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Abstract—Anomaly detection is a common analytical task that
aims to identify rare cases that differ from the typical cases
that make up the majority of a dataset. When applied to the
analysis of event sequence data, the task of anomaly detection
can be complex because the sequential and temporal nature of
such data results in diverse definitions and flexible forms of
anomalies. This, in turn, increases the difficulty in interpreting
detected anomalies. In this paper, we propose an unsupervised
anomaly detection algorithm based on Variational AutoEncoders
(VAE) to estimate underlying normal progressions for each given
sequence represented as occurrence probabilities of events along
the sequence progression. Events in violation of their occurrence
probability are identified as abnormal. We also introduce a
visualization system, EventThread3 (ET3), to support interactive
exploration and interpretations of anomalies within the context of
normal sequence progressions in the dataset through comprehen-
sive one-to-many sequence comparison. Finally, we quantitatively
evaluate the performance of our anomaly detection algorithm and
demonstrate the effectiveness of our system through a case study.

Index Terms—data visualization; visual analytics; event se-
quence data; anomaly detection

I. INTRODUCTION

Anomaly detection is a common task for event sequence
data analysis as it often contributes to the discovery of critical
and actionable information [1]. Effective use of event sequence
data can require identifying sequences that deviate from the
typically occurring behavior [2]. For example, a doctor may
be interested in finding patients whose postoperative response
is different from other patients who have had the same
surgery, so that the doctors can provide personalized care plans
for similar patients in the future. A variety of techniques,
including traditional statistical models [3], [4], supervised or
semi-supervised approaches [5], and unsupervised methods [6]
have been applied to detect anomalies in event sequences.
However, due to the temporal characteristics of event sequence
data and the black-box nature of machine learning models, it is
challenging to interpret anomalous sequences once identified.
For analysts to derive actionable insights, they must be able
to understand how anomalies are different from “normal”
sequences, which event or series of events characterize the
anomaly, and which events suggest actions that could help
avoid such cases in the future.

In this paper, we propose an unsupervised anomaly detec-
tion model for event sequence data that builds upon LSTM-
based Variational AutoEncoders (VAE). VAE use a proba-
bilistic encoder for modeling the distribution of the latent
variables. Such probabilities give more principled criteria
for identifying anomalies and do not require model-specific
thresholds, which in turn, better facilitate objective judgments
for deciding the boundary of anomalous sequences compared
to other unsupervised algorithms. We train the model to learn
a latent representation for each event sequence and iden-
tify anomalous sequences based on their deviation from the
overall distribution. A mean sequence is computed from the
reconstruction probabilities for each sequence detected as an
anomaly, which shows the occurrence probabilities of events in
normal circumstances, representing a corresponding “normal”
sequence progression for the anomaly. For example, a patient
having internal bleeding should normally be sent to emergency
for surgery, thus the reconstruction probabilities shall identify
surgical events with high probabilities after hospital admission.
To facilitate interpretation of the anomaly, we also present an
interactive graphical interface system to compare the anomaly
sequence with a collection of normal sequences through one-
to-many comparison mechanism and uncover their critical
differences through a specifically designed comparison glyph.

II. RELATED WORK

Anomaly detection has been extensively studied over
the past years [1]. Methods for anomaly detection can be
broadly categorized into tensor-based algorithms [7], statistics-
based algorithms [8], classification-based algorithms [5], and
neighbor-based or distance-based algorithms [9]. More recent
work with deep learning-based anomaly detection (DAD)
algorithms has been developed to pursue better performance.
Types of DAD models include unsupervised (e.g., autoencoder,
generative adversarial, variational), semi-supervised (e.g., rein-
forcement learning), hybrid (e.g., feature extractor + traditional
algorithms) [10], and one-class neural networks [11]. In this
work, we leverage VAE which can both deal with large
volumes of unlabeled data, and identify anomalous patterns
with probability measures [12]. Furthermore, we utilize the
reconstruction probabilities to generate a output close to the
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original input sequence and provides latent feature vectors for
each event sequence in the dataset.

