401
https://doi.org/10.1109/BigData.Congress.2013.49

Small Is Beautiful:
Summarizing Scientific Workflows Using Semantic Annotations

Pinar Alper, Khalid Belhajjame, Carole Goble
School of Computer Science

University of Manchester, Manchester, UK
name.surname@cs.manchester.ac.uk

Pinar Karagoz
Department of Computer Engineering

METU, Ankara, TURKEY
karagoz@ceng.metu.edu.tr

Abstract—Scientific Workflows have become the workhorse
of BigData analytics for scientists. As well as being repeatable
and optimizable pipelines that bring together datasets and
analysis tools, workflows make-up an important part of the
provenance of data generated from their execution. By faithfully
capturing all stages in the analysis, workflows play a critical
part in building up the audit-trail (a.k.a. provenance) meta-
data for derived datasets and contributes to the veracity of
results. Provenance is essential for reporting results, reporting
the method followed, and adapting to changes in the datasets or
tools. These functions, however, are hampered by the complexity
of workflows and consequently the complexity of data-trails
generated from their instrumented execution. In this paper we
propose the generation of workflow description summaries in
order to tackle workflow complexity. We elaborate reduction
primitives for summarizing workflows, and show how prim-
itives, as building blocks, can be used in conjunction with
semantic workflow annotations to encode different summariza-
tion strategies. We report on the effectiveness of the method
through experimental evaluation using real-world workflows
from the Taverna system.

Keywords-Scientific Workflow; Annotation; Rule-Based Sum-
marization; Motif

I. INTRODUCTION

In this age of data-intensive science we’re witnessing
the unprecedented generation and sharing of large scientific
datasets, where the pace of data generation has far surpassed
the pace of conducting analysis over the data. Scientific
Workflows [6] are a recent but very popular method for
task automation and resource integration. Using workflows,
scientists are able to systematically weave datasets and
analytical tools into pipelines, represented as networks of
data processing operations connected with dataflow links.
(Figure 1 illustrates a workflow from genomics, which “from
a given set of gene ids, retrieves corresponding enzyme
ids and finds the biological pathways involving them, then
for each pathway retrieves its diagram with a designated
coloring scheme”).

As well as being automation pipelines, workflows are of
paramount importance for the provenance of data generated
from their execution [6]. Provenance refers to data’s deriva-
tion history starting from the original sources, namely its

lineage. By explicitly outlining the analysis process, work-
flow descriptions make-up a prospective part of provenance.
The instrumented execution of the workflow generates a
veracious and elaborate data lineage trail outlining the
derivation relations among resultant, intermediary and initial
data artifacts, which makes up the retrospective part of
provenance. The systematic workflow-based organization of
analysis steps and the faithful collection of provenance is
important for activities such as 1) Reporting: Scientists are
often expected to report on the methods they followed and
their resultant datasets and the base/origin data they used in
academic papers describing findings. 2) Handling Change:
By having an explicit specification of the analysis process
and data dependencies, scientists could inquire on the impact
that a change of a particular input or tool will have on results
and which parts of the experiment would need to be re-run.
These potential ways of exploitation, however, are hampered
by the complexity of Scientific Workflows.

Workflows are typically complex artifacts containing sev-
eral processing steps and dataflow links. Complexity is
characterized by the environment in which workflows op-
erate. Workflows that collate datasets and tools from 3rd-
party autonomous providers contain several adapter steps
for handling format and protocol heterogeneities [9][8].
Meanwhile workflows that perform analytics over local(ized)
data typically contain several steps dedicated to organization
and pre-processing of data. We have shown in a previous
study [8] that these mundane operations account for up
to 60% of the steps that compose workflows. These steps
dealing with the technical detail of resource access or data
organization obfuscate the scientifically significant/critical
operations of the workflow. Obfuscation degrades reporta-
bility of the scientific intent embedded in the workflow.
Complex workflows combined with the faithful collection
of execution provenance for each step results in even more
complex provenance traces containing long data trails, that
overwhelm users who explore or query them [3], [1].

