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Abstract—Insiders usually cause significant losses to organi-
zations and are hard to detect. Currently, various approaches
have been proposed to achieve insider threat detection based
on analyzing the audit data that record information of the
employee’s activity type and time. However, the existing ap-
proaches usually focus on modeling the users’ activity types but
do not consider the activity time information. In this paper, we
propose a hierarchical neural temporal point process model by
combining the temporal point processes and recurrent neural
networks for insider threat detection. Our model is capable of
capturing a general nonlinear dependency over the history of all
activities by the two-level structure that effectively models activity
times, activity types, session durations, and session intervals
information. Experimental results on two datasets demonstrate
that our model outperforms the models that only consider
information of the activity types or time alone.

Index Terms—insider threat detection, temporal point process,
hierarchical recurrent neural network

I. INTRODUCTION

An insider threat is a malicious threat from people within
the organization. It may involve intentional fraud, the theft
of confidential or commercially valuable information, or the
sabotage of computer systems. The subtle and dynamic nature
of insider threats makes detection extremely difficult. The
2018 U.S. State of Cybercrime Survey indicates that 25%
of the cyberattacks are committed by insiders, and 30% of
respondents indicate incidents caused by insider attacks are
more costly or damaging than outsider attacks [1].

Various insider threat detection approaches have been pro-
posed [2]–[8]. However, most of the existing approaches
only focus on operation type (web visit, send email, etc)
information and do not consider the crucial activity time
information. In this paper, we study how to develop a detection
model that captures both activity time and type information.
In literature, the marked temporal point process (MTPP) is a
general mathematical framework to model the event time and
type information of a sequence. It has been widely used for
predicting the earthquakes and aftershocks [9]. The traditional
MTPP models make assumptions about how the events occur,
which may be violated in reality. Recently, researchers [10],
[11] proposed to combine the temporal point process with
recurrent neural networks (RNNs). Since the neural network
models do not need to make assumptions about the data, the
RNN-based MTPP models usually achieve better performance
than the traditional MTPP models.

However, one challenge of applying RNN-based temporal
point processes in insider threat detection is it cannot model

the time information in multiple time scales. For example, user
activities are often grouped into sessions that are separated
by operations like “LogOn” and “LogOff”. The dynamics of
activities within sessions are different from the dynamics of
sessions. To this end, we propose a hierarchical RNN-based
temporal point process model that is able to capture both the
intra-session and inter-session time information. Our model
contains two layers of long short term memory networks
(LSTM) [12], which are variants of the traditional RNN. The
lower-level LSTM captures the activity time and types in the
intra-session level, while the upper-level LSTM captures the
time length information in the inter-session level. In particular,
we adopt a sequence to sequence model in the lower-level
LSTM, which is trained to predict the next session given the
previous session. The upper-level LSTM takes the first and last
hidden states from the encoder of the lower-level LSTM as
inputs to predict the interval of two sessions and the duration
of next session. By training the proposed hierarchical model
with the activity sequences generated by normal users, the
model can predict the activity time and types in the next
session by leveraging the lower-level sequence to sequence
model, the time interval between two consecutive sessions
and the session duration time from the upper-level LSTM.
In general, we expect our model trained by normal users can
predict the normal session with high accuracy. If there is a
significant difference between the predicted session and the
observed session, the observed session may contain malicious
activities from insiders.

Our work makes the following contributions: (1) we develop
an insider threat detection model that uses both activity type
and time information; (2) we propose a hierarchical neural
temporal point process model that can effectively capture two
time-scale information; (3) the experiments on two datasets
demonstrate that combining the activity type and multi-scale
time information achieves the best performance for insider
threat detection.

II. RELATED WORK

A. Insider Threat Detection

Much of the research work on the characterization of
insiders. Based on the intention of the attack, there are three
types of insiders, i.e., traitors who misuse his privileges to
commit malicious activities, masqueraders who conduct illegal
actions on behalf of legitimate employees of an institute, and
unintentional perpetrators who unintentionally make mistakes
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[13]. Based on the malicious activities conducted by the
insiders, the insider threats can also be categorized into three
types, IT sabotage which indicate to directly uses IT to
make harm to an institute, theft of intellectual property which
indicates to steal information from the institute, fraud which
indicates unauthorized modification, addition, or deletion of
data [14].

