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Abstract—Recommendation systems today exert a strong in-
fluence on consumer behavior and individual perceptions of the
world. By using collaborative filtering (CF) methods to create
recommendations, it generates a continuous feedback loop in
which user behavior becomes magnified in the algorithmic sys-
tem. Popular items get recommended more frequently, creating
the bias that affects and alters user preferences. In order to
visualize and compare the different biases, we will analyze the
effects of recommendation systems and quantify the inequalities
resulting from them.

Index Terms—recommendation systems, collaborative filtering,
inequality, popularity bias

I. INTRODUCTION

With the increasing amount of data available, recommender
systems are becoming pervasive in many online applications
in order to help users navigate huge amounts of information
and influence everyday decision making. By 2020, there will
be around 40 trillion gigabytes of data, which will consist of
social media data, emails, and internet searches [8]. All this
data could be easily utilized to train and update recommenda-
tion systems in online platforms, such as Facebook, Instagram,
and Amazon, in order to provide better recommendations for
users.

However, because these algorithms are trained on real-
world data, which may contain all sorts of social biases ,
there are concerns about the risk of artificial intelligence (AI)
exacerbating and perpetuating the present biases. For example,
there is increasing evidence that online media is causing
political polarization [3]. This polarization, if not considered,
could be reinforced by news recommendation systems that
are dynamically trained as new data comes into the system.
Indeed, this same phenomena can create a rich-get-richer effect
that reinforces the popularity of already-popular products [9].
The issue comes when a recommendation system recommends
choices that are universally popular, thus affecting the behavior
of users in the system. These users will interact more with
already popular items, creating biased data that will be used
as input for retraining the algorithmic recommendations. This
process is called the feedback loop. Chaney, Stewart, and
Engelhardt discussed what happens during the feedback loop
and how it would be problematic [7]]. Because of this loop,
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Fig. 1. The short head portion contains the most popular items. Distant
tail items are unpopular items that do not get recommended due to lack of
positive ratings or are relatively new to the system. Long tail items have

average popularity.

online platforms might optimize recommendations based on
what is considered popular with the majority group, which
causes popularity bias and homogenizes users’ interests and
perceptions. Popularity bias is when popular items are rec-
ommended frequently while less popular, niche products, are
recommended rarely. Needs and preferences of the minority
could be undermined if these issues are not considered.

Common recommendation systems, such as Amazon, are
based on sales and ratings. It shows that people who bought
product A also bought product B, which means novel items
that have not been discovered by many other people might
have a hard time surfacing and getting exposure. This tends to
create the rich-get-richer effect mentioned earlier for popular
items as it prevents consumers from finding better product
matches because of this popularity bias [9], [12]]. However,
increasing the discovery of novel items could also create a
bias that is more personalized. For example, if we consume
news through personalized recommendations, our perspective
on the world would also be narrow. The key challenge is
finding a balance between accuracy of the recommendation
and diversity of the recommendation set.

Figure [I] illustrates the concept of “long tail” items, which
are items that have average popularity [I]]. These items are



considered to be good, but typically do not surface in rec-
ommendations. This is because these items are not exposed
to many people, so they do not have as many indicators
that convey its quality to a broader audience. The x axis
represents the item rank and the y axis represents the number
of ratings per item. Indicated by the curve of the graph, “short
head” items are very popular and receive much more viewer
attention.

In this paper, we will first discuss related works and
their experiments (section 2). We introduce our claims that
all filtering methods, besides the random method, increase
inequality compared to optimal collaborative filtering (CF)
recommendation systems and dynamic training has more in-
equality than static training (section 3). Next, we proceed to
describe our methodology in conducting our own experiments
to quantify the effects of inequality (section 4). To conduct our
experiments we created several algorithm frameworks using
CF and non-CF methods (section 5); this allows us to visualize
the effects of each recommendation model and how they apply
to real models used in online platforms (section 6). We will
discuss how the results from our models convey inequalities
in real life models (section 7) before we conclude (section 8).