Lack of effective simplification solutions have led sci-
entists to devise their own ways to cope with complexity.
These manual abstraction solutions have the disadvantage
of being hard-coded into the workflow design and may not

!"#$%&'%()

*+'+,%'(-%.+/)

0/+1%&%()

*+'+23.-&#)

0-/'%()

Figure 1: A Sample workflow from the Genomics Domain.

simultaneously cater for different aspects of complexity, as
we shall analyze in this paper. A handful of researchers
have proposed solutions to abstract workflows using user-
defined views [3], or user-controlled manual redaction of
provenance [4], [7]. These solutions expect the user to
manually designate significant steps or directly control the
editing process. Moreover, none of them take into account
the nature of data-processing performed by the steps in the
workflow, e.g., whether it is utility operation or whether it
performs a scientifically significant function.

In this paper we propose the generation of workflow
description summaries to tackle complexity in experiment
reporting scenarios. Our approach has the following charac-
teristics and contributions: We focus on data-driven work-
flows, which is the paradigm supported by most scientific
workflow systems. We provide a graph based model for
representing data-flows. We use graph re-writing as the
method of summarization. We re-write workflow graphs with
rules built on 1) semantic annotations that depict the data-
oriented function of operations within workflows, which we
call motifs, and 2) a set of workflow reduction primitives
that we introduce. Rules associate motifs, and combina-
tions of thereof, with reduction actions that specify the
abstraction operation to be performed. Re-write rules capture
scientist-specified strategies on how summarization should
occur. Based on observations on workflows from the largest
public repository of workflows, we elaborate two sample
strategies that aim to abstract out “mundane” data adapter
and organizer steps in workflows. In order to highlight
the characteristic of primitives and asses our approach, we
conducted an experiment where we summarized 30 real-

world scientific workflows. Summarization is done by using
the two sample strategies and we compare the results against
summaries that are manually generated by the workflow
designers as the ground truth.

The paper is organized as follows: we take a closer look at
complexity and the manual ways of dealing with it in Sec-II.
We then introduce scientific workflow motifs in Sec-III-A,
and the model that we use to formally represent workflows
in Sec-III-B. We present the re-write primitives in Sec-IV-B.
We detail the two sample summarization strategies in Sec-
V. We report on the results of the experimental evaluation
in Sec-VI. We analyze and compare existing works to ours
in Sec-VII, and conclude the paper in Sec-VIII.

II. MANUAL WAYS TO DEAL WITH COMPLEXITY

We observe that there are two dimensions along which
workflows can be abstracted, 1) process-wise, where a
simplified view of the process encoded in the workflow is
given and 2) data-wise, where significant data products (in-
termediary or final) that a workflow generate is to generate
are pinpointed. Scientists perform workflow abstractions in
the following ways:
• Grouping operations into subworkflows. Subworkflows are
a design construct for developing modular workflows, which
is an established best practice in workflow development [8].
The major driver for sub-workflows is to create modules of
significant or re-usable function within or across workflows.
In practice, however, subworkflows can also be used for
purposes other than functional modularity. For example, the
workflow illustrated in Figure 1 contains a subworkflow that
simply concatenates two parameters. Such subworkflows are
created for aesthetic purposes to simplify the design, as
opposed to abstracting significant functionality.
• Sinking ports expected to hold significant intermediary
data artifacts to workflow outputs. The links tagged with
stars in Figure 1 correspond to such sinking activity. We
refer to these as “bookmarked data links” in the rest of the
paper. Bookmarking is done when the user wants to report
significant side-products alongside the intended outputs of
the workflow, and encodes this as part of the workflow
design. Hard-coded bookmarking is a poor practice for
workflow design, as it clutters the output signature of the
workflow. Moreover, it creates more complexity process-
wise while trying to provide abstract data-wise.
• Using libraries of components engineered to work to-
gether. Several workflow systems provide libraries of com-
ponents that have well-defined and interoperable-by-design
invocation interfaces. By solely using modules from such
libraries, compact workflows with little/no data adapter
operations can be devised. This approach, however, is highly
dependent on those curated libraries, and as soon as one tries
to incorporate resources from other contexts or libraries, then
one needs data adaptation and organization.

