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Abstract— City-wide GPS recorded taxi trip data contains rich performance close to

information for traffic and travel analysis to fhizite
transportation planning and urban studies. Howetraditional
data management techniques are largely incapabjgoakssing
big taxi trip data at the scale of hundreds ofionil. In this study,
we aim at utilizing the General Purpose computingGraphics
Processing Units (GPGPUSs) technologies to speedrogessing
complex spatial queries on big taxi data on inegpencommodity
GPUs. By using the land use types of tax lot pafhgyas a proxy
for trip purposes at the pickup and drop-off locas, we formulate
a taxi trip data analysis problem as a large-soabrest neighbor
spatial query problem based on point-to-polygon tadise.
Experiments on nearly 170 million taxi trips in tNew York City
(NYC) in 2009 and 735,488 tax lot polygons with 9B®86
vertices have demonstrated the efficiency of theppsed
techniques: the GPU implementations is about 10-&@&Xer than
the host system and complete the spatial querpautaa minute.
We further discuss several interesting patternsodisred from the
query results which warrant further study. The psgdl approach
can be an interesting alternative to traditionapReduce/Hadoop
based approaches to processing big data with resfec
performance and cost.
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real-time
interactive inquiries. For example, our previoupaxments
have shown that, simply uploading the raw data 9 1
million taxi trip records in a PostgreSQL databased
create a geometry column for the pickup locatiommila/
cost 100+ hours on a high-end workstation with 4B G
memory and reasonably up-to-date dual Intel Xeoadegu
core processors [1]. Although the hardware canmniatéy
provide much higher performance when its parallel
processing power and large memory capacity arey full
utilized, there is a significant gap between mueweded
high-performance and the level of achievable peréorce
using existing software stack for big taxi trip @at

While it is certainly desirable to design more
sophisticated data structures and efficient algord to
further improve the efficiency of serial designsl amprove
the performance of existing technologies, we carsid
exploiting parallel processing power, which is atig
economically available on commodity hardware raggin
from desktops to workstations to virtual clustemscloud
computing, to be an effective alternative to hamglthe Big
Spatial Data problem [2]. Different from most ofeth
existing studies based on MapReduce/Hadoop techsitp
distribute workload to multiple distributed commginodes
to achieve high-performance (e.g., [3,4]), in thiady, we

Taxicabs in many cities have been equipped with GP&im at utilizing the massively data parallel preieg power

devices and fare collection systems. Different sypé trip
related information, such as pickup and drop-offations
and timestamps, fares, trip durations and distanbase
been automatically collected for billing and redaa
compliance purposes. In the New York City (NYC), rmo
than 13,000 taxicabs generate nearly half a miltaoa trip
a day on average which amounts to nearly 170 milligps
in 2009. These taxi trips, when integrated with aurb
infrastructures, such as road networks and diftegres of
zones, can be enormously useful for understandinffjct
and travel pattern across NYC at different timeiguks and
facilitating urban planning. While there are wedtablished
data management techniques,
Information Systems (GIS), Spatial Databases (SBBJ

on commaodity Graphics Processing Units (GPUSs) fatial
guery processing on big taxi trip data and dematisty its
feasibility and efficiency. Our work is built ongoof the
framework of developing a high-performance data
management system for large-scale Origin-Destingt@D)
data on modern parallel hardware [1]. While we have
addressed point-to-polyline distance type of quseoie both
multi-core CPUs and many-core GPUs in [1], we ¥atius

on Nearest Neighbor (NN) type of queries betweeimtpo
and polygons in this study. Although both typesjoéries
can be modeled within a general spatial join fraomdw5]
and the yearly 170 million taxi trips in 2009 ased in both

such as Geographicstudies, the polygon dataset we used in this stuay

735,488 tax lot polygons with 4,698,986 verticehjoh is

Moving Object Databases (MOD), to manage such geomuch more complex than the street network data seeimu

referenced spatiotemporal data, the huge data wesumave
prevented these existing technologies, which arestigno
designed for disk-resident
algorithms and running on uniprocessors, from achge

[1] with 147,011 polylines and 352,111vertices (aXd
13X, respectively). This brings significant higleemputing

systems based on seridhtensity which makes GPU computing more desirdbie

analyzing taxi trip data.

