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Abstract—1

The progressive transition in the nature of both scientific
and industrial datasets has been the driving force behind the
development and research interests in the NoSQL data model.
Loosely structured data poses a challenge to traditional data
store systems, and when working with the NoSQL model, these
systems are often considered impractical and expensive. As the
quantity of unstructured data grows, so does the demand for a
processing pipeline that is capable of seamlessly combining the
NoSQL storage model and a “Big Data” processing platform such
as MapReduce. Although, MapReduce is the paradigm of choice
for data-intensive computing, Java-based frameworks such as
Hadoop require users to write MapReduce code in Java. Hadoop
Streaming, on the other hand, allows users to define non-Java
executables as map and reduce operations. Similarly, for legacy
C/C++ applications and other non-Java executables, there is a
need to allow NoSQL data stores access to the features of Hadoop
Streaming. In this paper, we present approaches in solving the
challenge of integrating NoSQL data stores with MapReduce
for non-Java application scenarios, along with advantages and
disadvantages of each approach. We compare Hadoop Streaming
alongside our own streaming framework, MARISSA, to show
performance implications of coupling NoSQL data stores like
Cassandra with MapReduce frameworks that normally rely on
file-system based data stores.

I. INTRODUCTION

The size of data collected on social media interactions,
scientific experiments, and e-commerce is growing to very
large sizes, and the nature of data has been evolving. The
structure of data differs vastly as it is being collected from
various sources. A similar phenomenon has arisen in the scien-
tific community, where data coming from a single experiment
may involve various sensors monitoring disparate aspects of a
given test. Data relevant to an experiment may be formatted in
different ways since it originates from different sources. While
similar challenges existed before the advent of the NoSQL data
model, earlier approaches involved storing differently struc-
tured data in separate databases, and subsequently analyzing
each dataset in isolation, potentially missing a “bigger picture”
or critical link between datasets. Currently, NoSQL offers a
solution to this problem of data isolation by allowing datasets,
sharing the same context but not the same structure or format,
to be collected together. This allows the data not only to be
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stored in the same tables but to subsequently be analyzed
collectively.

When non-uniform data grows to large sizes however, a
distributed approach to analyze NoSQL data needs to be
considered. MapReduce has emerged as the model of choice
for processing “Big Data”. While MapReduce frameworks
offer both storage and processing capabilities for data in any
form, structured or not, the inability on MapReduce’s part to
allow such data to be queried presents a significant challenge.
Growing datasets not only need to be queried to enable real
time information collection and sharing, but also need to
undergo complex data analysis operations.

NoSQL data stores offer not only the potential of storing
large, loosely structured data that can later be analyzed and
mined as a whole, but also the ability for queries to be applied
on such data. This is especially beneficial when real time
answers are needed on only slices of the stored data. Despite
the presence of this valuable querying potential from NoSQL
stores, there is a need for a software pipeline allowing “Big
Data” processing models such as MapReduce to tap NoSQL
data stores as sources of input. Furthermore, there is a need for
enabling legacy programs written in C, C++, and other non-
Java executables to be used within such “Big Data” processing
paradigms when data is collected under NoSQL stores.

In this paper, we present a processing pipeline allowing not
only native Hadoop MapReduce programs written in Java to
make use of the NoSQL storage systems, but also any non-Java
executable used for data processing. We use Apache Cassandra
in our analysis, a well-known NoSQL solution, and combine
it with both Apache Hadoop and a streaming MapReduce
framework we have developed, named MARISSA [10]. We
show on a case-by-case basis when it is beneficial to process
the data directly from NoSQL stores and the performance
impact of first downloading it to a MapReduce framework.

The contributions of this paper are as follows:
• We introduce a MapReduce streaming pipeline for run-

ning non-Java executables with a MapReduce framework
over datasets downloaded from Cassandra and compare
the performance at different stages of this pipeline for two
different MapReduce streaming frameworks, MARISSA
and Hadoop Streaming.

• We compare and analyze the performance implications
of processing data directly from Cassandra servers versus
using the streaming pipeline for processing data columns



of interest under various application scenarios.
• We provide recommendations on when it is beneficial to

off-load data to the file system for MapReduce processing
versus each worker reading the input records from the
local running database servers.