III. A CLOSER LOOK AT SCIENTIFIC WORKFLOWS

A. Scientific Workflow Motifs

At the heart of our approach lies the exploitation of
information on the data processing nature of activities in
workflows. We propose that this information is provided
through semantic annotations, which we call motifs. We use
a light-weight ontology, which we developed in previous
work [8] based on an analysis of 200+ workflows (Ac-
cessible: http://purl.org/net/wf-motifs). The motif ontology
characterizes operations wrt their Data-Oriented functional
nature and the Resource-Oriented implementation nature.
We refer the reader to [8] for the details, here we briefly
introduce some of the motifs in light of our running example.
• Data-Oriented nature. Certain activities in workflows,
such as DataRetrieval, Analysis or V isualizations,
perform the scientific heavy lifting in a workflow. The
gene annotation pipeline in Figure 1) collects data from
various resources through several retrieval steps (see
“get enzymes by gene” , “get genes by enzyme” opera-
tions). The data retrieval steps are pipelined to each other
through use of adapter steps, which are categorized with the
DataPreparation motif. Augmentation is a sub-category
of preparation operations. Augmentation decorates data with
resource/protocol specific padding or formatting. (The sub-
workflow “Workflow89” in our example is an augmenter
that builds up a well formed query request out of given
parameters.) Extraction activities perform the inverse of
augmentation, they extract data from raw results returned
from analyses or retrievals (e.g. SOAP XML messages).
Splitting and Merging are also a sub-category of data
preparation, they consume and produce the same data but
change its cardinality (see the “Flatten List” steps in our
example). Another general category is DataOrganization
activities, which perform querying and organization func-
tions over data such as, Filtering, Joining and Grouping.
The “Remove String Duplicates” method in our example is
an instance of the filtering motif. Another frequent motif is
DataMoving. In order to make data accessible to external
analysis tools data may need to be moved in and out
of the workflow execution environment such activities fall
into this category (e.g. upload to web, write to file etc).
The “Get Image From URL 2” operation in our genomics
workflow is an instance of this motif.
• Resource-Oriented nature, which outlines the implemen-
tation aspects and reflects the characteristic of resources that
underpin the operation. Classifications in this category are:
Human− Interactions vs entirely Computational steps,
Statefull vs Stateless Invocations and using Internal
(e.g. local scripts, sub-workflows) vs External (e.g. web
service, or external command line tools) computational
artifacts. In our example, all data retrieval operations are
realized by external, stateless resources (web services),
whereas all data preparation operations are realized with

!"#"$%&'()*'+%,+%",-.!(/"&0

1.(%23'4.%5$"3%678%9"&0

.:0&;<&0

.=0&;<"&0

.90"&;<&0

,4%!"#"$%#>/(>0

$.(?$@"0

,'/.>*0

>3'4."0

?$#>*0

A4%!"#"$%#>/(>0 ",-.!(%>B%#>/(>0 &'()*'+%>B>0

!"#"?$.B%>3'4./"*0C.44>3'4.?$#"*0

Figure 2: The graph based representation of operations and
their ports.

internal, stateless resources (local scripts).
In our evaluation we annotated the workflow corpus

manually using the motif ontology. The effort that goes into
the design of workflows can be significant (up to several
days for a workflow). When compared to design, the cost of
annotation is minor (as it amounts to single attribute setup
per operation). Annotation can be (semi)automated through
application of mining techniques to workflows and execution
traces. It is also possible to pool annotations in service
registries or module libraries and automatically propagate
annotations to operations that rare re-used from the registry.
Instead of the motif ontology it is also possible to use other
ontologies [10] to characterize operations in workflows.

B. Graph Model for Scientific DataFlows

We address “pure” data flows, i.e. those, in which the
order of execution is determined entirely by the availability
of data rather than any explicit control-flow constructs (e.g.
loops, conditionals).

Definition 1. We define a data-driven workflow as a
directed acyclic graph (DAG) using the following pair
W = 〈N,E〉, where N is a set of nodes representing the
operations that constitute the workflow and the input and
output ports of such operations: N = (NOP ∪ NP). NOP

nodes represent analysis operations in the workflow.
The set of ports NP is composed of four sets, depending

on whether the port is an input or output and whether it
belongs to an operation or is a source/sink port of the entire
workflow: NP = (NI ∪NO ∪NIW ∪NOW).

Nodes are connected using three types of edges: E =
(EP−>OP ∪EOP−>P ∪EP−>P), where EP−>OP connect
input ports to the operations they belong to, EOP−>P

connect operations to their output ports, and EP−>P connect
the output port of an operation to the input port of a
following operation.

In Figure 2 we provide a mapping from the fragment
of our genomics workflow to the graph representation,
depicting operation nodes (white ellipses), port nodes (gray
circles). (Not depicted in this figure, is an inferred influence
relationship from each input of an operation to each output
the operation. This relation is not utilized in graph re-
writing but is used to query workflow descriptions and their
summaries).