II. RELATED WORK

Similar to our approach, researchers have explored the
effects on diversity of various collaborative recommenda-
tion methods by running simulations on synthetic data and
assuming different models of choice or preference for the
users [7], [9]. Chaney, Stewart, and Engelhardt [7] used
simulations to demonstrate how using data from users exposed
to algorithmic recommendations homogenizes user behavior.
They created six different recommendation algorithms with
different filtering methods for the experiments: popularity,
matrix factorization, random, ideal, content filtering, and
social filtering. All six of the approaches recommend from
the set of items that existed in the system at the time of
training. Their experiments showed that these methods did
cause homogeneity through their simulated communities. A
similar approach was taken in [9]], except that the choices of
consumers were modeled using the multinomial logit instead
of a simple linear model of preference. In our experiments, we
do not take any assumptions on the data nor the preferences
of users as we compare five filtering methods using real-world
data gathered from users in [10].

In October 2006, Netflix released a dataset containing 100
million anonymous movie ratings and challenged the data
mining, machine learning and computer science communities
to develop systems that could beat the accuracy of its rec-
ommendation system, Cinematch [4]. Through this challenge,
Netflix became a contribution to the rise in popularity of
rating prediction in recommendation algorithms. In regards to
their algorithm, Cinematch automatically analyzes the accu-
mulated movie ratings weekly using a variant of Pearson’s
correlation to determine a list of “similar” movies. After
a user provides ratings, their recommendation process uses
multivariate regression in real-time based on the correlations

computed previously to make a personalized recommendation.
The challenge primarily was concerned with accuracy rather
than inequality in recommendations. The main differences
between our frameworks are that we are determining “similar”
users rather than “similar” items and that our recommendation
process happens offline rather than real-time. Although accu-
racy is important to our algorithm, our main focus is to predict
and visualize the inequalities.

Many experiments, such as a music artists study [6]] and a
sales diversity experiment [9]], were conducted to understand
the behaviors of recommender systems and whether they affect
diversity by reinforcing the popularity of already-popular
items. These empirical studies along with other previous works
[14], [16], [18] discuss issues of popularity bias and item
inequality resulting from long-term effects of usual recommen-
dation algorithms. As more people rely on recommendation
systems as a method to discover new things, popularity bias
will become more prevalent than it is currently if more online
platforms use these algorithms. Research has been done to
address the growing issue of popularity bias. As a result,
methods were proposed to create a balance between accuracy
and diversity, such as using a Novelty Score [3|], partial
clustering [14], and using multiple recommender systems in
one framework [16]. It is also possible to sacrifice a small
fraction of short-term recommendation accuracy in exchange
for higher long-term diversity [[18].

The experiments in previous works were done either using
more popular datasets such as MovieLen and Netflix or were
based on simulations. Celma and Cano’s music study was
based on Last.fm data, but its rating scale is “play counts”
instead of a limited range of values. In our experiment, we use
Jester’s dataset with Pearson correlation (Pearson), popularity
(pop), matrix factorization (MF), random, and optimal as
recommendation algorithms.

III. PROBLEM STATEMENT

Real-world recommendation systems are trained using data
from users who use the platforms. The problem arises when
repeated recommendations could cause homogeneity because
of the popularity bias and its continuous feedback loop. This
is especially problematic through CF methods since one user’s
decisions would heavily influence those of another user. We
will be focusing on analyzing and quantifying the effects of
CF models to answer our claim: repeated training increases
inequality in CF recommendation systems.

IV. EXPERIMENTAL APPROACH

We conducted offline experiments on an existing dataset
from a joke recommendation system, Jester 5.0 El, that was
developed at University of California, Berkeley [10]. They
implemented their own CF algorithm, Eigentaste, to make the
recommendations [[11]. The dataset is a matrix that contains
the following information:

Thttps://grouplens.org/datasets/movielens/
Zhttp://eigentaste.berkeley.edu/
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Fig. 2. This graph shows the top 5 jokes that are popular for each user in Dataset 1. The shape of the graph is similar to the one in Figurer_fl
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Fig. 3. This graph shows that there is no correlation between the number of
ratings per joke and its mean since the slope of the line is close to 0. In other
words, the number of ratings does not influence the average rating for a joke.
If more people rated a joke, that does not correspond to a higher mean rating.

1) 100 joke IDs

2) 73,421 user IDs

3) number of jokes a user has rated

4) over 4.1 million continuous ratings (-10.00 to +10.00)

We only use the first file of this dataset (Dataset 1), which
contains 24,983 users and about 250,000 continuous ratings.
Using the analysis on Dataset 1 will give an idea of the
inequalities that might be present in their system, which
could also suggest inequalities that might exist in other online
platforms. A system has inequalities if the same few items are
being recommended frequently, thus not all items are given
equal exposure and consideration to be recommended.