It is well accepted that the insiders’ behaviors are different
from the behaviors of legitimate employees. Hence, analyzing
the employees’ behaviors via the audit data plays an important
role in detecting insiders. In general, there are three types of
data sources, host-based, network-based, and context data. The
host-based data record activities of employees on their own
computers, such as command lines, mouse operations and etc.
The network-based data indicate the logs recorded by network
equipment such as routers, switches, firewalls and etc. The
context data indicate the data from an employee directory or
psychological data.

Given different types of data sources, various insider threat
detection algorithms have been proposed. For example, some
researchers propose to adopt decoy documents or honeypots to
lure and identify the insiders [15]. Meanwhile, one common
scenario is to consider the insider threat detection as an
anomaly detection task and adopt the widely-used anomaly
detection approaches, e.g., one-class SVM, to detect the insider
threats [6]. Moreover, some approaches treat the employee’s
actions over a period of time on a computer as a sequence. The
sequences that are frequently observed are normal behavior,
while the sequences that are seldom observed are abnormal
behavior that could be from insiders. Research in [3] adopts
Hidden Markov Models (HMMs) to learn the behaviors of
normal employees and then predict the probability of a given
sequence. An employee activity sequence with low probability
predicted by HMMS could indicate an abnormal sequence.
Research in [4] evaluates an insider threat detection workflow
using supervised and unsupervised learning algorithms, includ-
ing Self Organizing Maps (SOM), Hidden Markov Models
(HMM), and Decision Trees (DT). However, the existing
approaches do not model the activity time information. In
this work, we aim to capture both the activity time and type
information for insider threat detection.

B. Temporal Point Process

A temporal point process (TPP) is a stochastic process
composed of a time series of events that occur in continuous
time [16]. The temporal point process is widely used for
modeling the sequence data with time information, such as
health-care analysis, earthquakes and aftershocks modeling
and social network analysis [9], [17], [18]. The traditional
methods of temporal point processes usually make parametric
assumptions about how the observed events are generated,
e.g., by Poisson processes or self-exciting point processes. If
the data do not follow the prior knowledge, the parametric
point processes may have poor performance. To address this
problem, researchers propose to learn a general representation
of the dynamic data based on neural networks without assum-

ing parametric forms [10], [11]. Those models are trained by
maximizing log likelihood. Recently, there are also emerging
works incorporating the objective function from generative
adversarial network [19], [20] or reinforcement learning [21]
to further improve the model performance. However, the
current TPP models only focus on one granularity of time.
In our scenario, we propose a hierarchical RNN framework to
model the multi-scale time information.

III. PRELIMINARY

A. Marked Temporal Point Process

Marked temporal point process is to model the ob-
served random event patterns along time. A typical temporal
point process is represented as an event sequence S =
{e1, · · · , ej , · · · , eT }. Each event ej = (tj , aj) is associated
with an activity type aj ∈ A = {1, · · · , A} and an occurred
time tj ∈ [0, T ]. Let f∗((tj , aj)) = f((tj , aj)|Htj−1

) be
the conditional density function of the event aj happening
at time tj given the history events up to time tj−1, where
Htj−1 = {(tj′ , aj′)|tj′ <= tj−1, aj′ ∈ A} as the collected
historical events before time tj . Throughout this paper, we use
∗ notation to denote that the function depends on the history.
The joint likelihood of the observed sequence S is:

f
(
{(tj , aj)}|S|j=1

)
=

|S|∏
j=1

f((tj , aj)|Htj−1
) =

|S|∏
j=1

f∗((tj , aj)).

(1)
There are different forms of f∗((tj , aj)). However, for math-
ematical simplicity, it usually assumes the times tj and mark
aj are conditionally independent given the history Htj−1 ,
i.e., f∗((tj , aj)) = f∗(tj)f

∗(aj), where f∗(aj) models the
distribution of event types; f∗(tj) is the conditional density
of the event occurring at time tj given the timing sequences
of past events [10].