Definition 2. A data-flow decorated with motif annota-
tions is 3-tuple: W = 〈N,E,motifs〉, where motifs is
a function that maps each graph node n ∈ N , be it an
operation or port, to its motifs. Operation nodes could have
motif annotations from operation, resource perspectives, and
port nodes can have annotations from the data perspective
(omitted in this paper due to space limitations).

As an example, we illustrate below two motif annotations
of two operations in our running example. It is worth
mentioning that a given node can be associated with multiple
motifs.
motifs(color pathway by objects) = {〈m1 : Augmenter〉}
motifs(Get Image From URL 2) = {〈m2 : DataRetrieval〉}

IV. WORKFLOW SUMMARIZATION

A. Overview of Summarization Rules

Motifs are used in conjunction with reduction primitives
to build summarization rules. The objective of rules is to
determine how to reduce the workflow when certain motifs
or combinations of motifs are encountered. We propose
graph transformation rules of the form L P , where L
specifies a pattern to be matched in the host graph specified
in terms of a workflow-specific graph model and motif
decorations and P specifies a workflow reduction primitive
to be enacted upon the node(s) identified by the left-hand-
side L. Primitive P captures both the replacement graph
pattern and how the replacement is to be embedded into
the host graph. Our approach is a more controlled primitive
based re-writing mechanism, rather than a fully declarative
one (as in traditional graph re-writing). This allows us
to: 1) Preserve data causality relations among operations
together with the constraints that such relations have (e.g.
acyclicity for Scientific Datalows) 2) We can allow the user
to specify high-level reduction policies by creating simple
<motif, primitive> pairs. It would be a big undertaking
to expect the users, who are not computer scientists or
software engineers, to specify re-writes in a fully declarative
manner (i.e. a matching pattern, a replacement pattern and
embedding info).

B. Reduction Primitives

Reduction primitives are the second building block of
rules, here we outline these primitives namely Composition,
Collapse and Elimination. For each of these reduction prim-
itives, we specify how the motif annotations are propagated
when applying the primitive (which we call motif behavior),

compose_ops(Z,T)!

!"#$

%&'$ (&'$

!"# !$#

%"# %$#

!&# !'#

%&# %'# %(# %)#

)"*#&'$

%&*# %'*#

!"*# !$*#

!(#

+"#$,"#$

%+# %,#

+"#$,"#$

%+# %,#

!+# !,#
!+# !,#

(&'$

!'#

%(# %)#

!(#

%$*#

!-#

!-*#

Figure 3: The graphical depiction of the composition prim-
itive.

we specify the constraints that must be satisfied, and discuss
the characteristics of the data flow generated as a result of
the application of the primitive.

1) Composition: We define the function compose ops :
〈W, op1, op2〉 → 〈W ′,M〉 as one, which takes an annotated
workflow graph, and replaces operations op1 and op2 with
their composite op3 and returns the updated workflow graph.
The primitive also returns a set of mappings between the
ports of the resulting workflow and the input workflow.

Motif Behavior: The composite op3 inherits motifs of
both of its constituents. Operation nodes are identified by
their labels, in the composition primitive the label for the
composite is a newly generated identifier.

Constraint Checks: Operations that have a direct datalink
among each other can be subject to composition. To prevent
the creation of cyclic summaries, the two operations to be
composed shall not co-exist on another indirect data flow
path other than the direct link(s) connecting them.

Dataflow Characteristic: The composition primitive may
result in loss of information on negative influence relations
among artifacts. For example, in Figure 3, in the original
workflow the input i9 is influential in the creation of outputs
o5 and o6 but not in the creation of o4. When operations Z
and T are composed however, we will have the information
stating that i9′ which maps to i9 is influential in the creations
of not only o5′ o6′ but also of o4′.

2) Elimination: We define the function eliminate op :
〈W, op〉 → 〈W ′,M〉 as one, which takes an annotated
workflow definition, and eliminates a designated operation
node from it. Elimination results in a set of indirect data
links connecting the predecessors of the deleted operation
to its successors. The source and target ports of these new
indirect links are the cartesian product of the to-be-deleted
operation’s inlinks’ sources and its outlinks’ targets. As with
other primitives elimination also returns a set of mappings
between the ports of the resulting workflow and the input

!"#$

%&'$ (&'$

eliminate_op(Z)!