responses to support



The rest of the paper is arranged as the followingmore data can be processed within a computing rtyde

Section 2 introduces background, motivation andteel
work. Section 3 presents the workflow for taxi tepalysis
based on spatial query processing. Section 4 peevitie

fully utilizing the increasing number of processitmyes and
high memory bandwidth (which is typically 3 ordénigher
than disk 1/O speed and 2 orders higher than nd&twor

design and implementations of GPU-based spatiatyque pandwidth, i.e., 10-100 GB/s vs. 0.1-1 GB vs. 10-10

processing techniques. Section 5 provides expetiraad
results on runtimes of system modules and discysstsns
identified from the taxi trip data. Finally Sectidhis the
conclusions.

II.  BACKGROUND, MOTIVATION AND RELATED WORK

Identifying travel patterns from recorded tripsingportant
to understand human mobility and transportatiomiplzg.
Existing approaches to trip purpose identificationlude

traditional diary/phone based travel survey and emor

recently, GPS based travel survey [6,7]. As almalst
taxicabs in cities of the developed countries haeen

equipped with GPS devices and different types qf tr

related information are recorded. For example, ri@re
than 13,000 GPS-equipped medallion taxicabs inNbBe
York City (NYC) generate nearly half a million takips
per day and more than 170 million trips per yeaviag 300
million passengers. The number of yearly taxi sdés
about 1/5 of that of subway riders and 1/3 of tbabus
riders in NYC, according to MTA ridership statisti¢3].
Taxi trips play important roles in everyday lives dYC
residents (or any major city worldwide) and undamnging
the trip patterns is instrumental in transportatinadeling
and planning. However, the large-scale taxi tripadst the
level of hundreds of millions are well beyond thegessing
power of existing GIS and spatial databases teoiges.
As such, new computing infrastructure that can heaibig
taxi trip data is needed to process the data amtifg trip
patterns (such as trip purpose analysis) effigyersthd
effectively.

MB/s), the intra-node communications and disk I(@kich

is arguably the most expensive part) will be sigaiftly
reduced and the overall system performance can be
improved. In this study, we aim at improving singlede
computing efficiency by making use of GPU computing
power.

| DRAM | |[ GDRAM |
| | |

GPU

Fig. 1 lllustration of GPU hardware Architecture

Compared with distributed computing and multi-
core CPU computing, using GPUs for general purpose
computing (or GPGPU in short) is relative young.i\&kve
refer to [11] for more details of GPU computinggFiL
illustrates some key features of GPU hardware avidi&l

As spatial is an important feature for many types o CUDA (Computing Unified Device Architecture [11])

data (especially geo-referenced spatial data thatose to

programming model. Currently, GPUs are

typically

our everyday life) and spatial data volumes arer eveequipped as PCI-E devices to workstations and ctimgpu

increasing, several pioneering works have addressed
scalability issue on processing large-scale ge@dpdata.
In the pre-Hadoop age, parallelization on spatialeking

nodes but have their own graphics memory (top gf E).
While transferring data between CPU memory and GPU
memory incur additional overheads, very often afflimg

and spatial join were based on low-level compumatio computing intensive tasks to GPUs is still benafidue to

protocols which made their adoptions
applications very challenging (see [9] for a sujveyin
recent years, there are significant research aptication
interests in adopting MapReduce/Hadoop based tggbsi
for geospatial data processing (e.g. [3,4]). Tharse
grained task-level parallelization model makeselatively
easy to adapt existing serial designs on a singld €ore to
multiple CPU cores across distributed computing esod
The availability of cloud computing resources afsakes

in practicaltheir excellent parallel computing power, includitayge

number of processing cores and high memory bantwidt
Roughly speaking, the GPU computing model suppduote

task parallelism at the thread block level and data
parallelism at the thread level (Fig. 1). For agenGPU
kernel designed for solving a particular problerhge t
boundary between task and data parallelism can be
configured when the kernel is invoked (lower-leértpof