II. BACKGROUND

Cassandra [16] is an open source, non-relational, column-
oriented, distributed database developed by Facebook. It is
designed to store large datasets over a set of commodity
machines clustered in a peer-to-peer structure to promote
horizontal scalability. Interesting aspects of the Cassandra
framework include independence from any additional file
systems like HDFS, scalability, replication support for fault
tolerance, balanced data partitioning, and MapReduce support
with a Hadoop plug-in.

MapReduce: Taking inspiration from functional program-
ming, MapReduce starts with the idea of splitting an input
dataset over a set of commodity machines, called workers,
and processing these data splits in parallel with user-defined
map and reduce functions. The model abstracts the details
of input distribution, parallelization, scheduling and fault tol-
erance.

Apache Hadoop [1], the leading open source MapReduce
implementation, relies on two fundamental components: the
Hadoop Distributed File System (HDFS) [19] and the Hadoop
MapReduce Framework for data management and job execu-
tion respectively. Hadoop is implemented in Java and requires
the map and reduce operations also to be implemented
in Java. This creates a challenge for legacy applications
where it may be impractical to rewrite the applications in
Java. Hadoop Streaming is designed to address this need by
allowing users to create MapReduce jobs where any executable
(written in any language or script) can be specified to be
map or reduce operations. Although Hadoop Streaming has
a restricted model [10], [14], it is commonly used to run
numerous scientific applications from various disciplines.

MARISSA leaves the input management to the underlying
shared file system to solely focus on processing. In previous
work [10], we explain the details of MARISSA and provide
a comparison to Hadoop Streaming under various application
requirements. Unlike Hadoop Streaming, MARISSA does not
require processes like TaskTrackers and DataNodes
for execution of MapReduce jobs. Once the input is split
by the master with the Splitter module and placed
into the shared file system, each worker has access to the
input chunks awaiting execution. Unlike Hadoop, MARISSA
does not force explicit data locality – rather it leaves such
optimizations to the shared file system. Each worker points
the target executables to the input splits they are responsible
for, monitors the status of the local job, and informs the
master when the local tasks are all completed. Compatibility
with POSIX file-systems, the ability to run applications not
using standard input and output, and the ease of iteration
support are some of the features implemented within MARISSA
that are often considered lacking in Hadoop Streaming.

III. MAPREDUCE STREAMING OVER CASSANDRA

A. MapReduce Streaming Pipeline For Cassandra Datasets

In this paper, we introduce a MapReduce pipeline that can
be adopted by MapReduce frameworks like Hadoop Streaming
and MARISSA, each offering MapReduce capabilities with
non-Java executables. This pipeline, shown in Figure 1, has
three main stages: Data Preparation, Data Transformation
(MR1) and Data Processing (MR2). Each of these stages
is explained in the following subsections and performance
implications are discussed in Section IV.

1) Data Preparation: Data Preparation, Figure 1a, is the
step of downloading the data from Cassandra servers to the
corresponding file systems – HDFS for Hadoop Streaming
and the shared file system for MARISSA. For both of these
frameworks this step is initiated in parallel. Cassandra allows
exporting the records of a dataset in JSON formatted files [3].
Using this feature, each node downloads the data from the
local Cassandra server to the file system. In our experimental
setup, each node that is running a Cassandra server is also a
worker node for the MapReduce framework in use.

We implemented a set of tools to launch this process of ex-
porting data from a Cassandra cluster. Every worker, connects
to its local database server and starts the export operations.
Each worker collects the exported records in unique files on
the shared file system. In MARISSA, we introduced these tools
into the Splitter module. For Hadoop Streaming however,
we implemented additional ones to initiate the data preparation
process on all the workers. Next, this data is placed into the
HDFS executing the put command from the Hadoop master.
In Hadoop’s case, the put includes creating input splits and
placing them into HDFS. In MARISSA, however, the worker
nodes flush the data to the shared file system and later these
data files are split by the master one-by-one for each core. We
compare the performance of the Data Preparation stage for
Hadoop Streaming and MARISSA in Section IV-A.

2) Data Transformation (MR1): Cassandra allows users to
export datasets as JSON formatted files. As our assumption
is that the MapReduce applications to be run are legacy
applications which are either impossible or impractical to be
modified and the input data needs to be converted into a format
that is expected by these target executables. For this reason,
our software pipeline includes a MapReduce stage, Figure 1b,
where JSON data can be transformed into other formats. In
this phase each input record is processed to be converted to
another format and stored in intermediary output files. This
step does not involve any data or processing dependencies
between nodes and therefore is a great fit for the MapReduce
model.