A. Data

The actual data was organized in a matrix where the rows
represented the users and the columns were the jokes. There
was an additional column designated to record the number
of jokes a user rated. Users had rated at least 36 jokes.
For the jokes that were unrated, their values were 99 rather
than leaving them blank. The graph in Figure [2| shows the
popularity based on the real dataset. The shape of the graph
in Figure [2 strengthens the concept of popularity bias and
“long-tail” items mentioned in the beginning. It shows that bias
is already present before conducting our experiment, which
means there could have been recommendation inequality using
Eigentaste.

Dataset 1 has no correlation between the number of ratings
for a joke and its mean rating, as shown in Figure 3] More
ratings for a joke does not necessarily mean it has a higher
mean rating. This gives an idea of how FEigentaste made
recommendations. Since it is a CF algorithm, it was focused
more on recommending based on a higher mean rating rather
than a high number of ratings (which could contain high and
low value ratings) for a certain joke.

B. Cases

These are the 2 cases we used for experimental analysis.

Case 1: single training. For every test user, if the recom-
mended joke does not have a rating, it is labeled as “no rating,”
but the joke ID is still recorded. Unlike Case 2, any ratings and
data on each test user are not incorporated into the training
set.

Case 2: repeated training. For every test user, if the rec-
ommended joke does not have a rating, we move to the next



joke with the second best recommendation score. If we do not
find a joke with a rating within the top 3 recommended jokes,
then we simply do not have a rating for the test user. The
new inputs that are included in the retraining of the training
set are the ratings of the random jokes during the profiling
phase and the rating of the recommended joke. For example,
if user Y was given 10 random jokes to rate and was given
1 recommendation afterwards, then the ratings of those 11
jokes are incorporated into the training set for retraining. We
set k& = 100, where new inputs are incorporated only after
every kth iteration of an algorithm.

C. Method

In this section, we will lay out the general procedure for
conducting our experiments.

Reorganize data and filter users who have rated at least
50% of the jokes. Little data processing and cleaning was
needed other than adding labels to categorize the data for easy
manipulation. We used about 20,000 users who had rated at
least 50% of the jokes to decrease the chance of not having
a rating for a joke that could be recommended through our
system. Since we are only using the data from Dataset 1, any
rating predictions we make are used as a guide and are not
treated as actual data as they will not be true to the user. The
analysis we are performing is reliant on true data from the user
so we can preserve their true preferences that are conveyed
through the previously rated jokes. Because of this aspect, we
attempt to lower the chances of making a recommendation
that has no rating data by taking users who have rated at least
50% of the jokes.

Divide users into 2 groups: training set and test set. For
the training set, we randomly picked 500 users for a smaller
training set to serve as the starting point since for the filtering
methods, we need data in the system first before we can
make recommendations. For the test set, we randomly chose
about 4000 users from the data to represent the “new users”
being added through our system. As we run this experiment
multiple times, we randomly change the training and test set
with different users each time.

Create 2 different cases for filtering methods. Case 1
is single training (static) and Case 2 is repeated training
(dynamic). To quantify the effect of the feedback-loop in
recommendation systems, we compare dynamic training vs
a one time static training of the recommendation methods.
Both cases will start with 500 users from the training set. In
single training, the number of users in the training set stays
constant during the whole experiment. Static training will only
utilize ratings of the static set to recommend jokes to the test
users (“new users”). In repeated training, the starting set of
users will be updated, thus the number of users in the system
will not stay constant during the experiment. After every 100
recommendations, rating data from test users are incorporated
into the starting set and their data will be considered in the
calculation when making recommendations for the rest of the
test users. Dynamic training mimics how real online platforms
update data. Because of how often new users enter the system,

the data that the model is making predictions on must have a
similar distribution as the data on which the model was trained
in order to make accurate predictions. Data distributions can
be expected to drift over time, so retraining a model on newer
data is common in online platforms since the data distribution
could have deviated significantly from the original training
data distribution [15]. Online platforms retrain their models
periodically to ensure the accuracy of their recommendations.
By using multiple methods, we are able to see the inequalities
that are present and make comparisons about the impact of
retraining on the system.

