
SecureGBM: Secure Multi-Party Gradient Boosting
Zhi Feng†,∗, Haoyi Xiong†,∗, Chuanyuan Song†, Sijia Yang‡, Baoxin Zhao†,#,
Licheng Wang‡, Zeyu Chen†, Shengwen Yang†, Liping Liu† and Jun Huan†

† Big Data Group (BDG), Big Data Lab (BDL) and PaddlePaddle (DLTP), Baidu Inc., Beijing, China
‡ State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing, China
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Abstract—Federated machine learning systems have been
widely used to facilitate the joint data analytics across the
distributed datasets owned by the different parties that do not
trust each others. In this paper, we proposed a novel Gradient
Boosting Machines (GBM) framework SecureGBM built-up with
a multi-party computation model based on semi-homomorphic
encryption, where every involved party can jointly obtain a
shared Gradient Boosting machines model while protecting their
own data from the potential privacy leakage and inferential
identification. More specific, our work focused on a specific “dual-
party”secure learning scenario based on two parties — both party
own an unique view (i.e., attributes or features) to the sample group
of samples while only one party owns the labels. In such scenario,
feature and label data are not allowed to share with others.

To achieve the above goal, we firstly extent — LightGBM
— a well known implementation of tree-based GBM through
covering its key operations for training and inference with SEAL
homomorphic encryption schemes. However, the performance
of such re-implementation is significantly bottle-necked by the
explosive inflation of the communication payloads, based on
ciphertexts subject to the increasing length of plaintexts. In this
way, we then proposed to use stochastic approximation techniques
to reduced the communication payloads while accelerating the
overall training procedure in a statistical manner. Our experi-
ments using the real-world data showed that SecureGBM can
well secure the communication and computation of LightGBM
training and inference procedures for the both parties while only
losing less than 3% AUC, using the same number of iterations for
gradient boosting, on a wide range of benchmark datasets. More
specific, compared to LightGBM, the proposed SecureGBM
would slowdown with 3x ∼ 64x time consumption per iteration
in the training procedure, while SecureGBM becomes more and
more efficient when the scale of the training dataset increases
(i.e., the larger training set, the lower slowdown ratio). 1

I. INTRODUCTION

Multi-Party federated learning [1] becomes one of the most
popular machine learning paradigm thanks to the increasing
trends of distributed data collection, storage and processing, as
well as its benefits to the privacy-preserved manner in different
kinds of applications. In most multi-party machine learning ap-
plications, “no raw data sharing” is an important pre-condition,
where the model should be trained using all data stored in
distributed machines (i.e., parties) without any cross-machine
raw data sharing. A wide range of machine learning models and
algorithms, including logistic regression [2], sparse discriminant
analysis [3], [4], stochastic gradient-based learners [5]–[7], have

1 ∗Equal Contribution. The manuscript has been accepted for publication
at IEEE BigData 2019.

been re-implemented on distributed computing, encryption, and
privacy preserving computation/communication platforms, so
as to incorporate the secure computation paradigms [1].

Backgrounds and Related Work. Existing efforts majorly
work on the implementation of efficient federated learning
systems. Two parallel computation paradigms—data-centric
and model-centric [6]–[10], [10], [11] have been proposed. On
each machine, the data centric algorithm first estimates the
same set of parameters (of the model) using the local data,
then aggregates the estimated parameters via model-averaging
for global estimation. The model with aggregated parameters is
considered as the trained model based on the overall data (from
multiple parties) and before aggregated these parameters can
be estimated through parallel computing structure in an easy
way. Meanwhile, model-centric algorithms require multiple
machines to share the same loss function with “updatable
parameters”, and allow each machine to update the parameters
in the loss function using the local data so as to minimize
the loss. Based on this characteristic, model-centric algorithm
commonly updates the parameters sequentially so that the
additional time consumption in updating is sometimes a tough
nut for specific applications. Even so, compared with the data-
centric, the model-centric methods usually can achieve better
performances, as it minimizes the risk of the model [6], [7]. To
advance the distributed performance of linear classifiers, Tian
et al. [4] proposed a data-centric sparse linear discriminant
analysis algorithm, which leverages the advantage of parallel
computing.