We implemented Python scripts for this stage which can be
utilized both by MARISSA and Hadoop Streaming without any
modifications. As this is the first of a series of MapReduce
operations whose output will be used as the input by the
ensuing MapReduce streaming jobs, we call this stage MR1.
Our system not only allows users to convert the dataset into
the desired format but also makes it possible to specify the



Fig. 1. MapReduce streaming pipeline. In (a), Data Preparation, each worker node exports the dataset from the local Cassandra servers to the shared file
system and to the HDFS. In (b), the dataset is converted into the user specified format using MapReduce. In (c), user set non-Java executables are used within
MapReduce to process the reformatted data produced in (b).

Fig. 2. (a) shows using MARISSA for the MapReduce streaming pipeline pictured in Figure 1. The data is first downloaded from the database servers to the
shared file system, pre-processed for the target application and at the final stage processed with the user set non-Java executables. Figure (b), is the layout
of using Hadoop Streaming in such a setting where the dataset is also pushed into the HDFS. Figure (c) shows the structure of Hadoop-C*, which we use
to process Cassandra data directly from the local database servers using Hadoop and non-Java executables.

columns of interest. This is especially useful when only a
vertical subset of the input data is sufficient for the final
processing. This stage helps to reduce data size, and in turn
positively affects the performance of the next MapReduce
stage by leading to fewer I/O and data parsing operations.
In the following sections of this paper we will refer to this
stage either as MR1 or as Data Transformation. Section IV-B
provides a comparison between the performance of Data
Transformation using MARISSA and Hadoop Streaming.

3) Data Processing (MR2): This is the final step of the
MapReduce Streaming pipeline shown in Figure 1. In Fig-
ure 1c we run the non-Java executables, over the output of
MR1, since the data, now, is in a format that can be processed
by these target applications. We can use either MARISSA or
Hadoop Streaming in this stage. Since this is the second
MapReduce stage in our pipeline, we name it MR2. That is,
any MapReduce streaming job run after MR1 is regarded as
MR2. In Section IV-C, we first compare the performance of
MARISSA and Hadoop Streaming considering only this stage
under various application scenarios. Later, in order to show
the full operation span, we include the time taken for Data
Preparation and Data Transformation under each MapReduce
framework and repeat our comparisons.

B. MapReduce Streaming Pipeline with MARISSA

As explained in Section III-A1, the Splitter module of
MARISSA has been modified such that each worker connects to
the local database server to take a snapshot of the input dataset
in JSON format and place it into the shared file system. After
the Data Preparation stage shown in Figure 1a, the input is
split and ready for Data Transformation. Figure 2a shows the
architecture of MARISSA. It allows each non-Java executable
to interact with the corresponding input splits directly without
needing to mediate this interaction. In the stage of Data
Transformation, each MARISSA mapper runs an executable to
convert the JSON data files to the user-specified input format.
These converted files are placed back into the shared file
system. MARISSA runs the user given executables to create
the next MapReduce stage, which we call Data Processing.
This is accomplished using the previous output as the input.
There is no re-distribution or re-creation of splits required
since MARISSA is designed to allow iteration of MapReduce
operations where the output of one operation is fed as input
to the next.



C. MapReduce Streaming Pipeline with Hadoop Streaming
In the Data Preparation stage, each Hadoop worker con-

nects to the local Cassandra server and exports the input
dataset in JSON formatted files. Next, these files are placed
into the HDFS using the put command. This distributes the
input files among the DataNodes of the HDFS and later
they become the input for the Data Transformation stage.
HDFS is a non-POSIX compliant file system that requires
the use of HDFS API to interact with the files. Since Hadoop
Streaming uses non-Java application for map and/or reduce,
these executables do not use this API and therefore do not have
immediate access to the input splits. So, Hadoop TaskTrackers
read the input from HDFS DataNodes, feed to the executables
for processing and collect the results to write back to HDFS.
In the Data Transformation step shown in Figure 1b, Hadoop
Streaming uses our input conversion code to transform the
input to the desired format and later Data Processing is
performed on the output of this stage. Note that at the Data
Processing stage the input is already in HDFS as it is the
output of the previous MapReduce job.
D. Hadoop-C*

Hadoop-C* is the setup where a Hadoop cluster is co-
located with a Cassandra cluster to provide an input source and
an output placement alternative to the MapReduce operations.
This setup, illustrated in Figure 2c, allows users to leave
the input dataset on local Cassandra servers. We use Hadoop
TaskTrackers to read the input records directly from the local
servers to ensure data locality. That is, there is no need
for taking a snapshot of the dataset and placing it into the
file system for MapReduce processing. Therefore, no Data
Preparation or Data Transformation steps are required.