Fig. 1). However, to maximize performance, datange

developing and deploying such systems much easieshould be grouped into basic units that can begssed by
Despite MapReduce/Hadoop based techniques arealgner a warp of threads (which are dynamically assigned t

considered easy to use and have good scalabligy, are
also criticized for low resource utilizations [1@}hich
makes improving single node efficiency desiraleleled, if

processor cores) without incurring significant dgence.
While GPUs, as shared-memory parallel hardware,
are generally considered lacking good scalabilitiem



compared with shared-nothing architectures, weeaithat location with its nearest neighbor polygon. Aftee tLUTs
the large numbers of processing cores and therhiggnory  of the polygons at the pickup and drop-off locasian a taxi
bandwidth available on GPUs have made them comgetit trip are derived through their nearest polygons, ttip can
in solving big data problems up to a certain scil®e  be aggregated to the corresponding statistics stodriams
further argue that, the techniques we have devdlapéhis  (one of N*N) for further analysis. As N is fixetha is
study for single computing node can be used abuilding  typically small, the computing cost for this firedgregation
blocks to be integrated with existing MapReducefbtqd step is just a fraction of a second even on aasi@U core
systems for larger scale problems to scale outs Thieft and can be parallelized using the techniques pregen
for our future work. We would like to note that, Mehour  [1]. As such, in this study, we will focus on thgasial query
research is motivated by practical needs on magagimd  step, i.e., searching for nearest polygons basegoari-to-
processing big taxi trip data, many techniques &&n polygon boundary distances.

applied to other types of spatial and relationahda

One &Two Family Commercial & Office
Buildings Buildings

I1l. A FRAMEWORK FOR TRIP PURPOSE ANALYSIS USING
SPATIAL QUERY PROCESSING

Typically each taxi trip is associated with a pafir
pickup location/time and drop-off location/time agll as
fare, distance and duration information. While ttigo
records do not tell their trip purposes directlyhem
associating the pick-up/drop-off locations and smgith
urban infrastructure data, such as street netwhesd Use
Types (LUTs) and Points-of-Interests (POIs), thg-tr
purposes can be speculated. Although the identifigx
purposes for individual trips may n_ot_be. com_pletely Multi-Family Elevator Public Facilities &
accurate, given the large number of taxi trips,itietified Buildings Home Institutions
trip purposes are useful from a probability disitibn
perspective. We also believe identifying trip pisee from  Fig. 2 Using LUT Label of Nearest Polygon (Tax Lot)a
large-scale taxi trips is orthogonal and complemegnto Taxi Trip Record for Trip Analysis

existing survey based (diary and/or GPS) trip psepo As illustrated in Fig. 2, the polygons that represe
identification approaches where the accuracy ibdiigit the the tax lots are spatially non-overlapping and are
individual trip level but the numbers of trips direited. The  ¢gnstrained by the city street network. As most pickup
proposed approach represents a radical change froghg drop-off locations are along street segmehey are
traditional labor-intensive transportation dataledion to  gutside of tax lots. The exceptions might be duecRS
potentially deeper and more accurate understarafiogan  errors or arranged pickups/drop-offs in specialesasAs
dynamics with lower costs through ubiquitous segsind  gych, it is natural to use the distance betweeiokaip/drop-
computing intelligence. . ) . off location (point) and the boundary a polygorx(iat) as a

. ‘Through a partnership with the NYC Taxi and measurement of likelihood that the trip is relatethe LUT
Limousine Commission (TLC), we have access to # I of the tax lot. While it might be more accuratetaing all
transaction data of NYC medallion taxicabs for &gn  the tax lots within a distance R into consideratias a first
months (2008-2010) that amounts to roughly 300ionill  step we currently take only the nearest tax Iathiwi a
GPS-based trip records. We also have access tYi®  gistance R into consideration. Extending 1NN to KN

MapPluto Tax Lot from NYC Department of City Plangi  relatively straightforward from a computing perspes
(DCP) [12]. The MapPluto tax lot dataset contaiok land  \yhich is left for our future work.