!"# !$#

%"# %$#

!&# !'#

%&# %'# %(# %)#

!(#

)"#$ *"#$

%*# %+#

)"#$ *"#$

%*# %+#

!*# !+# !*# !+#

%&'$ (&'$

!&# !'#

%&# %'# %(# %)#

!(#
!,# !,#

Figure 4: The graphical depiction of the elimination primi-
tive.

workflow.
Motif Behavior: The designated operation is eliminated

together with its motifs and these are not propagated to any
other node in the workflow graph.

Constraint Checks: There are no particular constraint
checks for the elimination primitive.

Dataflow Characteristic: Within the conventional defini-
tion of a workflow, ports are connected with direct datalinks,
which correspond to data transfers i.e. the data artifact
appearing at the source port is transferred to the target port
as-is. In the indirect link case, however, there is no direct
data transfer as the source and target artifacts are dissimilar,
and some “eliminated” data processing occurs inbetween.

3) Collapse: The collapse primitive is a way to eliminate
an operation from the workflow not by introducing indi-
rect data links, but by introducing (sometimes redundant,
therefore weak) composites. Collapse can be performed
either upstream or downstream. We define the function
collapse op downstream : 〈W, op〉 → 〈W ′,M〉 as one,
which takes an annotated workflow definition, and collapses
the designated operation op into all operations that immedi-
ately succeed it (a.k.a. collapse hosts) via a direct dataflow
link. Collapse is realized by creating composites of op
exclusively with each of its hosts (i.e. ignoring relations
with other hosts). Upstream collapse is realized by creating
composites of op with its immediate predecessors.

Motif Behavior: The operation that is collapsed onto
another does not carry forward its motifs to the newly
generated composite. Whereas the motifs of the operation
onto which op is collapsed, i.e. the host propagates its motifs
to the composite. Also, the composite inherits the identifier
label of the host operation.

Constraint Checks: In order for an operation to be
collapsed downstream it is required that it is succeeded by
at least one operation. The reverse constraint is applicable
when collapsing upstream. To prevent against creating cyclic

!"#$

%&'$ (&'$

collapse_up(Z)!

!"# !$#

%&# %'#

!&# !'# !(# !)#

%(#

)*"#$

%*+#

!"+# !$+#

%&'$ (&'$

%&# %'#

!&# !'# !(# !)#

%(#

%"# %$#

)"#$ +"#$

!*# !,#

%*# %,#

+*"#$

%,+#

!"++# !$++#

%-# %-#

Figure 5: Graphical depiction of the Collapse-Up primitive.

!"#$

%&'$ (&'$

collapse_down(Z)!

!"# !$#

%"# %$#

!&# !'#

%&# %'# %(# %)#

%)&'$ U’&'$

!"**# !$**#

%&*# %'*# %(*# %)*#

!"*# !$*#
!(#

!(*#

*"#$ +"#$

%+# %,#

*"#$ +"#$

%+# %,#

!+# !,# !+# !,#

!-#

!-*#

Figure 6: Graphical depiction of the Collapse-Down primi-
tive.

summaries, the host operations on which an operation is to
be collapsed shall not co-exist on a data-flow path.

Dataflow Characteristic: In case there are more than one
host operations, on which collapse will occur the resulting
composites are “weak” due to the exclusivity of composi-
tions. Collapsing onto multiple hosts creates a redundancy
of ports on generated composites and causes the “spreading”
of influence relations, where a weak-composite does not
provide the full picture of influence relations. For example,
in Figure 5, the operation Z is collapsed upstream onto X
and Y . The newly created composites X ′ and Y ′ are weak in
the sense that they separately provide information on some
but not all of the inputs that have influenced the generation
of e.g. output O3′ and O3′′ which both map to O3.