A temporal point process can be characterized by the
conditional intensity function, which indicates the expected
instantaneous rate of future events at time t:

λ∗(t) = λ(t|Htj−1
) = lim

dt→0

E[N([t, t+ dt])|Htj−1
]

dt
, (2)

where N([t, t + dt]) indicates the number of events occurred
in a time interval dt. Given the conditional density function
f and the corresponding cumulative distribution F at time t,
the intensity function can be also defined as:

λ∗(t) =
f(t|Htj−1)

S(t|Htj−1
)

=
f(t|Htj−1)

1− F (t|Htj−1
)
, (3)

where S(t|Htj−1
) = exp(−

∫ t

tj−1
λ∗(τ)dτ) is the survival

function that indicates the probability that no new event has
ever happened up to time t since tj−1. Then, the conditional
density function can be described as:

f∗(t) = f(t|Htj−1
) = λ∗(t)exp

(
−
∫ t

tj−1

λ∗(τ)dτ
)
. (4)

Particular functional forms of the conditional intensity func-
tion λ∗(t) for Poisson process, Hawkes process, self-correcting



process, and autoregressive conditional duration process have
been widely studied [16]. For example, a Hawkes process
captures the self-excitation phenomenon among events [22].
The conditional intensity function of a Hawkes process is
defined as:

λ∗(t) = λ0 +
∑

tj∈Ht

γ(t, tj), (5)

where λ0 > 0 is the base intensity that indicates the intensity
of events triggered by external signals instead of previous
events; γ(t, tj) is the triggering kernel which is usually pre-
defined as γ(t, tj) = exp(β(t − tj)). The Hawkes process
models the self-excitation phenomenon that the arrival of an
event increases the conditional intensity of observing events in
the near future. Recently, the Hawkes process is widely used
to model the information diffusion on online social networks.

However, these different parameterization models make
different assumptions about the latent dynamics that is never
known in practice. For example, the self-excitation assumption
of the Hawkes process may not be held in many scenarios. The
model misspecification can seriously degrade the predictive
performance.

B. Sequence-to-Sequence Model
In general, a sequence-to-sequence (seq2seq) model is used

to convert sequences from one domain to sequences in another
domain. The seq2seq consists of two components, one encoder
and one decoder. Both encoder and decoder are long short-
term memory (LSTM) models and can model the long-term
dependency of sequences. The seq2seq model is able to encode
a variable-length input to a fixed-length vector and further
decode the vector back to a variable-length output. The length
of the output sequence could be different from that of the
input sequence. The goal of the seq2seq model is to estimate
the conditional probability P (y1, · · · , yT ′ |x1, · · · , xT ), where
(x1, · · · , xT ) is an input sequence and (y1, · · · , yT ′) is the
corresponding output sequence. The encoder encodes the
input sequence to a hidden representation with an LSTM
model hen

j = LSTMen(xj ,h
en
j−1) where xj is the up-to-date

input, hen
j−1 is the previous hidden state, and hen

j is the learned
current hidden state. The last hidden state hen

T captures the
information of the whole input sequence. The decoder com-
putes the conditional probability P (y1, · · · , yT ′ |x1, · · · , xT )
by another LSTM model whose initial hidden state is set as
hen
T :

P (y1, · · · , yT ′ |x1, · · · , xT ) =

T ′∏
j=1

P (yj |hen
T , y1, · · · , yj−1).

(6)
In seq2seq model, P (yj |hen

T , y1, · · · , yj−1) = g(hde
j ), where

hde
j = LSTMde(yj−1,h

de
j−1) is the j-th hidden vector of the

decoder; g(·) is usually a softmax function.

IV. INSIDER THREAT DETECTION

A. Framework
We model a user’s behavior as a sequence of activities

that can be extracted from various types of raw data, such

as user logins, emails, Web browsing, and FTP. Formally,
we model the up-to-date activities of a user as sequence
U = {S1, · · · Sk, · · · } where Sk = {ek1 , · · · , ekj , · · · , ekTk

}
indicates his k-th activity session. For example, each session in
our scenario is a sequence of activities starting with “LogOn”
and ending with “LogOff”. ekj = (tkj , a

k
j ) denotes the j-th

activity in the user’s k-th session and contains activity type akj
and occurred time tkj . We define dkj = tkj − tkj−1 as the inter-
activity duration between activities akj and akj−1, dk = tkTk