Before proceeding to the map operations, Hadoop
mappers start the user specified non-Java executable to be
used for data processing. In each map operation, mappers
read a record from the database, convert it to the expected
input format and stream it to the running application using
stdin. Later, the output is collected back from this appli-
cation, using stdout, which is then turned into a database
record and written back to the Cassandra data store.

Figure 2c shows that DataNodes are running on each
worker node, but they are not used for input management.
DataNodes are required since HDFS is used for dependency
jars and other static and intermediary data. In the following
sections we refer to this setup as Hadoop-C*. Furthermore,
we will use the notation Hadoop-C*-FS for the cases when
Hadoop TaskTrackers read the input records directly from the
local Cassandra servers, but the output is collected in the
shared file system.

IV. PERFORMANCE RESULTS

The following experiments were performed on the Grid
and Cloud Computing Research Lab Cluster at Binghamton
University.

• 8 Nodes in a cluster, each of which has two 2.6Ghz Intel
Xeon CPUs, 8 GB of RAM, 8 cores, and run a 64-bit
version of Linux 2.6.15.

In the following tests we use the 3 different setups that
we explain in Section III to perform MapReduce operations
over a dataset that resides in a Cassandra distributed database
cluster. Our experiments are conducted with two common
data operations: Filter and Reorder [14]. We also used
a memory intensive workload as “Big Data” operations might
a large memory footprint.
Filter. A Filter case occurs when the output of data
processing results in a subset of the entire data set such as
when a certain pattern is being searched. Filter applications
are common in Geographic Information Systems. In the case
of spatial data processing, a large amount of aerial imaging
data is indexed to provide better satellite image resolution [8].
Reorder. A Reorder case occurs when the input is reordered
in some way resulting in an output dataset that is close to
identical in size to the input, such as sorting of long and fixed
gene sequences [6].

A. Data Preparation
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Fig. 3. The overhead of moving data from Cassandra into the file system
for MapReduce processing. The cost increases with growing data sizes.

Figure 3 shows the performance for taking a snapshot of the
input dataset from Cassandra into the shared file system and
HDFS for processing with MARISSA and Hadoop Streaming
respectively. The cost of moving data from Cassandra servers
expectedly increases with growing data sizes. Moving 256
million input records takes nearly 50 times more than moving
4 million. Figure 3 also shows the disparity for the cost of
Data Preparation for Hadoop Streaming and MARISSA. At
four million records Data Preparation for Hadoop Streaming
is 1.1 times faster than MARISSA and it is over 1.2 times faster
at 64 and 256 million records. This performance variation
of Data Preparation for each system can be explained with
the inefficiencies, laid out in Section III-A1, of the MARISSA
Splitter module which is responsible for creating the data
splits for individual cores of the worker nodes.

B. Data Transformation (MR1)

Figure 4 shows the performance of Data Transformation
which is the stage for converting the snapshot of the target
dataset to the required format using both MARISSA and
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Fig. 4. Cassandra data pre-processing for MapReduce streaming applications.
Hadoop Streaming performance get closer to MARISSA with increasing data
sizes however at 256 million records MARISSA is still 14% faster.

Hadoop Streaming. This figure shows that MARISSA is almost
eight times faster than Hadoop Streaming at four million
input records but with growing data sizes this performance
difference lessens. At 32 million records MARISSA performs
74 percent faster and with the larger data sizes it is faster
by around 14 percent. This performance divergence between
the two frameworks can be explained by the fact that Hadoop
start-up cost is more visible in small data sizes. [10], [12],
[13]. The MARISSA framework is designed as a lightweight
MapReduce platform where the start-up overhead is minimal.