Incorporating human domain knowledge through interaction
can benefit the anomaly detection process, especially when the
boundary between normality and abnormality is not precisely
defined. To this end, researchers have developed many visual
anomaly detection tools [13], [14]. This includes methods
for the detection of anomalous user behaviors from sequence
data [15]. Chae et al. [16] applied traditional control chart
methods together with seasonal trend decomposition to ex-
tract outliers. Thom et al. [14] introduced a visual analysis
system to monitor for anomalous bursts of keywords. More
recently, FluxFlow [17] was developed to reveal and analyze
anomalous information processes in social media. Although
these systems are often designed to help detect anomalous
points, few approaches focus on identifying anomalous se-
quences or on the comparison between the detected outliers
and “normal” sequences. To enhance the interpretability of
the analyzed results, in ET3, we provide an interactive one-
to-many comparison between the anomalous sequence and
normal progressions.

III. VAE-BASED ANOMALY DETECTION

A. LSTM-Based Variational AutoEncoder

We first introduce the structure of the Sequence-to-Sequence
VAE model. The model contains two modules: the VAE
encoder and the VAE decoder. Both modules are designed
using Recurrent Neural Networks to better extract sequential
patterns from event sequence data. In particular, the encoder
captures the latent distribution of sequences and the decoder
inversely restores the distribution to estimate the occurrence
probabilities of events in each time slot.

VAE Encoder. The encoder is trained to abstract the
input sequence {X = xi}ni=1 into a low-dimensional latent
feature vector that describes a sequential distribution of events
occurring in the sequence(as shown in Fig. 1(1)). In this input,
n is the length of the sequence and xi ∈ {0, 1}|E| is the
multi-hot encoding of the events in event set E occurring
in the i-th time step. Each coordinate represents an event
type, which is marked 1 if the corresponding event occurs
in the i-th time step, or 0 otherwise. After feeding the multi-
hot vectors into the corresponding layer of RNN, the state
of the entire sequence is extracted and represented in the
hidden state vector henc of the last layer, which is denoted
as henc = encoder(X). The hidden state vector henc is
projected into vector µ and δ to parameterize a normal dis-
tribution, representing the mean value and standard deviation
of the normal distribution respectively. To take the variability
of the latent space into account (i.e., to represent the diversity
present in normal cases), we draw a low-dimensional latent
vector z by randomly sampling from the distribution and use
this vector as a representative of the original distribution for
subsequent decoding.

VAE Decoder. In the decoder, we reconstruct the input
sequence from the extracted latent feature vector z. Specif-
ically, z is fed to each layer of the RNN to estimate the
probability distribution of events for each time slot. We

formally define the decoding procedure as X
′
= decoder(z),

where X
′

is a sequence of probability distributions denoted as
X

′
= {x′

i}ni=1, and the element x
′

i,j in x
′

i ∈ R|E| represents
the occurrence probability of j-th event at the i-th time step.

Training Process. We train the model with a goal of
narrowing the gap between the original input sequence and its
reconstruction, which can be formally defined as minimizing
the following loss function:

L = Lr + wkl · Lkl (1)

Lr =

n∑
i=1

|E|∑
j=1

(wejxij log(x
′

ij) + (1− xij)log(1− x
′

ij))

−n
(2)

Lkl = −
1

Mz

Mz∑
i=1

(1 + log(σ2
i )− µ2

i − σ2
i ) (3)

The first term Lr is the reconstruction loss which calculates
the weighted cross entropy between xi,j and x

′

i,j , indicating
an event-level difference between the reconstruction and the
original input with respect to the j-th event at the i-th time
step. In particular, a parameter wej = 1/log(nj) is introduced
to reduce the marginal importance of high-frequency events
so as to address the issue of skewed dataset, where nj is
the number of occurrences for event ej . The second term
Lkl is the Kullback-Leibler Divergence Loss which estimates
a distribution-level difference between the distribution of the
latent vector z and a normal distribution N(0, 1), where Mz

is the dimension of the latent vector z. These two terms are
balanced with a parameter wkl.