use information where each tax lot (polygon) isoa&ged
with a LUT. Currently there are 11 LUTs (see Tablén
Section V for the list). A trip starts near a mt Family
Buildings (types 01 or 02) and ends near a lot of
Commercial/Office Buildings (04) is likely to be work
related. Similarly, a trip starts near a lofToansportation&
Utility (07) and ends near a lot @pen Space & Outdoor
Recreation (09) is likely related to visitors outside of NY
While it takes more domain knowledge and requiige-f
tuning the combinations of the N*N (N=11) Origin-
Destination types to identify more meaningful and
interpretable trip categories, the most computafign
expensive step is to associate each pickup and-affop

The observation has led us to develop a framework
for trip purpose analysis using big taxi trip daa,shown in
Fig. 3. The shaded components represent thosehthat
been realized. Please note that incorporating teahpo
aggregation and filtering (the middle part of F@) is
similar to what we have proposed in [1] from a tachl
c perspective. The techniques can be used to anaiyré
" specific time periods or during special events .(ergw
years, sport events). In our future work, we plan t
incorporate Point-of-Interests (POIs) to furthepiowve the
accuracy of our trip purpose analysis. For tax lotsion-
residential areas, there can be many POIs locatetthd



same building in a tax lot and the POIs may havapiex
but interesting semantic relations that can poaéptibe
useful for better accuracy. We also plan to useesudata
in a machine-learning framework to improve the aacy
of our trip analysis. In all cases, the computiegfgrmance
of the basic building block of the proposed framdwim

Fig. 3, i.e., searching the nearest polygons fotaai trips,
is the key in the success of trip purpose analysisg big
taxi trip data. We next present the GPU-based apatiery
processing techniques in the next section.
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Fig. 3 Framework of Big

V. PARALLEL DEISGNS AND
IMPLEMENTATIONS ON GPGPUS

The high-level designs are illustrated in Fig. 4ickh
follows a spatial join framework [5] closely by ngia grid-
file structure for spatial indexing [1]. We nextepent the
designs for the four modules in the spatial queocessing,
i.e., point indexing (to align points to grid c¢llpolygon
indexing (to align expanded polygon Minimum Bourglin
Boxes —MBRs - to grid cells), spatial filtering (f@ir up
points with nearby polygons based on common grits)ce
and spatial refinement (to associate each poinh g
nearest polygon based on point-to-polygon distgnchs
shown in the top part of Fig. 4, we store pointrdamates
and polygon vertex coordinates as arrays for

better

Taxi Trip Data Analysis

the boundaries of polygons and their rings are stisoed as
index arrays (i.e., PLI at the top-right part of H).

For point indexing, based on the experiments
reported in [1], as it is simpler and more effitiém index
points using a flat grid-file structure than the ltinlevel
quad-tree structure that we previous developed &j, [we
have used the flat grid-file structure in this studhile we
refer to the details provided in [1], which als@sishe same
point dataset for a different application, basicalbints are
sorted by using row-major ordered cell-identifiers keys
and points with a same cell identifier are groujmd a cell.
As such, a point index array (PTI in the top-ledirtpof Fig.

4) is also used to store the starting positionpadifits in all
the cells, in a way similar to the role of PLI.
For polygon indexing, the R-expanded MBRs of

performance (e.g., being cache friendly on CPUs angolygons, i.e., MBRs expanded by distance R alooth b

coalesced memory accesses on GPUSs). As detailgt],in

directions, are also rasterized based on the sarte ¢
tessellation. It is clear that if a grid cell istrmart of the



expanded MBR of a polygon, then any of the pointhe polyline distance computation module developedlinfer
cell is at least R distance away from the polygonrary this purpose. We do need, however, handle the hergiy
and such cell-polygon pair should be excluded fromvertices that belong to two different rings in dygon in
subsequent spatial refinement. The GPU implememsf this particular application. As shown in the bottofrFig. 4,
the first three modules can reuse the techniguesepted in  we assign a(,P) pair to a GPU computing block. Each
[1] as the primitives-based parallel designs andhread is assigned to process a point which loomsigh all
implementations are portable across different peral the polygon vertices to compute the shortest digtdn the
hardware platforms. The details are omitted here tu polygon. If a cell is paired with multiple polygagrtben the
space limit. polygon with the shortest smallest distance wilchesen to
As shown in the middle of Fig. 4, for a cell- be associated with the point. The polygon identified the
polygon pair C,P) that should be sent for further spatial shortest distance will be assigned to each poitthofigh
refinement based on true geometrical distances dagtw currently we have not used the computed shortstames
points and polygons, the coordinates of points fladlt to adjust LUT probabilities for better accuracy, plan to
within the cellC and the coordinates of polygon vertices cando so in our future work. As such, we have not uaaed
be retrieved from their respective coordinate aradys the obvious optimization of simply assigning the polggo
shortest distance between a point and a polygalefised identifier to all the points in a cell if only or@lygon is
as the smallest distance between the point andhall paired up with the cell.
polygon edges, we can further reuse the shortest-fm