C. Data Processing (MR2)

In the following tests we run the target non-Java applications
on the output of MR1. We show the performance of running
various applications scenarios in stage MR2 with MARISSA
and Hadoop Streaming. In addition, we compare these two
MapReduce streaming pipelines with Hadoop-C* where there
is no Data Preparation and/or Data Transformation steps
necessary and the target applications in MR2 can be run
directly. We first show the performance of MR2 exclusively
with each of the setups (MARISSA, Hadoop Streaming and
Hadoop-C*) and later, in order to show the overall cost, with
the times for Data Preparation, MR1 and MR2 combined.

1) MR2: Read Intensive Applications: Figure 5 shows the
performance for running a “Filter” class of applications [14].
In this class of jobs, the input dataset is immense both in
number of records and the size compared to the output set.
These, observed commonly in MapReduce use cases, are not
necessarily considered to be processing heavy workloads and
considerable portion of the job time is spent on reading the
input. As the output data size is small, the write times have
a minimal effect on job performance [11]. In Figure 5 we
show the relative performance of running such examples of
non-Java executables using MARISSA, Hadoop Streaming and
Hadoop-C*. Figure 5a shows the job times of only the MR2
stage for MARISSA and Hadoop Streaming. While for these
two frameworks, MR2 is run only after the steps of Data
Preparation and MR1, Hadoop-C* does not require any of
these steps since the input records are directly read from the
local Cassandra servers.

As we explain in Sections III-A2 and IV-B, after the Data
Transformation step the input from the database is not only
converted to the required format but also can be remarkably
reduced in size. This reduction in data size causes the MR2
input to be much less than MR1 and in turn helps the
performance in this stage, especially for MARISSA whose
performance advantage is more visible in smaller data sizes.

In Figure 5a, for 64 million input records, MARISSA is over
100 times faster than Hadoop-C* while Hadoop Streaming is
over 10 times faster. Since the input size is greatly reduced,
MARISSA takes advantage of its low-overhead MapReduce
model and is up to 15 times faster than Hadoop Streaming.
This difference in performance between the two streaming
frameworks is less pronounced with growing data since the
performance of Hadoop improves for such sizes [10], [12].

Figure 5b shows the total job time for the same application
in this case including Data Preparation and MR1 stages. Mov-
ing the input dataset out of the database does not just come
with the cost of data movement. The exported data also needs
to be explicitly split for each worker node/core in the cluster,
which is the case in MARISSA, and to be transformed from
the JSON files to a format that is expected by the applications
in MR2. These additional steps contribute to the total job time
significantly. That is, leaving the data in Cassandra servers
and using Hadoop-C* provides better performance even with
the considerable overhead observed when reading the input
from the Cassandra servers [11]. At four million records,
Hadoop-C* is 1.7 times faster than MARISSA while it is 2.6
times faster for 64 million records. The speedups are four
and 2.7 compared to Hadoop Streaming for the same data
sizes. Considering the initial stages, which display a gradually
increasing cost, at four million records MARISSA is 2.5 times
faster than Hadoop Streaming. However, as the data grows to
64 millions it is only 1.05 times. This can be explained with
the performance inefficiencies in the Data Preparation stage
of MARISSA revealed in Figure 3.

These two graphs show that the cost of moving data out
of the database system for additional processing can easily
exceed the overhead observed with database read/write op-
erations. This leads us to the conclusion that if the target
application, which is the application to be run in MR2, or its
variations is not expected to be repeated many times over this
dataset, it is better to leave the input data in the cluster and
use our Hadoop-C* approach in which the input is read by
the Hadoop mappers directly from local Cassandra servers
and passed to the designated applications. On the other hand,
if the interest is on a particular snapshot of the database,
which is downloaded to the file system for processing over
and over again by this class of applications, we recommend
downloading the data to the file system to eliminate the
overhead of database reads on every single MapReduce job.

2) MR2: Write Intensive Applications: Figure 6 shows
the performance of running ”Reorder” and ”Merge” type
operations that are classified as write intensive workloads [11]
and [14]. In this group of applications, the size of the output
is either nearly equal or greater than the input dataset. The
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Fig. 6. Write intensive workloads over Cassandra data using alternative streaming models for non-Java applications. In this set of applications the output
dataset is either equal or greater to the input. In (a), extracting data from Cassandra to the file system and the data pre-processing (MR1) is NOT included
in the total job time while in (b), the time for the former two stages is included. In these graphs we also show the performance for Hadoop-C*-FS since the
large output sizes cause a lot of write operations and where these writes are placed remarkably affects the overall MapReduce performance.

increase in the amount of write operations completed by the
framework notably affects the overall performance. In previous
studies [11], [14], we show that in such cases the write location
becomes a strong determinant of MapReduce performance.
Therefore, in Figure 6 we include two different setups for the
Hadoop native and Cassandra consolidation. As we explained
in Section III-D while Hadoop-C* uses Cassandra servers for
the input source and output destination, Hadoop-C*-FS reads
the input from the local database servers but writes the output
to the file system shared by the workers.