V. SAMPLE SUMMARIZATION STRATEGIES

In this section, we present two sample strategies for sum-
marizing workflow graphs. Such strategies are dependent on
the domain in which workflows exist, the characteristics of
workflows and the user preferences on summary. Strategies

in this section are devised by observing Taverna workflow
descriptions. These open-world workflows mainly collate
datasets and tools from 3rd party autonomous resource
providers. Observations on Taverna workflows and their
textual narratives supplied by users pointed that:
• Scientists rarely report on data adapter steps within
their brief textual summaries of workflows. They choose to
mention steps that they deem significant, from a scientific
perspective e.g. Data Retrieval, Analysis, Visualization etc.
in their summaries.
• Scientists also report on the intermediary Inputs and Out-
puts of significant steps. This is done either by mentioning
data artifacts in text summary or manually bookmarking
them to workflow outputs. Bookmarking, however, is done
at stages of data processing, where data is in its the most
reporting friendly form such as 1) Data with Reduced

Cardinality and 2) Data that is stripped of Implementation
Specific Payload. Consequently, we elaborate the following
strategies:

1. Summary-By-Elimination: Requires minimal amount
of annotation effort and operates with a single rule. We
have only classified the scientifically significant operations
to denote their motifs, and all remaining operations in the
workflow are designated to be DataPreparation steps.
The following reduction rule is then used to summarize the
workflow graph W .

If ∃ path p in W
where p = opA
and motif(opA) contains < m1 : DataPreparation >,
then eliminate op(W, opA)

2. Summary-By-Collapse: Requires annotation of work-
flow with motif classes having more specificity and a
more fine-grained set of rules. Consequently annotations on
data preparation steps are more specific designating what
kind of preparation activity is occurring (e.g. Merging,
Splitting, Augmentation etc). We use these annotations
to remove those data preparation steps from the work-
flow by the collapse primitive and collapsing in the di-
rection so as to retain the ports that carry more reporting
friendly artifacts. We collapse Augmentation, Splitting
and ReferenceGeneration operations downstream as their
outputs are less favored than their inputs, whereas we col-
lapse Extraction, Merging, ReferenceResolution and
all DataOrganization steps downstream as their outputs
are preferred over inputs in a summary. Two rules in this
approach are given below:

For example, In Figures 7 and 8 we provide the result
of applying the two summarization rules to our sample
genomics workflow. Both strategies result in a process-wise
compact version of the workflow that contains only the Data
Retrieval operations that have survived elimination after
exhaustive execution of the rules. The summaries convey the
causal ordering of these operations and their direct/indirect

If ∃ path p in W
where p = opA
and motif(opA) contains < m1 : Augmentation >,
then collapse op downstream(W, opA)
If ∃ path p in W
where p = opA
and motif(opA) contains < m1 : Merging >,
then collapse op upstream(W, opA)

relations with the workflow inputs and outputs. The sum-
maries highlight the characteristic of primitives.

Elimination causes indirect influence relationships to be
generated (depicted with red links). Elimination of opera-
tions with multiple in/outlinks cause multiple indirect links
(depicted with red arrows) to be generated. These indirect
links convey the information that a particular input artifact
(e.g. “Species”’) influences the generation of another data
artifact that is input to a certain operation through some
hidden computation. Note that these indirect links connect
two distinct data artifacts at each end. Elimination can
also result in indirect links connecting workflow inputs
to workflow outputs (See link connecting “Species” to
“KeggGeneNames”). Elimination is fully-preserving of the
fine-grained influence relationships among data artifacts,
whereas collapse (and so does composition) results in the
loss or scattering of this information. Consider, for example,
the relations between the input “HTTPConfig” and outputs
“coloured images” and “keggimageurl”. In the elimination
case we know that this input has only influenced the gen-
eration of “coloured images”, whereas in the collapse case
it appears to influence both of those outputs through some
composite unit of computation.

Collapse results in composites (weak or regular) that
embody multiple operations from the original workflow.
In the case of collapsing onto multiple hosts, we get
weak composites, where ports are redundantly copied over
to multiple composites. Therefore tracing the data flow
trail from just one of these redundant ports does not
yield the complete set of data artifacts that are influenced
by the artifact at this port. For example, the operation
named “comp: get enzymes by gene” contains two in-
put ports that are copied of the ports of the operation
named “Workflow89” in the original workflow. i.e. “Work-
flow89” is collapsed onto both “get enzymes by gene” and
“get pathways by genes”. Therefore, if one was using the
summary to inquire about which data artifacts are influenced
by the artifact that occurs at port “part1′ ” of operation
“get enzymes by gene”, then one needs to follow influence
traces of all copies of that port including “part1′′” of
“get pathways by genes”. This partial view of influence
relations is more dramatic in the case of collapsing up to
multiple hosts, where only a subset of inputs that have
influenced the generation of an output is reported to us by
a weak composite.