Run Case 1 and Case 2 each multiple times on 10 jokes for
the filtering methods. The gauge set in the data consisted of
10 jokes that every user in Dataset 1 has rated. This serves
as the common set of jokes used to profile the users before
making recommendations. We run the algorithm to simulate
the action of giving the test users 10 jokes from the gauge set
to rate. We follow the same procedure for both cases for the
above methods. Based on those ratings, we compare the test
user to the current database of users and its predicted ratings
to generate a recommendation.

Record which jokes were recommended, the order of rec-
ommended jokes, and their ratings. For each test user, only 1
recommendation is made. We record the joke ID and the rating
of the recommended joke for each test user for both static
training and dynamic training. We also record the order of the
recommended jokes as it is needed to calculate the inequalities
overtime. For the jokes that have no rating, we categorize them
as “no rating,” but they are still part of the recommendation
order and inequality calculation. For dynamic training, since
we are retraining, it is ideal to obtain a recommended rating
rather than no rating. More details will be discussed in the
next section on how the algorithm works for the 2 cases.

Use the Gini coefficient to measure the inequalities over-
time. To measure the inequalities, we calculate the frequencies
of joke i (x;) and joke j (x;) being recommended out of n
number of recommended jokes. These frequencies are then
inputted into the equation defined below to calculate the Gini
coefficient G:

o i1 2y @i — x|
2> Z?:l Ty

The value output from the formula is between the range of
0 and 1— O being perfect equality and 1 being maximal
inequality. During the experiment, we calculate the Gini
every 100 recommendations to produce a visualization of the
inequality overtime.

(D

V. RECOMMENDATION ALGORITHMS

Next, we describe in detail all the recommendation methods
analysed in our simulations. For Pearson correlation and ma-
trix factorization (MF), which are CF methods, the algorithms
are more complex compared to the popularity, random, and
optimal methods, which are non-CF methods.
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Fig. 4. The original data distribution is very similar to the long-tail graph in Figure[I] The filtering methods, in comparison, do not have a well-defined shape
as the original. The gaps represent the lack of a certain joke in the recommendation system when using a particular method, which is why some methods do
not have a defined shape. The optimal method overall looks uniform compared to other filtering methods, but it is not completely uniform compared to the

random method.

A. Random Method

For this method, we expect the Gini coefficient to be a
low value because the randomness of the recommendations
should give each joke an equal chance at being recommended.
This means that all 100 jokes should have been recommended
during the experiment. The jokes are treated the same in
quality, which means their ratings have no advantage when
using the random method. Thus, there is very little recom-
mendation inequality as the Gini coefficient is low. Although,
there is little inequality, it is imbalanced in terms of joke
quality. Chances of getting poor recommendations is high,
so it is important to find a balance between recommendation
inequality and joke quality. A recommendation system would
not be effective if users get recommended items that do
not match their preferences. Using random filtering methods
increases the chances of getting poor recommendations since
they are not personalized.

B. Popularity Method

Our popularity method takes the most popular jokes, the
ones with the highest average rating, and recommends one of
them to the test users. In other words, a joke’s probability of
being recommended is proportional to its rating. This means
that if a joke has a high probability of being recommended,
then it has a high mean rating. We expect this type of
popularity method to have the highest inequality because it
only recommends a select amount of jokes that have high
probabilities and high mean ratings. The Gini coefficient for
this method is the highest out of all the filtering methods.
However, if there are many popular jokes, such that among

the 100 jokes, the majority had similar ratings that exhibit
their popularity, then the inequality would not be as obvious.
In the real world, recommendation systems do not always
recommend only a few popular items. Depending on the
platform and the amount of user data it has, popularity could
span to a majority of items, which could lower the overall
recommendation inequality.

We will not be focusing on the popularity method with max-
imal inequality mentioned previously as most online platforms
would not use this type of algorithm. Instead, we will be using
these two popularity methods: 1) one that uses the joke’s mean
rating scaled to an exponent of 1 and the other that uses the
joke’s mean rating scaled to an exponent of 2. The methods
are defined by the equation P; below:

p_ ()t

=L
P; is the probability of joke j being recommended, r; is
the mean rating of joke j, k is the exponent, i.e 1 or 2,
and Y"1, (r;)* is the sum of the scaled mean ratings of n
jokes. Scaling it to exponent 2 increases and exaggerates the
probability of a joke being picked based on its popularity,
making it even more likely to pick a popular joke but not
restricting it to only a select amount of popular jokes.