In Figure 6a we display the performance disparity of
running such set of applications under four different setups
without including the time spent in the Data Preparation and
MR1 phases. This figure shows that the overhead of using a
Cassandra cluster for write intensive workloads comes with
a cost which increases for growing datasets. At four million
input records this application is nearly 40 and three times
faster with MARISSA and Hadoop Streaming respectively, than

Hadoop-C*. While the former two approaches are nearly 26
and four times faster than the alternative approach, Hadoop-
C*-FS. At 64 million records MARISSA is almost 88 times
faster than Hadoop-C* while Hadoop Streaming is nearly
ten times faster. Moreover, MARISSA and Hadoop Streaming
perform almost 44 and five times better than Hadoop-C*-FS
at the same data point. While at four million input records
Hadoop-C*-FS is 1.6 times faster than Hadoop-C*, at 64
million it manages to complete the same job over two times
faster than Hadoop-C* by directing the write operations to
the file system instead of the underlying database cluster.
Comparing MARISSA to Hadoop Streaming on this graph we
see that it is nearly eight times faster at four million input
records and at 64 million is faster by a factor of nine.

In Figure 6b we include the times for Data Preparation and
MR1 to the total job time and show the relative performances
under four different scenarios. Comparing the total times we
see that while at four million input records, MARISSA is



1.3 times faster than Hadoop-C*, the latter is over 2 times
faster than Hadoop Streaming. However increasing the data
size to 64 million changes this picture dramatically. At this
size, MARISSA keeps its advantage over Hadoop-C* staying
1.3 times faster and Hadoop Streaming takes the lead over
Hadoop-C* and becomes almost 1.2 times faster. Although
Cassandra is write optimized [16], it still creates a perfor-
mance bottleneck when used with Hadoop for write intensive
workloads. This picture alters even more as we compare the
total times for MARISSA and Hadoop Streaming with Hadoop-
C*-FS which is still more efficient than the former two with
increasing data sizes. At four million input records Hadoop-
C*-FS is nearly 1.2 times and at 64 million over 1.5 times
faster than MARISSA. On the other hand, it is roughly 3.3
times faster than Hadoop Streaming at four million records
and over 1.6 times for 64 million. Although the noticeable
Hadoop startup overhead contributes to the speedup we see
at 4 million input records, the increase of the output size
with the growing input causes Hadoop-C*-FS to stay more
efficient by using the file system for output placement. Figure
6b presents that while at four million input records MARISSA
is nearly 2.9 times faster than Hadoop Streaming, at 64 million
records, it performs only 1.1 times better. We explain this with
the inefficiencies in the Data Preparation phase of MARISSA
where the data growth escalates the split time.

3) MR2: Memory Intensive Applications: In Figure 7 we
show the performance of a MapReduce job for running
memory intensive non-Java executables over Cassandra data.
This class of applications show high memory demands and
in this case the application creates large data structures in
memory for each record that is processed. Figure 7a shows
the performance of such applications only for the MR2 stage,
the time for Data Preparation and Data Transformation is
not included. This graph shows that MARISSA is over five
times faster than Hadoop Streaming for four million input
records and as the data size increases up to 256 million, it is
around 1.5 times faster. This figure also presents that MARISSA
is more than eight times faster than Hadoop-C* with the
increasing data sizes. Hadoop Streaming, on the other hand,
is 1.5 times faster at four million records and over five times
faster at 256 million records than Hadoop-C*. As we explain
in Section III-D each worker is not only running TaskTrackers
and DataNodes but also Cassandra servers that feed data
into the MapReduce framework for processing. In such cases,
worker nodes are under the memory demands of not only the
MR2 applications but also Hadoop processes and Cassandra
servers using in-memory data structures like Memtables and
other cached data [11]. In Figure 7b, the performance data
for Data Preparation and Data Transformation are included
in the total times displayed. Here, again, note that when we
introduce the time of data migration from the database servers
to the file system and pre-processing of that data, Hadoop-C*
proves to be a better option as at 256 million it is over two
times faster than both MARISSA and Hadoop Streaming.