Figure 7: Results of summarization by elimination.

Figure 8: Results of summarization by collapse.

VI. EVALUATION

Summarizing Taverna Scientific Workflows: Our test
dataset is comprised of 30 Taverna workflows from various
domains. We applied the two strategies present in the previ-
ous section. To assess the results, we analyzed the workflow
summaries obtained from a mechanistic perspective, by just
examining the graphs, and from a user-oriented perspective
by taking the user summaries as ground truth. We shall re-
iterate that the two strategies summary-by-elimination and
summary-by-collapse are intended to be exemplary rather
than set-in-stone solutions.
• Mechanistic Effect of Summarization In terms of simplifi-
cation of the workflow from a process perspective, as shown
in Table I, and in parallel to our previous empirical findings
more than 60 percent of operations are removable from
the workflow description. Also a significant number (more
than 30 percent) of data links are removed or replaced with
composite links. We have also measured workflow depth.
i.e. the longest path that connects a workflow input to an
output. Both strategies yield significant reduction in depth
(more than 50 percent), yet when we look at the number of
distinct data artifacts (ports) along the longest data-flow path
in a workflow we observe that the summary-by-elimination
strategy cannot equally reduce the data-wise depth of the
workflow.
• Comparison Against User Specified Summary The my-

By-Elm. By-Col.
Avg. Decrease in (Process-
Wise)# of Operations

68% 63%

Avg. Decrease in # of Links
(Process-Wise)

31% 37%

Avg. Decrease in Workflow
Depth (Process-Wise)

62% 57%

Avg. Decrease in Workflow
Depth (Data-Wise)

33% 57%

Table I: Table shows the reduction in workflow artifacts as
a result of the summarization in two strategies.

Experiment repository provides users the ability to asso-
ciate textual summaries with published workflows and most
workflows bear these descriptions. Textual summaries used
to describe the overall scientific intent of the workflow, its
input and output artifacts. Of the workflows we analyzed
23 of them had some basic form of narrative text of the
process followed and referred the significant operations in
it. For these, we have recorded the mentioned operations
as “significant” and expected to be included in a workflow
summary. Among the dataset, 8 workflows had the link
bookmarking in their design. We recorded the bookmarked
ports as “significant” and expected to be included in a
workflow summary.

Using these two sets of information as ground-truth,
the precision and recall values of summaries are given in
Table II. We observe that both the summary-by-elimination
and summary-by-collapse strategies are quite effective in
generating summaries of the workflow from the process-
perspective. This is encouraging, especially for the case
of summary-by-elimination as it shows how much summa-
rization can be achieved with very basic classification of
operations in workflows. These findings validate the obser-
vation we make regarding the process reporting preference
of users, that within a summary they report on scientifically
significant data minting operations.

For data-wise summarization, the automatic detection
of bookmarks (for both strategies) is less effective. Even
with the summary-by-collapse strategy where we provide
fine-grained annotations we get (on average) 43% of the
bookmarks right. This shows that our earlier assumptions are
partially valid. Also, there are differences in the data report-
ing characteristics of different domains or users, e.g., while
some prefer to bookmark exact XML message received
from the web service (for debugging or audit purposes)
others will bookmark the data artifacts extracted from the
message (to be put into a paper or web page) and shows
that the way we have encoded motifs into summarization
rules do not fit all domains or all usage purposes. In fact the
possibility to encode different summarization policies for
different domains or for different users and usecases (e.g.
debugging versus publishing) within the same domain is the
main flexibility of our approach.

Implementation: We implemented graph re-write prim-
itives as a set of custom Java methods. We did not use

By-Elm. By-Elm. By-Col. By-Col.
Precision Recall Precision Recall

Process-Wise 0.74 0.92 0.65 0.93
Data Wise 0.14 0.55 0.33 0.43

Table II: Precision Recall values of summaries generated by
two summarization strategies against user summaries.

a declarative, graph re-write code-generator framework.
The reasons being: 1) our primitives are defined over a
typed/restricted graph model specific to data flows, 2) the
scale we operate over, in terms of workflow graphs, is
in the high hundreds as we perform summarization at the
description level rather than execution trace level. For pattern
matching, i.e. left hand side of rules we used SPARQL
queries that are executed over an annotated and abstract
representation of the workflow description using the wfdesc
workflow model [2].