Flat grid-file based indexin

Point x/y coordinates Sortbased ¢3°° E_xr;\nged_leygonj Tops T PU
o oy oneellibe MBR I
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Fig. 4 High-Level Designs of GPU-based Paralleltp&uery Processing to Associate Polygons witim8o
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Clearly, asR increases, the expanded polygonuse fixedR values in our experiments as we consider nearest
MBRs will likely to be more overlapped and a cslllikely  neighbors are only meaningful within a certain aliste
to be paired up with more polygons. As such, themating  buffer (as represented IR in this particular application.
intensity increases as R goes up. We further rnatg even
for a large R value, it is possible that a grid isehot paired V EXPERIMENTS RESULTS ANDDISCUSSIONS
up with any polygons. As such, our spatial queryas a :
nearest neighbor query in a strict sense, whichires find A Experiment Satup
a nearest neighbor no matter how far way it istelad, the All experiments are performed on a Do-It-Yourself
nearest neighbor polygon of a point in our approach (DIY) workstation equipped with a single Intel digalre
selected from polygons whose expanded MBR intessecfCore i5-650 CPU running at 3.2 GHZ, 8 GB GDDR3
with the cell that the point falls within, i.e.,etcell is no memory and 500GB hard drive. Since the hardwarpatip
more thanR distance away from the MBR of the polygon. hyper-threading, the CPU appears to have four jgsicg
Please note that the rule does not guaranteetidathortest  cores which are all used in our parallel implemeoits on
distance between a point and its nearest polygtesisthan CPUs. The CPU has 32KB L1 cache (per core) and B56K
R. Although we can iteratively increag® until all points L2 cache (per core) but there is no L3 cache fer@PU.
find their nearest polygon regardleRsvalues to meet the The memory bandwidth is 21 GB/s. The total costlbthe
conventional definition of nearest neighbor, we as®mto Parts used to assemble the workstation is arour@DCb1



which put it in the lower end. The absence of L8heaand
the low memory bandwidth has significantly limitede
machine’s computing power when compared with higt-e
workstations. While the low-cost workstation isrfiaiweak

the GPU implementation is significant faster thae €PU

implementation, i.e., 14X for Step 4 and 40X foe[s5b.
Table 2 lists the runtimes of the rest of the st

the three modules on both CPUs and GPUs in mitises

in terms of computing power, we have quipped with a under thredk values, i.e., 50, 100 and 200 feet, respectively.

Nvidia GTX Titan GPU that has 2,688 cores (runrabh@77

Clearly, as expected, the runtimes increaseRagalues

MHZ), 6GB device memory and 288 GB/s memorybecome larger. Table 2 also show that, he spatislement
bandwidth. We have compiled both the CPU and GPUnodule that computes the distances between poimis a

source code with —-O2 optimization flag for
comparisons. We also mention that the total costhef
workstation (~$2000) is comparable or even loweanth
many computing nodes in cloud computing facilitvdsich
makes it possible to compare monetary cost.

fair polygon boundaries is the most computing intensive

among all the four modules (including point indeRinThe
GPU implementations have achieved 16X-75X speedups
among these three modules. For the spatial refineme
module, the speedups vary from 24X-30X. The results

Our experiments focus on two aspects, i.e., thehis module are more consistent than the other faedu

runtimes of spatial query processing and the istarg
patterns that can be derived from taxi trip data. the first

Table 2 Runtime and Speedup Comparisons among Oitiee
Modules Using Three R values

set of experiments, we will report the runtimesttod four
modules using three differeRtvalues using both CPUs and

GPUs in Section V.B. For the second set of expartmeave
will report the numbers of taxi trips in each ofthN*N
combinations as an O-D matrix and provide somn

preliminary analysis on some of the potentiallyenasting
patterns based on the resulting matrix in Sectidd. V

B Results on Spatial Query Proceesing
Since the runtimes of experiments on pickup locetiand

drop-off locations are largely the same, we wilpog

runtimes for pickup locations unless stated othsgwit is
clear that point indexing is independentRfvalues while
the rest three modules are sensitive to diffeRevelues.