−tk1
as the length time of the k-th session, and ∆k = tk1 − tk−1

Tk−1

as the time interval between the (k− 1)-th and k-th sessions.
Note that tk−1

Tk−1
is the occurred time of the last activity in the

(k − 1)-th session.
The goal of learning in our threat detection is to predict

whether a new session Sk = {ek1 , · · · , ekj , · · · , ekTk
} is normal

or fraudulent. To address the challenge that there are often no
or very few records of known insider attacks for training our
model, we propose a generative model that models normal user
behaviors from a training dataset consisting of only sequences
of normal users. The learned model is then used to calculate
the fraudulent score of the new session Sk. We quantify the
fraudulence of Sk from two perspectives, activity information
(including both type and time) within sessions, and session
time information (i.e., when a session starts and ends). For
example, a user who foresees his potential layoff may have
activities of uploading documents to Dropbox and visiting
job-searching websites although he may try to hide these
abnormal activities in multiple sessions; he may have “LogOn”
and “LogOff” times different from his normal sessions as he
may become less punctual or may have more sessions during
weekends or nights, resulting different session durations and
intervals between sessions. Moreover, when a user’s account
is compromised, activity and session information from the
attacker will also be different even if the attacker tries to mimic
the normal user’s behaviors.

We develop a unified hierarchical model capable of cap-
turing a general nonlinear dependency over the history of all
activities. Our detection model does not rely on any predefined
signatures and instead use deep learning models to capture user
behaviors reflected in raw data. Specifically, our hierarchical
model learns the user behaviors in two time scales, intra-
session level and inter-session level. For the intra-session level,
we adopt the seq2seq model to predict Ŝk based on the
previous Sk−1 and use the marked temporal point process
model to capture the dynamic difference of activities. Note
that the number of activities of the predicted session Ŝk could
be different from that of the previous Sk−1 as well as the true
Sk. For the inter-session level, we aim to model the session
interval ∆k = tk1−tk−1

Tk−1
and the session duration dk = tkTk

−tk1
of the k-th session.

The whole framework of predicting future events with two
time scales is shown in Figure 1. We do not assume any
specific parametric form of the conditional intensity function.
Instead, we follow [10] to seek to learn a general repre-
sentation to approximate the unknown dependency structure



Figure 1: The framework for sequence generation with two time scales. The lower-level LSTM captures event patterns with
the time and mark pairs in a session. The upper-level LSTM aims to predict the duration of sessions and inter-sessions.

over the history. We also emphasize that the neural temporal
point processes of two levels are connected in our framework.
The upper-level LSTM takes the first and last hidden states
from the encoder of the lower-level LSTM as inputs to
predict the interval of two sessions and the session duration.
This connection guarantees the upper-level LSTM incorporates
activity type information in its modeling. For insider threat
detection, since our model is trained by benign sessions,
the predicted session Ŝk would be close to the observed
Sk when Sk is normal, and different from Sk when Sk is
abnormal. In Session IV-D, we will present details about how
to derive fraudulent score by comparing (Ŝk, d̂k, ∆̂k) with
(Sk, dk,∆k), where •̂ indicates the predicted value.

B. Intra-Session Insider Threat Detection

In this work, we propose to use the seq2seq model to
estimate the joint likelihood of k-th session given the (k−1)-
th session. In particular, the encoder of the seq2seq model is
to encode the activity time and type information at (k− 1)-th
session to a hidden representation. The decoder is to model
the activity time interval dkj+1 and type akj+1 information at
k-th session given the history.

Encoder: To map the (k − 1)-th session to a hidden
representation, the encoder first maps each activity occurring
at time tk−1

j with type ak−1
j to an embedding vector xenk−1

j :

x
enk−1

j = wtdk−1
j + Wemak−1

j , (7)

where dk−1
j is the inter-activity duration between ak−1

j and
ak−1
j−1 ; wt is a time-mapping parameter; Wem is an activity

embedding matrix; ak−1
j is a one-hot vector of the activity

type ak−1
j . Then, by taking the entire sequence of (k − 1)-th

session as inputs to the encoder LSTM, the encoder projects
the (k − 1)-th session to a hidden representation h

enk−1

Tk−1
.