VII. RELATED WORK

Abstracting workflow provenance has received attention
in the recent years. One common approach to abstraction is
the generation of views on top of the provenance graph [3]
[5]. In [3] authors create views by automatically partitioning
the workflow graph, where each partition is built by grouping
multiple activities into composites. Grouping is centered
around “user-specified” significant activities. The abstract
workflow is then used to scale-down results of data lineage
queries. View based systems typically provide drill-down/up
capability to transition between the view and the actual
underlying provenance graph.

In [7] a user-based provenance graph editing and pub-
lishing approach is described which takes motivation from
data privacy preservation. Users are provided with a set
of provenance graph customization primitives (e.g. hide,
anonymize, abstract and retain nodes). Given that users
have full control of editing, they could possibly violate
data-dependency integrity of the provenance graph. The
system encodes possible integrity violations as policies and
reports and resolves (to the extent allowed by user) conflicts
among customization actions, and policies. Also targeted for
data privacy, in [4] authors describe user-driven redaction
of provenance approach. A set of redaction primitives are
provided such as edge and node contraction, node relabeling,
and a graph rewriting approach is proposed that allows users
to specify sub-graphs of interest (using a graph query lan-
guage with regular expressions) and also the corresponding
redaction action to be performed.

The existing approaches to provenance customization give
the user the full responsibility of searching and editing
the provenance graph. Given the complexity of workflows
and provenance it is a big expectation from the users to
perform this editing without assistance. Therefore, we took
motivation for an indirect approach to summarization.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel solution for cre-
ating workflow description summaries using a rule-based
approach that acts on patterns of semantic annotations on
workflow graphs and re-writes the workflow with well-
defined primitives, namely Composition, Collapse and Elim-
ination. We have encoded two sample summarization strate-
gies, which are grounded onto empirical observation that we
made by analyzing scientific workflows. Using a test set of
Taverna workflows annotated with motifs the effectiveness of
summarization strategies is shown against user summaries.

Summaries can find usage in several areas, one is the
retrospective querying and browsing of workflow execution
traces in a simplified user-friendly manner. Currently we’re
experimenting on the utility of summaries in provenance
querying and experiment reporting (Using Taverna and other
workflows system’s provenance). As yet, we have not de-
fined the inverses of the proposed primitives. Primitives
such as Decompose, and Expand, can be devised and can
allow for new ways of interactively browsing of workflows.
Another, prospective use is to treat summaries as bookmarks
for selective collection of execution traces, which is known
to introduce serious overhead to workflow runs.

ACKNOWLEDGMENT

This work was supported by the myGrid Platform Grant (EPSRC
EP/G026238/1, “myGrid: A platform for e-Biology Renewal”).

REFERENCES

[1] M. K. Anand, S. Bowers, et al. Provenance browser: Displaying
and querying scientific workflow provenance graphs. In ICDE, pages
1201–1204, 2010.

[2] K. Belhajjame et al. Workflow-centric research objects: First class
citizens in scholarly discourse. In SEPUBLICA, Crete, Greece, 2012.

[3] O. Biton, S. Cohen-Boulakia, et al. Querying and Managing Prove-
nance through User Views in Scientific Workflows. ICDE, pages
1072–1081, Apr. 2008.

[4] T. Cadenhead et al. Transforming provenance using redaction. In
SACMAT ’11, pages 93–102. ACM, 2011.

[5] K. Cheung and J. Hunter. Provenance explorer; customized prove-
nance views using semantic inferencing. In ISWC, pages 215–227,
Berlin, Heidelberg, 2006. Springer.

[6] S. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. In SIGMOD, 2008.

[7] S. C. Dey, D. Zinn, et al. Propub: towards a declarative approach for
publishing customized, policy-aware provenance. In SSDBM, pages
225–243. Springer, 2011.

[8] D. Garijo, P. Alper, et al. Common motifs in scientific workflows:
An empirical analysis. In eScience. IEEE CS, 2012.

[9] D. Hull, R. Stevens, et al. Treating shimantic web syndrome with
ontologies. In AKT Workshop on Semantic Web Services, 2004.

[10] M. Copeland, A. Brown, et al. The SWO Project: A Case Study
for Applying Agile Ontology Engineering Methods for Community
Driven Ontologies. In ICBO, 2012.