Table 1 Runtime Comparisons of Point Indexing

CPU [ GPU
Step 1: data loading from disk (ms) 26285}40
Step 2: data preparation (ms) 1183/24
Step 3: computing cell identifiers (ms) 221.43 385]
Step 4: sort based cell identifiers (mg) 817781 8.3B
Step 5: computing cell index array(ms) 184050 34.1

Table 1 lists the runtimes of the five steps innpoi
indexing in milliseconds. Note that the first twiezs are
performed on CPUs. The GPU implementation of thiatpo
indexing module differs in the last three stepsteNtbat we
load both pickup and drop-off locations from digk$Step 1
as they are stored in a same physical file. Stelpe2ks data
validity and performs some basic transformationthaugh
this step is easily parallelizable, since the mstiof this
step is only a small fraction of the end-to-endtirae, we
run this step in CPU sequentially for convenientae
reason that the GPU implementation has a higheinen
than CPU in Step 3 is that, point data is transtkrfirom
CPU to GPU in this step in the GPU-based implentmta
Assuming that the CPU to GPU data transfer rate@B/s,
transferring 170 million *8 bytes = 1.36GB dataealdy
takes 340 ms, which clearly dominates the GPU tirtéis
step. From Table 1 we can see that, for the reststeps,

R (ft) Polygon- Spatial Spatial
indexing Filtering Refinement
50 CPU (ms) 2579 2175 613031
GPU (ms) 161 46 2550y
e Speedup 16.03X 47.20X 24.03X
100 | CPU (ms) 4743 39211 789149
GPU (ms) 293 74 29999
Speedup 16.19X% 49.96X 26.31X
200 CPU (ms) 46287 12287 1260588
GPU (ms) 634 164 4306]7
73.01X 74.90X 29.27X
To better understand the overall performance of the
CPU-based implementations and the GPU-based

implementations, we have listed the end-to-endimeg
under two scenarios, i.e., with and without inchglpoint
data disk 1/0Os and the corresponding speedups.leWre
have parallelized all the important steps in the fmodules,
disk I/Os remain to be a bottleneck that is diffico tackle

in big data applications. The speedups listecha right-
most column of Table 3 represent the upper bouhds t
GPU computing can expect to achieve, after remotirg
disk I/O bottleneck (such as pre-loading or usitesH
drives). By including point data disk 1/O times, t®wn in
the third column of Table 3, the realized speedopshe
end-to-end runtimes in this study under the threeaRes
range from 12X to 19X, which are still impressiWhile
we cannot include the runtimes of single thread
implementations due to space limit, our resultshenspatial
refinement module (computing point-to-polygon dista
and searching for nearest polygon) indicate thauguall the
4-threads in the 2 CPU cores is about 1/3 bettar fingle-
thread (using a single core), i.e., 1.5X speedups Tay
indicate that, limited cache capacity and low memor
bandwidth on this low-end workstation may among the
factors that prevent linear scalability with redpdo
processor cores and hardware threads, given thatata
parallel designs have demonstrated better scadiabiin
server grade CPUs [1].