Parameter Settings. Both the encoder and decoder employ
LSTM units [18] with 300 hidden nodes. We set the dimension
of the latent vector to 16. The parameter wkl adaptively
increases from 0.1 to 0.5 during the training process to make
sure the reconstruction loss is optimized with high priority.
Moreover, we optimize the loss function with the Adam
optimizer [19] with training data batch size of 80 for each
training step. We train the model on an Nvidia Tesla K80
graphics card. Each training epoch takes approximately 10.5
seconds on average.

Anomalous Sequence Detection. After training the model,
we employ the latent vector z of each input sequence to detect
anomalous sequences in the dataset to calculate the degree of
anomaly for each sequence in the latent space using the Local
Outlier Factor (LOF) [20](as shown in Fig. 1(2)). Normal
sequences should group within a dense space with smaller
LOF scores, while instances in sparse areas will have larger
LOF scores and will be identified as outliers.

B. Anomalous Event Analysis

To facilitate the interpretation of sequence anomalies, we
further identify anomalous events that contribute to sequence
abnormality by analyzing the reconstruction probabilities(as
shown in Fig. 1(3)). As we assumed that the majority of the
sequences are normal, the reconstruction probabilities shall
be similar to the normal progression of sequences, and the
training objective ensures that the reconstruction probabilities
are also similar to the original input sequence. Thus, the



Fig. 1. Schematic diagrams of the model, (1) the VAE model to obtain
the latent vector of the input sequence, (2) anomaly detection of the overall
sequence, and (3) anomalous event detection based on the reconstruction of
the input sequence.

reconstruction probabilities of the anomalous sequences can
be used to infer a mean sequence that represents an expected
“normal” progression for the anomalous sequence. From this,
we can identify the anomaly events within the anomalous
sequence that deviate from the expected normal progression.

We categorize the anomalous events into missing events
(noted as xmis) and redundant events (noted as xred), which
represent the cases where events show high occurrence proba-
bilities in the reconstruction but do not appear in the sequence,
and events that exist in the anomalous sequence but are not
expected to occur, respectively. Based on this intuition, we
calculate the anomaly scores for missing events and redundant
events with Pr(X = xmis) and 1−Pr((X = xred)), respec-
tively, where Pr(X = x) indicates the occurrence probability
of the corresponding event derived from the reconstruction.
Consequently, events with an anomaly level higher than a user-
defined threshold are identified as anomalous. The threshold
is by default set as 0.6, which can be adjusted by users during
an analysis via the visualization module.

IV. VISUALIZATION

A. Design Tasks

We formulated a set of design tasks to solve the key
challenges in visually analyzing anomalies in event sequence.
T1 Provide an overview of the analysis scope. To help users

find anomalous sequences of interest within a collection
of anomalous sequences, the system should provide an
overview of all sequences detected as anomalies and
illustrate their level of abnormality.

T2 Emphasize anomalous events within the sequence.
To help quickly explore complex event sequences and
uncover the reason behind an abnormality, the visualiza-
tion should be designed to highlight key events that are
suspicious of being anomalous.

T3 Facilitate result interpretation in context. The designed
visualization should help users effectively analyze the
detected anomalies within the context of the entire train-
ing set, to uncover the difference between abnormal and
normal sequence progressions and facilitate reasoning
about the analyzed result.

T4 Support sequence exploration at multiple levels of
granularity. Applying different levels of aggregation for
a group of sequences can result in distinct interpretations
of the result. To support more accurate findings, the sys-
tem should support the exploration of normal sequences
at different levels of granularity.

Guided by the tasks above, ET3 incorporates seven key
views to visually analyze the anomalous sequences (Fig. 2),
which includes (1) an anomaly overview providing an
overview of all detected anomalies from which users can
choose for subsequent analysis (T1); (2) a similarity view,
showing the distribution of normal sequences as regard to their
similarities and the selected anomaly (T1); (3) a reconstruction
view presenting the occurrence probabilities of the events in
each time slot (T3); (4) a flow overview that aggregates the
flow of normal sequences with the evolution of the selected
anomaly overlaid at the top to show differences (T3); (5) a
comparison view with three variants: (5a) sequence compari-
son view, (5b) flow comparison view, and (5c) summarization
view that separates the flow of the anomalous sequence from
the normal sequences with comparison glyphs (Fig. 2(a))
emphazing the event difference (T2) and displays the summa-
rization of normal sequences in multi-level granularity (T4);
(6) an anomalous record view and (7) a similar record list dis-
playing low-level details of the selected anomaly and normal
sequences, respectively. The system is incorporated with rich
interactions to support exploratory analysis.