Decoder: The decoder is trained to predict the pairs of
activity type and time at the k-th session given the information

of (k− 1)-th session. To predict the activity type information,
given the hidden state of the decoder hdek

j , the probability
of the next activity having type value a can be derived by a
softmax function:

P (akj+1 = a|hdek
j ) =

exp(ws
ah

dek
j )∑A

a′=1 exp(w
s
a′h

dek
j )

, (8)

where ws
a is the a-th row of the weight matrix Ws in the

softmax function.
To predict the activity time information, we adopt the condi-

tional density function defined in Equation 4. First, inspired by
[10], we derive the LSTM-based conditional intensity function
λ∗(t) as:

λ∗(t) = exp(vhdek
j + ut(t− tkj ) + b), (9)

where the exponential function is deployed to ensure the
intensity function is always positive; v is a weight vector; ut

and b are scalars. Then, we can derive the conditional density
function given the history until time tkj :

f∗(t) = λ∗(t)(

∫ t

tkj

λ∗(τ)dτ)

= exp
(
vthdek

j + ut(t− tkj ) + bt +
1

u
exp(vthdek

j

+ bt)− 1

u
exp(vthdek

j + ut(t− tkj ) + bt)
)
.

(10)

Hence, given the observed activity time information, we can
calculate the conditional density function of the time interval
between two consecutive activities dkj+1 = tkj+1 − tkj at k-th
session:

f∗(dkj+1) = f(dkj+1|h
dek
j ). (11)

Since the lower-level LSTM is to model the time interval
dkj+1 and type akj+1 information, given a collection of activity
sessions from benign employees, we combine the likelihood



functions of the event type (Equation 8) and time (Equation
11) to have the negative joint log-likelihood of the observation
sessions:

La = −
M∑
k=1

Tk∑
j=1

(
logP (akj+1|h

dek
j ) + log f∗(dkj+1)

)
, (12)

where M is the total number of sessions in the training dataset;
Tk is the number of activities in a session. The lower-level
LSTM along with the decoder LSTM is trained by minimizing
the negative log-likelihood shown in Equation 12.

When the model is deployed for detection, to obtain the
predicted activity type âkj+1, we simply choose the type with
the largest probability P (a|hdek

j ) (calculated by Equation 8):

âkj+1 = argmax
a∈A

P (a|hdek
j ). (13)

We further calculate the expected inter-activity duration be-
tween (j + 1)-th and j-th activities d̂kj+1 = E(tkj ):

d̂kj+1 =

∫ ∞
tkj

tf∗(t)dt. (14)

The difference between d̂kj+1 and the observed dkj+1 will be
used to calculate the fraudulent score in terms of the timing
information of intra-session activities.

C. Inter-Session Insider Threat Detection

The inter-session duration is crucial for insider threat detec-
tion. To capture such information, we further incorporate an
upper-level LSTM into the framework, which focuses on mod-
eling the inter-session behaviors of employees. Specifically,
the upper-level LSTM is trained to predict the inter-session du-
ration between k-th and (k−1)-th sessions (∆k = tk1− tk−1

Tk−1
)

and the k-th session duration (dk = tkTk
− tk1).

To predict the inter-session duration ∆k, the input of the
upper-level LSTM is from the last hidden state h

enk−1

Tk−1
of (k−

1)-th session from the lower-level LSTM as shown in Equation
15, while to predict the k-th session duration dk, the input of
the upper-level LSTM is from the first hidden state henk

1 of
k-th session as shown in Equation 16.

xk−1
Tk−1

= Uh
enk−1

Tk−1
, (15)

xk
1 = Uhenk

1 , (16)

where U is an input weight matrix for the upper-level LSTM.
Then, we can get the hidden states (hk−1

Tk−1
and hk

1) of the
upper-level sequence based on an LSTM model. Finally, the
conditional density functions of the inter-session duration ∆k

and session duration dk are:

f∗s (∆k) = f(∆k|hk−1
Tk−1

), (17)

f∗s (dk) = f(dk|hk
1), (18)

where f∗s (∆k) and f∗s (dk) can be calculated based on Equa-
tion 10.