Table 3 End-to-End Runtime and Speedup Comparig6tieand  into segments is also relatively straightforwardhich can

Without Including Point Data Disk I/O time be advantageous. The work reported in this studyseave
R With Point data | Without Pointdata | as a case study to understand tradeoffs amongratiffe
(ft) disk I/O time disk I/O time technologies in big data applications.
50 ggtj ((nn::)) 655524093‘; 62279;10;3 CRESULTS ONTAXI TRIP DATA ANALYSIS
Speedup 12.09X4 22.54X The output of our spatial query processing is a Niibtrix
100 | CPU (ms) 835521 809236 with each element in the matrix n[i][j] representse
GPU (ms) 58859 32574 number of trips from LUT i to LUT j. We have addéd to
Speedup 14.20 24.84X indicate that LUT cannot be identified for eitheickup
200 | CPU (ms) 1356870 1330585 |ocation or drop-off location or both. As discudszarlier,
GPU (ms) 72355 46070 as i=1..11 and j=1..11, these 121 combinations lban
Speedup 18.75 28.88K categorized into a few types of trip purposes fooren

We have not included direct comparisons withdomain-specific analysis; this is left for our freuwork. In
Hadoop-based implementations in this study as wenat this section, we will provide a preliminary analysin the
aware of existing Hadoop-based implementations hhae  spatial query results which are listed in Table 4.
similar functionality. However, our early work pesged in From the totals listed in the last column of Tadb)e
a technical report at [14] have included a seri®UC it is clear that the top-3 LUTs for pickup locatioare 05
implementation using two popular open source gd@pa (Commercial & Office Buildings, 46.1 million), 09 QOpen
software packages, i.e., libspatialindex [15] forTRe  Space & Outdoor Recreation, 37.3 million) and 04 Nlixed
based polygon indexing and GDAL [16], for point-to- Residential & Commercial Buildings, 28.5 million).
polygon distance computation. While the serial CPUlnterestingly, based on the last row of Table & tbp-3
implementation simply query the nearest polygondach drop-off LUTs are also 05 (44.6 million), 09 (38llion)
point iteratively, which leaves room for algorittami and 04 (24.9 million), in the same order. TheseahrUTs
improvements, the performance can be used as édingase cover about 2/3 of trips with respect to both pjgku
for an idealized comparison. Assuming that runtmhehe locations and drop-off locations and each of thess ht
serial implementation is Ts, then the best expeotetime least 20 million trips for both pickup and drop-tgtations.
for a Hadoop system with N computing nodes would beUT 03 (Multi-Family  Elevator  Buildings), 07
Ts/N, by excluding the overheads of network(Transportation & Utility) and 08 Public Facilities &
communication costs and disk I/Os for intermedratults.  Ingtitutions) are among the next tier LUTs with respect to
According to [14], for R=100, the end-to-end rundirffor  the numbers of trips for both pickup and drop-offdtions
the serial CPU implementation to associate poiits their  and they are in the range of 10-20 million. Tripattare
nearest polygons is 110,093seconds. For verifisatiocovered by all the rest five LUTs are far belowrhiion.
purposes, the serial CPU implementation code h&h be The clear three-tier pattern makes it interestioigféirther
made available online at [17]. In contrast, by addip the studies.
runtimes of the four modules in the R=100 experitsethe Table 4 also suggests that, among the 13.1 million
end-to-end runtimes for our GPU implementation istrips that start at LUT O07T¢ansportation & Utility), the
Tg=58.856 and seconds including point data disktif@®  destination of the majority of the trips are LUT 05
and Tg=32.574 seconds without including I/O timén (Commercial & Office Buildings, 4.1 million) followed by
order for a Hadoop-based implementation to matah thLUT 09 (Open Space & Outdoor Recreation, 2.5 million),
GPU-based implementation by adapting the seriaLUT 07 itself (2.2 million) and LUT 04Mixed Residential
implementation, even under the idealized assumptiom & Commercial Buildings, 1.2 million). This may indicate
number of processing units would be N=Ts/Tg. AltjlotlN  passengers who arrive at NYC through public trartagion
might be different when plugging in runtimes under(air, rail or bus) are mostly for business, leisuransfer or
different scenarios and accounting the differenag®ng coming back home (in this order). Some similargrat can
the CPUs, generally N should be in the order of-3000 be derived from Table 4 for further analysis. Alilgh
based on the simple calculation. The computed Nevid  subsequent validations are required for these rpattehe
well above the numbers of computing nodes thatitiged  spatial query results are quite useful to stimuiteothesis.
by typical applications (in the order of dozes)eTiesults While the results reported here are aggregateueahighest
may indicate that, GPUGPU computing can be attradth  spatial (citywide) and temporal scale (yearly), our
practical big data applications with respect to-eménd techniques allow incorporating spatial and tempbitaking
performance and monetary cost. On the other hamal, t for finer scale aggregations. We are also in thecess of
development cycle is much shorter for the serialintegrating visualization modules to visualize widual as
implementation using open source packages, whiohbea well as aggregated query results for better intdgtion and
more important in certain applications. Plugging gerial  validate potentially interesting patterns to faatke decision
implementation into a Hadoop system by chunkinghisoi making.