B. Interactive Anomalous Event Analysis
Our system is designed to facilitate interpretation of the

selected anomaly in the context of the progression of normal
sequences (T3) via interactive one-to-many visual comparison.
The comparison view is vertically divided into three regions:
an anomalous sequence at the top, a group of comparison
glyphs in the middle, and a summarization of normal se-
quences at the bottom.

1) Anomalous Sequence: The selected anomalous sequence
is displayed using a line of rectangular nodes ordered by time
of occurrence. To deal with the issue of event co-occurrence
and avoid event overlap, we display the sequence with a visual
technique introduced in [21]. Specifically, concurrent events
are grouped into treemaps at each time slot, and all event nodes
are color-coded according to the type of anomaly. Event nodes
are spaced with equal distance and connected with duration
bars to reveal the span of time. The time span between events
is proportional to the duration bar.

2) One-to-Many Sequence Comparison: Our system in-
corporates a one-to-many sequence comparison mechanism,
which allows users to validate the anomalies detected by the
model by comparing the anomalous sequence with a collection
of similar sequences from the normal group. This aims to
help users establish confidence in the analysis result based
on evidence in the dataset. The comparative analysis consists
of two steps: sequence alignment and support rate calculation.
In the first step, we employ a sequence alignment technique
introduced in [22] to semantically map each normal sequence
to the focal anomaly based on Dynamic Time Warping
(DTW) [23] to address the issues of variable sequence length
and progression rate for a more precise comparison of events.
After sequence alignment, we compare events occurring in
each time slot to calculate a support rate for each anomalous
event identified in Sec. III-B. Intuitively, the support rate
represents the proportion of normal sequences that “support”
the corresponding event to be abnormal. More specifically,



Fig. 2. The user interface of ET3 consists of seven key views with a comparison glyph designed to support comparison-based visual anomaly detection.

the support rate of a missing event xmis is the proportions of
sequences that include xmis in the corresponding time slot,
while the support rate for xred is the contrary.

3) Comparison Glyph: To facilitate visual comparison, we
design a comparison glyph (Fig. 2(a)) that highlights the
anomalous events in each time slot. We encode four critical
variables to help quickly identify problematic time slots and
events that need further inspection: the overall abnormality
of the time slot, the abnormality of each event, the type
of anomaly, and the support rate for each anomalous event.
Specifically, each circle inside the glyph represents an anoma-
lous event. The size of each internal circle(Fig. 2(a1)) indicates
the anomaly score of the corresponding event derived from
Sec. III-B, and the size of outer circle (Fig. 2(a2)) represents
the overall abnormality at the corresponding time slot. The
type of abnormality (e.g., missing event or redundant event)
is distinguished with different colors, consistent with other
views. The support rate of each anomalous event (Sec. IV-B2)
is encoded with color saturation.

Updating with user feedback. To leverage analyst domain
knowledge, the system allows users to interactively tweak
the anomalous events displayed in the comparison glyphs.
As shown in Fig. 2(b), users can tune the thresholds for the
anomaly score and support rate that determine the conditions
at which an event is identified as anomalous. Moreover, when
users select a subgroup of normal sequences during the analy-
sis, the comparison glyphs will also be updated simultaneously
to reflect the support rate within the subgroup.

4) Multi-granular Sequence Aggregation: To support more
comprehensive one-to-many sequence comparisons, the design
provides three coordinated comparison views (Fig. 2(5a-c)).
The views support comparison at different levels of aggrega-
tion (T4), and transitions allow users to move smoothly from
one view to another.

The sequence comparison view displays the sequences of
normal records individually, which aims to support sequence-
to-sequence level comparison and efficient access to the raw
data. As shown in Fig. 2(5a), the normal sequences are
displayed in a scrollable list with a consistent encoding

schema as the anomalous sequence, ranked from top to bottom
according to the degree of similarity. Users can select any
individual sequence to update the comparison glyphs with their
differences during the analysis.