2

C. Pearson Correlation

We modified a simple CF Pearson correlation algorithm
written in 2012 by Wai Yip Tung [17]]. The main idea is that
we compute the similarity score between a user X from the
training set for all users and a user Y from the test set. Using
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Fig. 5. Comparing the Gini values for various methods, this shows that
recommending based on popularity while retraining yields the highest Gini
coefficient. The popularity method used in this graph is popularity 2, which
is the one that uses the joke’s mean rating scaled to an exponent of 2.

that similarity score as the weight, we calculate a value, in
which we label as the similar rating score, by combining the
weight with each joke rating. We repeat this with all users in
the training set. In other words, each test user will have at
least 500 similarity scores, one for each user in the training
set, and 100 similar rating scores, one for each joke. Although
100 similar rating scores are given, we only use at most
90 ratings since we exclude the gauge set. In the original
dataset from Jester 5.0, the gauge set was not part of the
recommendations so we excluded it so our recommendation
process would be similar to Jester. The similarity score is
calculated using Pearson correlation pX,Y, which is defined
as:

X, Y
px,y = CY) 3)
OxO0y
Covariance cov for n total ratings is
(X, - X)(Y; Y
cov(X,Y) = (X ) ) 4)

n

where X; are the ratings of user X, X is the mean of X;, Y; are
the ratings of user ¥ and Y is the mean of Y;. The covariance
is the joint variability of the 2 users. Pearson correlation gives
a more accurate range (from O to 1) on user similarity. Close
to 0 means that users have different preferences and close to
1 means users have similar preferences.

To calculate and normalize the recommendation score for
each joke, we divide the sum of the similar rating scores by
the sum of the similarity scores. We sort the jokes with the
highest recommendation score and exclude any recommended
jokes that are part of the gauge set. The joke with the
highest recommendation score is recommended. There are
some cases where the top recommended joke does not have
a rating recorded in Dataset 1. This is because that our CF
algorithm behaves differently and would not necessarily give
the exact same recommendations as Eigentaste. Nevertheless,
our algorithm handles that aspect differently in both cases.

D. Matrix Factorization

For MF, we modified another simple algorithm by Nick
Becker in 2016 [2]. The process of using the training set and
test set is similar to the CF Pearson algorithm, but the way it
creates recommendations is different. This algorithm utilizes
singular value decomposition (SVD), which decomposes a
matrix R to a smaller approximation of the original matrix
R. Mathematically, it decomposes R into two unitary matrices
and a diagonal matrix:

R=UxVT (5)

where R is a user ratings matrix, U is the user “features”
matrix, X is the diagonal matrix of singular values (weights),
and V7 is the joke “features” matrix. U represents how much
users “like” each feature and V7 represents how relevant each
feature is to each joke. To get the lower rank approximation,
we take these matrices and keep only the top k features,
which we think of as the £ most important underlying taste
and preference vectors . In other words, these features are
not explicitly passed when computing the recommendations.
It is through matrix multiplication that it had generated some
hidden “features” and picked up underlying preferences of
users. After multiplying the 3 matrices, we get prediction
ratings for each user. If prediction ratings for a user are high
for certain jokes, then we recommend those jokes to the user.

E. Optimal Method

We use this model to compare against the real preferences
of people. It serves as the baseline for what people actually
like, which encourages recommendation systems to improve
their frameworks to meet people’s expectations. In the optimal
method, the Gini coefficient stabilizes at a value very quickly.
Optimal does not necessarily mean perfect equality, but in
a sense that all users like the items being recommended
to them. Note that this is very difficult in the real world.
Recommendation algorithms will recommend items close to
a user’s preferences, but they are not always accurate. There
are times where users will reject the recommendations because
they did not match their interests.