To train the upper-level LSTM, the negative log-likelihood
of inter-session sequences can be defined as:

Ls = −
M ′∑
m=1

Km∑
k=1

(
log f∗s (∆k

m) + log f∗s (dkm)
)
, (19)

where M ′ is the total number of inter-session level sequences
in the training dataset; K indicates the number of sessions
in an inter-session level sequence. In our experiments, we
use the upper-level LSTM to model the employee sessions
in a week. Then, M ′ indicates the total number of weeks in
the training dataset, and K is the number of sessions in a
week. The upper-level LSTM is trained by minimizing the
negative log-likelihood shown in Equation 19. After training,
the upper-level LSTM can capture the patterns of the inter-
session duration and session duration.

When the model is deployed for detection, we calculate
the predicted inter-session duration between k-th and (k− 1)-
th sessions ∆̂k and the k-th session duration d̂k, shown in
Equations 20.

∆̂k =

∫ ∞
tk−1
T

tf∗s (t), d̂k =

∫ ∞
tk1

tf∗s (t)dt. (20)

The difference between ∆̂k (d̂k) and the observed ∆k (dk)
will be used to calculate the fraudulent score in terms of the
session timing information.

D. Fraudulent Score

After obtaining the predicted session, we compare the gen-
erated times and types in a session with the observed session,
respectively. For the activity types, we adopt the Bilingual
Evaluation Understudy (BLEU) [23] score to evaluate the
difference between the observed session and generated session.
The BLEU metric was originally used for evaluating the
similarity between a generated text and a reference text, with
values closer to 1 representing more similar texts. BLEU is
derived by counting matching n-grams in the generated text
to n-grams in the reference text and insensitive to the word
order. Hence, BLEU is suitable for evaluating the generated
sequences and the observed sequences. We define the fraudu-
lent score in terms of intra-session activity type as:

scorea = 1−BLEU(Sk
a , Ŝ

k
a), (21)

where Sk
a indicates the observed activity types in k-th session

while Ŝk
a indicates the predicted session. If scorea is high, it

means the observed session is a potentially malicious session
in terms of session activity types.

For the activity time, as shown in Equation 22, we define
the fraudulent score in terms of intra-session activity time by
computing the mean absolute error (MAE) of the predicted
time of each activity with the observed occurring time:

scoret =
1

|S|

|S|∑
j=1

|dkj − d̂kj |. (22)

Since the upper-level LSTM takes each session’s first and
last hidden states as inputs to predict the time lengths of



sessions and inter-sessions, we can further derive the time
scores by comparing the predicted time lengths with the
observed ones. We define the fraudulent score in terms of
inter-session duration as:

score∆ = |∆̂k −∆k|. (23)

Similarly, we define the fraudulent score in terms of session
duration as:

scored = |d̂k − dk|. (24)

Note that although d̂k can be derived based on all the predicted
activity time from lower-level LSTM, the error usually is high
due to the accumulated error over the whole sequence. Hence,
we use the upper-level LSTM to get the session time length.
Finally, by combining Equations 21, 22, 23 and 24, we define
the total fraudulent score (FS) of a session as:

FS = α1scorea + α2scoret + α3scored + α4score∆, (25)

where α1, α2, α3, α4 are hyper-parameters, which can be set
based on the performance of insider threat detection via using
each score alone.

V. EXPERIMENTS

A. Experiment Setup

Dataset. We adopt the CERT Insider Threat Dataset [24],
which is the only comprehensive dataset publicly available
for evaluating the insider threat detection. This dataset consists
of five log files that record the computer-based activities for
all employees, including logon.csv that records the logon and
logoff operations of all employees, email.csv that records all
the email operations (send or receive), http.csv that records
all the web browsing (visit, download, or upload) operations,
file.csv that records activities (open, write, copy or delete)
involving a removable media device, and decive.csv that
records the usage of a thumb drive (connect or disconnect).
Table II shows the major activity types recorded in each file.
The CERT dataset also has the ground truth that indicates
the malicious activities committed by insiders. We use the
latest version (r6.2) of CERT dataset that contains 3995 benign
employees and 5 insiders.