The flow comparison view (Fig. 2(5b)) provides a
progression-level summarization on all normal sequences by
aggregating them into a flow-based visualization. This view
aims to incorporate confidence of abnormality for anomalous
events by comparing the anomalous sequence with subgroups
of sequences having particular progression patterns. Specifi-
cally, identical events in each time slot are grouped into nodes,
and the transition paths among events in adjacent time slots
are merged into links. The height of each node represents
the population (weighted by event co-occurrence) having the
event at the corresponding time slot, with the exact number
displayed in a label to the left side of each node. Event nodes
are connected with links to represent a sequence path from
one event to another. Each link is consist of a duration bar and
a connection line. The height of the duration bar shows the
proportion of the population corresponding to the link, while
the width indicates the average time gap between events. Users
can select any node or link to highlight the progression pattern
and narrow the comparison of a specific subgroup.

In the summarization view (Fig. 2(5c)), nodes in each
time slot are further aggregated into a more compact form,
illustrating the highest-level summarization of the distribution
of events. This view aims to support a comparison of the
anomalous sequence against the overall progression of the
entire set of similar records. We encode the summarized se-
quences in a way similar to the anomalous sequence, with the
only difference that the size of each inner rectangle represents
the size of the population. To allow for the analysis and
exploration on a higher-level summarization of progression
stages, we also leverage a recently proposed progression
analysis technique [22] to segment the anomalous sequence
into different stages. Stages are marked with line segments
under the identifier of the time slots (Fig. 2(c)). Users can click
on a stage identifier to merge or expand all visual elements in
the main panel that align to the corresponding time slots.



Fig. 3. Performance evaluation results of our VAE-based algorithm (VA) in
comparison with two baseline methods (kNN, HMM).

C. Other Views
The system also includes several contextual views to display

auxiliary information and provide access to raw data. The
anomaly overview (Fig. 2(1)) shows the multidimensional
scaling (MDS) projection of the latent vector z on a colored
contour map. Each anomalous sequence is represented as a
circle with the size indicating the LOF score, and the color
saturation indicating the sequence length, so as to help analysts
choose sequences of high anomaly degree for subsequent
analysis. The similarity distribution view (Fig. 2(2)) displays
the distribution of all normal sequences in the dataset based
on their similarity to the selected anomaly, which aims to
help users select a proper group of normal sequences for
comparative analysis. The reconstruction probabilities (given
by Equation III-A) of the selected anomaly are shown in the
reconstruction view (Fig. 2(3)) with the intent of providing
an overview of the occurrence probabilities of events for each
time slot. The reconstruction probabilities are shown as a line
of circle packings arranged in time order, with the size of each
circle shows the value of probability, and the color indicates
different anomaly types (consistent with other views). The
anomalous record view (Fig. 2(6)) and the similar record list
(Fig. 2(7)) provide access to raw event sequence data of the
anomalous sequence and similar sequences. These low-level
details provide detailed evidence to support interpretation.

V. EVALUATION

We demonstrate the effectiveness of ET3’s analytical model
and the usefulness of visualization system through a quantita-
tive evaluation and a case study.

A. Quantitative Evaluation
We compare the performance of our VAE-based anomaly

detection algorithm (denoted as VA) with two baseline meth-
ods using an intrusion detection dataset, snd-cert [24]. The
dataset consists of sequences of operating system calls that are
labeled in terms of the system state (i.e., normal or hacked)
when running these operations.

We select two representative baseline methods under the
categories of kernel-based and Markovian anomaly detection
techniques: Nearest Neighbor (kNN) [25] and Hidden Markov
Model (HMM) [26]. Both methods have been shown efficient
for detecting anomalies in event sequence data in previous
research [27]–[29]. More specifically, the longest common
subsequence (LCS) was used as the distance metric in kNN
and standard information retrieval metrics (precision, recall,
and ROC) to evaluate model performance.