Since we defined the optimal case as having all users like
the items being recommended, we assume those items have
the highest ratings. Thus, the method is defined as:

Su = {51}y ©)

where S, is a set of ratings for each user u. There are a total
of n joke ratings for each user. To find the optimal joke o, for
user u, we find the highest or maximum rating in S,, which
is defined below:

0y = max Sy 7

Unlike the cases for single training and repeated training,
all recommended jokes will have ratings recorded previously
because we are taking the highest rating that exists in Dataset
1 for each test user. For each user in this experiment, we find
the joke that has the highest rating and record the joke ID and
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Fig. 6. In static training, the Gini values converge and stabilize fairly quickly since the slopes of the graph are close to 0. However, the Gini value overtime
grows at a quicker rate during dynamic training. The increased rate of growth in dynamic training indicates its potential for reaching high inequality, especially

for the popularity methods.

its rating. From here, the procedure for finding the Gini is the
same as the above cases.

VI. RESULTS

In this section, we compare the experiments that resulted
from our algorithms and evaluate the implications of the
results.

In Figure [ the optimal method is compared to all the other
methods as well as the original data distribution. Comparing
the graph to the earlier graph in Figure [2] the shape of this
graph shows it is less biased by a huge degree. It is not
perfect uniformity, as that would be impossible in the real
world. Making it completely uniform would be difficult and
unrealistic as there would have to be a constant number of
people who like each joke. By having the optimal model, it
creates a baseline for comparison when analyzing the various
methods.

Figure [6] shows similar patterns of increasing inequalities
in both static and dynamic training for Pearson, MF, and
popularity methods compared to the optimal method. In single
training, most methods stayed relatively with the same inequal-
ity as more recommendations were made overtime. The slopes
of the lines are low, which shows that they are stabilizing
in inequality with their recommendations. For the optimal,
it appears to be higher in inequality compared to random,
but, as mentioned earlier, recommendation inequality is not
the only factor in determining an effective recommendation
method. If inequality is too low, then users would frequently
get recommendations that might not correspond to their pref-
erences. In dynamic training, the graph shows a clear increase
in growth for most of the methods, especially the popularity
methods. The growth in Pearson is not as obvious, but its
Gini and slope is greater than its counterpart in static training.
Since various recommendation methods operate differently
and can be more robust than others, their approaches can
vary in inequality. Little changes between static and dynamic
training could mean that the method is more robust than others.

Nevertheless, in both cases, these recommendation methods
have higher inequality than the optimal during the majority of
the recommending process.

In Figure[5} we recorded the median Gini values for multiple
trials of the experiment. The graph for the optimal Gini is
around 0.4. From this experiment, we define the Gini of about
0.4 as the optimal case if a recommendation system recom-
mends jokes that every user would like. In other words, giving
recommendations that satisfies every user’s unique preferences
shows that a diverse set of jokes are being recommended in the
optimal case. Looking at Figure [3] the final Gini value of the
optimal is the lowest, not including the random method, which
proves that our claim that various filtering methods increase
inequalities in CF recommendation systems.

VII. DISCUSSION

Based on our results, we could apply our findings to
other datasets. For example, if we had a dataset of user
ratings or likes from online platforms, such as Amazon,
Instagram, Netflix, etc., analyzing their datasets will show if
there is recommendation inequality present in their systems.
This experiment works best with platforms that utilize CF
models, but it could be modified for other types of filtering
methods. Following our definition of the optimal case, the ideal
recommendation system for live platforms might not have a
Gini of exactly 0.4, but it should be lower compared to the Gini
value of the actual recommendation framework. Our results
suggest that real recommendation systems have plenty of room
for improvement.

VIII. CONCLUSION

An exploratory analysis of a CF dataset visualizes the
impact of recommendation systems on users. We found that
common recommendation methods such as Pearson, MF, and
popularity, have more inequality in recommendations than
the optimal and dynamic training has more inequality than
static training, which reinforces the idea of feedback loop



(section 6). These findings create awareness for designers and
consumers in live recommendation platforms. Designers need
to consider how these inequalities will affect their users. If
these effects are not addressed, they will be amplified and
become problematic as more users conform to interacting
with only certain recommended items, creating the lack of
diversity. Every system will have some bias; the best we can
do is to reduce it. Every dataset is represented differently,
and using certain recommendation methods might increase
recommendation inequality. The first step in solving this issue
is to increase awareness that using different recommendation
methods affects the amount of inequality present. Once people
realize that, then they can make individual choices or propose
solutions for these recommendation algorithms in order to
achieve the balance in quality and diversity shown in the
optimal method.
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