Table 4 City-Level Origin-Destination Matrix of Nurars of Aggregated Trips in 2009 in NYC (in millgn

FIT 00 01 02 03 04 0% 0p gr 08 D9 10 11 Total
00| 0.151| 0.0v§ 0.123 0.197 0.297 0.22 0.072 0{18%181| 0.231 0.044 0.027 2.209
01| 0.012| 0.054 0.08p0 0.133 0.168 0.237 0.035 0j052085| 0.164 0.011 0.022 1.0%7
02| 0.089] 0.10§ 0.253 0417 0.795 0.831 0.122 0{158316| 0.525 0.03% 0.063 3.707
03| 0.260] 0.263 0.71p 2.035 3.0p4 45393 0.p43 0{97R192| 2.769 0.249 0.279 16.880
04| 0.579] 0411 1.11p 3373 59p5 7465 0.p84 1;30R210| 4.336 0.424 0.441 28.549
05| 0.711| 0.584 1.333 4.844 6.4p6 19.486 1.445 3|818964| 3.083 0.864 0.477 46.103
06| 0.121| 0.0574 0O.16fp 0526 0.764 1.197 0.204 0{218309| 0.245 0.063 0.063 3.922
07| 0.073| 0.36 0.344 0913 1.235 4.099 0.261 2{24K724| 2.528 0.152 0.182 13.122
08| 0.160/ 0.19§ 0.493 1.350 2.083 2444 0.285 0j4M9%47| 1.423 0.128 0.104 10.086
09| 0.279| 0442 0.968 2512 3.4y2 2313 0.274 1/66B576| 23.121 0.267 0.440 37.3B0
10| 0.074| 0.038§ 0.090 0.193 0431 0.812 0.070 0j138157| 0.129 0.042 0.031 2.206
11| 0.024| 0.029 0.068 0.205 0.314 0501 0.048 0j14Wm099| 0.387] 0.01% 0.069 1.899

Total | 2.533] 2.63Q 5.748 16.697 24.965 44.599 4/328.365| 10.760 38.94p 2.295 2.1p8 167.068

LUT labels (defined in Section Ill): 00-unknown,-00ne & Two Family Buildings, 02 - Multi-Family WielUp Buildings, 03- Multi-Family Elevator
Buildings, 04- Mixed Residential & Commercial Builds, 05- Commercial & Office Buildings, 06-Induatr& Manufacturing, 07-Transportation &
Utility, 08-Public Facilities & Institutions, 090pen Space & Outdoor Recreation, 10 - Parking fasil 11-Vacant Land.

VL.
In this study, we aim at utilizing the massivelyalparallel

CONCLUSIONS

processing power provided by modern GPUs to spged

spatial query processing on large-scale taxi trigpadfor
aggregated trip purpose analysis. By integratirgptarallel
designs and implementations of GPU-based spataling

(3]

(5]

and query processing techniques, we have succlyssfulg)
developed a set of techniques to compute the rteares

polygon of both pickup and drop-off locations iiaxi trip
record and aggregate taxi trips based on land yyses tof
their nearest polygons. Experiments have shown adbat

GPU implementations can complete such complex apati

(7]

queries in about 50-75 seconds using an inexpensi\}g]
commodity GPU device. The performance is 10X—20X[g]

higher than the host machine with an Intel duakcGPU
when all the cores and hardware supported threadfully
used. Preliminary analysis on the resulting triprdomatrix
has demonstrated interesting patterns and opendatbies
for future work to validate the patterns and disrgvnew

(10]

patterns through more complex spatial, temporal ané!!

spatiotemporal queries.
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