V. SUMMARY OF EXPERIMENTS

Our findings can be summarized as following:
• Data Preparation for Hadoop Streaming is nearly 1.3

times faster than MARISSA at 256 million input records
as the former creates the splits more efficiently. This
performance gap is expected to grow as the number of
records rises from hundreds of millions to billions.

• Based on the expected data format, the Data Transforma-
tion stage can lead to great reduction in data size. This
reduction in data size helps the performance of stage MR2
especially for MARISSA whose performance advantage is
more visible in smaller data sizes.

• Data Transformation allows users to take a vertical subset
of the input database in case processing is only needed
to be performed on certain columns.

• Data Transformation stage with growing input is nearly
20 percent faster with MARISSA than Hadoop Streaming.

• Data Processing for read intensive applications with
MARISSA is nearly 1.5 times faster than Hadoop Stream-
ing up to 256 million records.

• When only the Data Processing stage is considered,
MARISSA and Hadoop Streaming are over ten times
faster than Hadoop-C* under read intensive workloads.
However, when the cost of initial steps required for
the former two are added, Hadoop-C* becomes nearly
three times faster even with the considerable overhead
introduced by database reads [11].

• Under write intensive workloads, MARISSA has a con-
siderable advantage over Hadoop Streaming as HDFS
struggles under heavy write load [14].

VI. RELATED WORK

There are various examples of using NoSQL technologies
with MapReduce. DataStax [4] offers a “Big Data” system
built on top of Cassandra which also supports Apache Hadoop,
Hive [24] and Pig [17]. Hive is an open source project [24]
built on top of Hadoop to offer querying support over the
datasets residing in distributed file systems like HDFS. By
contributing read only extensions to the Project Voldemort [5].
Sumbaly et al. [21] aim to provide better batch computing
performance when used with Hadoop. Silbertein et al. [20],
on the other hand, enhance the bulk insertions of PNUTS [9]
in order to improve performance with batched workloads. Sun
et al. [22] show processing fast growing RDF datasets, indexed
and stored in an HBase cluster, with Hadoop. Ball et al. [7]
present Data Aggregation System (DAS) to collect and query
relational and non-relational datasets through a single inter-
face. DAS uses MongoDB for various caching and logging
operations. Taylor et al. [23] combine Hadoop and HBase
for Bioinformatics to provide a scalable data management
and processing platform. They show examples of running
Bioinformatics applications like BLAST [15] with Hadoop
Streaming but do not provide a detailed study of cases when
the target data is stored in the distributed database. OConnor
et al. propose SeqWare Query Engine [18], to provide a
querying platform for genome data. They use HBase [2] as



4 8 16 32 64 128 256

Number of Records (Million)

Pr
oc

es
si

ng
 T

im
e 

(s
ec

on
ds

)

0
20

0
40

0
60

0
80

0
10

00

MR2: Data Processing MARISSA
MR2: Data Processing Hadoop−Streaming
Hadoop−C*

(a) Memory intensive NOT including Data Preparation and MR1

4 8 16 32 64 128 256

Number of Records (Million)

Pr
oc

es
si

ng
 T

im
e 

(s
ec

on
ds

)

0
50

0
10

00
15

00
20

00
25

00

MARISSA
Hadoop−Streaming
Hadoop−C*

(b) Memory intensive including Data Preparation and MR1

Fig. 7. Running memory intensive workloads over Cassandra data using alternative streaming models for non-Java applications. In (a), the time spend on
downloading the data and pre-processing is not included while in (b) they both are to show the total job span.

a backend storage and use a web query interface to allow
access to the datasets. They use the MapReduce model on
such platforms and provide a scalable storage, querying and
processing framework.

VII. CONCLUSION

In order to fully exploit ”Big Data” sets, we need a software
pipeline that can effectively combine the use of data stores
such as Cassandra with scalable distributed programming
models such as MapReduce. In this paper we show two dif-
ferent approaches, one working with the distributed Cassandra
cluster directly to perform MapReduce operations and the
other exporting the dataset from the database servers to the
file system for further processing.
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