We join all the log files, separate them by each employee,
and then sort the activities of each employee based on the
recorded timestamps. We randomly select 2000 benign em-
ployees as the training dataset and another 500 employees as
the testing dataset. The test dataset includes all sessions from
five insiders. The statistics of the training and testing datasets
is shown in Table I. Based on the activities recorded in the
log files, we extract 19 activity types shown in Table II. The
activity types are designed to indicate the malicious activities.
Baselines. We compare our model with two one-class classi-
fiers: 1) One-class SVM (OCSVM) [25] adopts support vector
machine to learn a decision hypersphere around the positive
data, and considers samples located outside this hypersphere
as anomalies; 2) Isolation Forest (iForest) [26] detects the
anomalies with short average path lengths on a set of trees.
For both baselines, we consider each activity type as an input

Table I: Statistics of Training and Testing Datasets

Training Dataset Testing Dataset
# of Employees 2000 500
# of Sessions 1039805 142600
# of Insiders 0 5
# of Malicious Sessions 0 68

Table II: Operation Types Recorded in Log Files
Files Operation Types

logon.csv

Weekday Logon (employee logs on a computer on a weekday at work hours)
Afterhour Weekday Logon (employee logs on a computer on a weekday after work hours)
Weekend Logon (employees logs on at weekends)
Logoff (employee logs off a computer)

email.csv

Send Internal Email (employee sends an internal email)
Send External Email (employee sends an external email)
View Internal Email (employee views an internal email)
View external Email (employee views an external email)

http.csv
WWW Visit (employee visits a website)
WWW Download (employee downloads files from a website)
WWW Upload (employee uploads files to a website)

device.csv

Weekday Device Connect (employee connects a device on a weekday at work hours)
Afterhour Weekday Device Connect (employee connects a device on a weekday after hours)
Weekend Device Connect (employee connects a device at weekends)
Disconnect Device (employee disconnects a device)

file.csv

Open doc/jpg/txt/zip File (employee opens a doc/jpg/txt/zip file)
Copy doc/jpg/txt/zip File (employee copies a doc/jpg/txt/zip file)
Write doc/jpg/txt/zip File (employee writes a doc/jpg/txt/zip file)
Delete doc/jpg/txt/zip File (employee deletes a doc/jpg/txt/zip file)

feature and the feature value is the number of activities of
the corresponding type in a session. In this paper, we do
not compare with other RNN based insider threat detection
methods (e.g., [7]) as these methods were designed to detect
the insiders or predict the days that contain insider threat
activities.
Hyperparameters. We map the extracted activity types to the
type embeddings. The dimension of the type embeddings is
50. The dimension of the LSTM models is 100. We adopt
Adam [27] as the stochastic optimization method to update the
parameters of the framework. When training the upper-level
LSTM by Equation 19, we fix the parameters in the lower-
level LSTM and only update the parameters in the upper-level
LSTM.

B. Experiment Results

We aim to detect all the 68 malicious sessions from the
totally 142,600 sessions in the testing set. Figure 2 shows the
receiver operating characteristic (ROC) curves of our model
for insider threat detection by leveraging various fraudulent
scores. By using each fraudulent score separately, we can

Figure 2: ROC curve of malicious session detection using
various fraudulent scores



Figure 3: ROC curve of malicious session detection using
various approaches

notice that the scorea derived from intra-session activity types
achieves the highest area under cure (AUC) score, which
indicates the activity types of malicious sessions are different
from the normal sessions. Meanwhile, the session duration
time and inter-session duration time also make positive contri-
butions to the malicious session detection. The scored derived
from the session duration time and score∆ derived from the
inter-session duration time achieve good performance with
AUC=0.6851 and 0.7073, respectively, which indicates the
duration of malicious sessions and inter-sessions are usually
different from those of normal sessions. We also notice that
the scoret based on the inter-activity activity time information
does not help much on insider threat detection. The AUC
derived from scoret is 0.3021. After examining the data,
we find that there is no much difference in terms of inter-
activity time information between malicious sessions and
normal sessions. Since adopting scoret does not achieve
reasonable performance in the CERT Insider Threat dataset,
we set α2 = 0 when deriving the total insider threat detection
FS. As a result, our detection model using the total insider
threat detection FS, which combines all the intra- and inter-
session information, achieves the best performance with the
AUC=0.9033 when the hyper-parameters in Equation 25 are
α1 = 1, α2 = 0, α3 = 1, α4 = 1.