Evaluation Results. Our algorithm outperforms the base-
line methods as shown in Fig 3. The ROC plot (Fig 3(a))
illustrates that VA achieves higher true positive rates when
the false positive rates remain low (below 0.25) compared
to the other two baseline methods. The precision-recall plot
(Fig 3(b)) shows that VA had overall higher precision than
the baseline methods. The results indicate that our approach
can produce a higher quality set of suspicious sequences
when compared to the baseline algorithms. Using the designed
visualization, the system can further support the interpretation
of detected anomalies.

B. Case Study

We applied ET3 to MIMIC [30], a publicly accessible crit-
ical care database with de-identified electronic health records
for 46,520 patients with 12,487 event types in total. Due
to the diversity of sequence progression for patients with
different diseases, training with the entire database could
introduce noise and produce inaccurate anomaly results. With
this consideration, we selected a subgroup of 10,183 patients
who were diagnosed with cardiovascular diseases to produce a
more homogeneous set of sequence progressions for training.
Four cardiologists (E1–E4, 5–8 years of domain experience
each) were invited to participate in our study. Prior to the study,
we asked the doctors about expected patterns of anomaly
and they expressed interests in exploring anomalous medical
usage within the follow-up lab test results, based on which we
extracted 87 types of prescriptions and lab events, which were
further distinguished using different shape in the visualization.

404 anomalous sequences were detected for subsequent
analysis. The experts chose a patient who was far away
from the main cluster with a relatively high anomaly score
from the overview(Fig. 2(1)), and then retrieved 105 similar
patients with the distance to the mean sequence under 0.2 for
subsequent analysis (Fig. 2(2)). As they quickly scrolled the
flow overview back and forth to get a big picture of the major
sequence progression paths, they found that the treatment plans
for the patients were very similar with regular use of Phenytoin
and Insulin (Fig. 4(a)), and speculated that all of these patients
were suffering from epilepsy and diabetes. While most events
in the progression of anomaly were in agreement with the
major trend, several exceptional events appeared in the second
and the third time slots of the selected anomaly (Fig. 2(g)). By
splitting the sequence of the anomalous patient from others,
the comparison glyphs uncovered suspicious events at these
time slot. The experts noticed an abnormal lab event with a
0.59 anomaly score and 100% support rate, CK-MB (Fig. 4(i)).
“This is a critical indicator for myocardial infarction”, E1
said. The experts also found an event that was continuously
missing in several time slots throughout the entire progression,
Hydralazine (Fig. 4(b)). “This drug is mainly applied to
patients with chronic heart failure” explained E2. “This may
imply different causes of epilepsy. Both heart diseases can
potentially cause epileptic seizure.” The experts then explored
the redundant medicines highlighted in the comparison glyphs
to investigate the differences in the treatment plan and surpris-
ingly found no medicines aimed directly at curing myocardial
infarction. “This is unusual,” E1 said, “It seems the patient



Fig. 4. The anomaly detection result of MIMIC dataset. The system identified
major progression paths (a-b), from which the sequence anomaly deviates in
(i) an anomalous lab test result and the (ii) misuse of a prescription drug.

was treated as a regular epileptic patient.” They also found a
type of medicine, Pheonobarbital(Fig. 4(ii)) used only by the
anomalous patient. “I believe Pheonobarbital is mainly used
for neonatal and childhood seizures according to guidelines,”
said E3. “It is rare to see this drug prescribed for a 69-
year-old man.” E4 found this finding especially useful, as
he commented: “It is a potential drug of abuse. Long-time
usage can result in physical dependence, thus should be strictly
controlled. I feel this system has great potential to be applied
to monitor drug misuse.”

VI. CONCLUSION

We have presented ET3, a visual analysis technique de-
signed to support visual anomaly detection in event sequence
data. ET3 incorporates an unsupervised VAE-based anomaly
detection model to identify anomalous sequences and events
in an interpretable manner, and a visualization system with
multiple coordinated views and rich interactions is provided to
facilitate interpretation via one-to-many sequence comparison.
We evaluate the effectiveness and usefulness of ET3 through
a quantitative comparison of the performance of our proposed
algorithm and a case study. The study results illustrate the
strengths of ET3 and shed light on several directions for
future work, including enabling integrating an associative mea-
surement for event abnormality that considers both anomaly
score and support rate, and supporting the analysis of multiple
anomalous sequences simultaneously.
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