Figure 3 further shows the ROC curves of our model and
two baselines. We can observe that our model achieves better
performance than baselines in terms of AUC score. Especially,
we can notice that when our model only adopts the activity
type information (scorea) for malicious session detection,
our model is slightly better than baselines in terms of AUC.
With further combining the activity time and type information,
our model significantly outperforms the baselines with the
AUC=0.9033.

C. Vandal Detection

Dataset. Due to the limitation of the CERT dataset where
the inter-activity duration times are randomly generated, the
inter-activity time in the intra-session level does not make
contributions to the insider threat detection. To further show
the advantage of incorporating activity time information, we
apply our model for detecting vandals on Wikipedia. Vandals

Figure 4: ROC curve of vandalism session detection using
various fraudulent scores

can be considered as insiders in the community of Wikipedia
contributors. The study has shown that the behaviors of
vandals and benign users are different in terms of edit time,
e.g., vandals make faster edits than benign users [28]. Hence,
we expect that using the inter-activity time information can
boost the performance of vandal detection.

We conduct our evaluation on the UMDWikipedia dataset
[28]. This dataset contains information of around 770K edits
from Jan 2013 to July 2014 (19 months) with 17105 vandals
and 17105 benign users. Each user edits a sequence of
Wikipedia pages. We adopt half of the benign users for training
and the other half of the benign users and all the vandals for
testing. Since user activities on Wikipedia do not have explicit
indicators, such as LogON or LogOff, to split the user activity
sequence into sessions, we consider user activities in a day
as a user session. As a result, the session duration is always
24hrs, and the inter-session duration is 0. Therefore, in this
experiment, we focus on vandalism session detection with only
using information from the intra-session level and adopt the
lower-level LSTM shown in Figure 1 accordingly. Note that
we filter out all the sessions with number of activities less
than 5. The seq2seq model takes a feature vector as an input
and predicts the next edit time and type. In this experiment,
we consider the activity type as whether the current edit will
be reverted or not. The feature vector of the user’s t-th edit is
composed by: (1) whether or not the user edited on a meta-
page; (2) whether or not the user consecutively edited the
pages less than 1 minute, 3 minutes, or 5 minutes; (3) whether
or not the user’s current edit page had been edited before.
Experiment Results. From Figure 4, we can observe that
only using the inter-activity time information can achieve
surprisingly good performance on vandalism session detection
with AUC=0.9121, which indicates the inter-activity time
information is crucial for vandalism session detection. Mean-
while, adopting the activity type information can also achieve
the vandalism session detect with AUC=0.7399. Hence, using
inter-activity time information achieves better performance
than using the activity type information in terms of AUC.
It also means vandals have significantly different patterns
in activity time compared with benign users. Finally, with
combining the activity type and time information, our model



Figure 5: ROC curve of vandalism session detection using
various approaches

can achieve even better performance with AUC=0.9496.
We further compare our model with two baselines, i.e.,

One-class SVM and Isolation Forest. For the baselines, we
consider the same features as the seq2seq model and further
combine activity types. The value of each feature is the mean
value of the corresponding feature in a day. Figure 5 indicates
that our model significantly outperforms baselines in terms of
AUC on the vandalism session detection task. Similar to the
results on the CERT dataset, when our model only adopts
the activity type information (scorea shown in Figure 4),
the model achieves similar performance as baselines. With
considering the activity time information, the performance of
our model is improved by a large margin.

VI. CONCLUSION

In this paper, we have proposed a two-level neural temporal
point process model for insider threat detection. In the lower-
level, we combined the seq2seq model with marked temporal
point processes to dynamically capture the intra-session infor-
mation in terms of activity times and types. The upper-level
LSTM takes the first and last hidden states from the encoder of
the lower-level LSTM as inputs to predict the interval of two
sessions and the session duration based on activity history.
Experimental results on an insider threat detection dataset
and a Wikipedia vandal detection dataset demonstrated the
effectiveness of our model.
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