In terms of multi-party collaboration, the federated learning
algorithms can be categorized into two types: Data separation
and View separation. For the data separation, the algorithms
are assumed to learn from the distributed datasets, where each
dataset consists of a subset of samples of the same types [3]–[6].
For example, hospitals are usually required to collaboratively
learn a model to predict patents’ future diseases through
classifying their electronic medical records, where all hospitals
follows the same scheme to collect patients’ medical record
while every hospital can only cover a part of the patients. In this
case, federated learning here improves the overall performance
of learning through incorporating the private datasets owned by
different parties, while ensuring the privacy and security [5]–[7].
While the existing data/computation parallelism mechanisms
were usually motivated to improve federated learning under the
data separation settings, the federated learning systems under

ar
X

iv
:1

91
1.

11
99

7v
1

 [
cs

.L
G

]
 2

7
N

ov
 2

01
9

the view separation settings are seldom considered.
Our Work. We mainly focus on view separation settings of

the federated learning that assumes the data view of the same
group of samples are separated by multiple parties who do
not trust each other. For example, the healthcare, finance, and
insurance records of the same group of healthcare users are
usually stored in the data centers of healthcare providers, banks,
and insurance companies separately. For the healthcare users,
they usually need some recommendations on the healthcare
insurance products according to their health and financial status,
while healthcare insurance companies need to learn from large-
scale healthcare together with personal financial data to build
such recommendation models. However, according to the law
enforcement about data privacy, it is difficult for these three
partities to share their data with each other and learn such a
predictive model. In this way, federated learning under view
separation models is highly appreciated. In this work, we aim
at working on the view separation federated learning algorithms
using Gradient Boosting Machines (GBM) as the Classifiers.
GBM is studied here as it can deliver decent prediction results
and be interpreted by human experts for joint data analytics
and cross-institutes data understanding purposes.

Our Contributions. We summarize the contribution of the
proposed SecureGBM algorithm in following aspects.
• Firstly, we study and formulate the federated learning

problem under the (semi)-homomorphic encryption set-
tings, while assuming the data owned by two parties are
not sharable. More specific, in this paper, we assume
each party owns a unique private view to the same
group of samples, while the labels of these samples are
monopolized by one party. To the best of our knowledge,
this is the first study on tree-based Gradient Boosting
Machine classifiers, by addressing 1) two-party security
constraint, 2) efficient model-centric learning with views
separated by two parties but labels “monopolied” by one,
and 3) the trade-off between statistical accuracy and the
communication cost caused by statistical learning over
encrypted communication.

• Secondly, to achieve the goals, we design the
SecureGBM algorithm which re-implements the vanilla
gradient-boosting tree based learners using semi-
homomorphic encrypted computation operators offered
by Microsoft SEAL. More specific, SecureGBM first re-
places the addition and multiplication operators used in the
gradient-boosting trees with the secured operators based
on semi-homomorphic computation, then SecureGBM
re-designs a new set of binary comparison operators (i.e.,
≥ or ≤) which can not be intercepted by attackers to
exactly recover the ground truth through searching with
the comparison operators (e.g., binary search).

• Furthermore, we observe the trade-off between statistical
accuracy and communication cost for GBM training. One
can use stochastic gradient boosting mechanism to update
the training model with mini-batch of data per round, while
the communication cost per round can be significantly
reduced in a quadratics manner. However, compared to

vanilla gradient boosting machines, additional rounds of
training procedure might be needed by such stochastic
gradient boosting to achieve equivilent performance. In
this way, SecureGBM makes trade-off between statistical
accuracy and communication complexity using mini-batch
sampling strategies, so as to enjoy low communication
costs and accelerated training procedure.

• Finally, we evaluate SecureGBM using a large-scale real-
world user profile dataset and several benchmark datasets
for classification. The results show that SecureGBM
can compete with state of the art of Gradient Boosting
Machines — LightGBM, XGBoosts and the vanilla re-
implementation of LightGBM based on Microsoft SEAL.

The rest of the paper is organized as follows. In Section II,
we review the gradient-boosting trees based classifiers and the
implementation of LightGBM, then we introduce the problem
formulation of our work. In Section III, we propose the frame-
work of SecureGBM and present the details of SecureGBM
algorithm. In Section IV, we evaluate the proposed algorithms
using the real-world user profile dataset and the benchmark
datasets. In addition, we compare SecureGBM with baseline
centralized algorithms. In Section V, we introduce the related
work and present a discussion. Finally, we conclude the paper
in Section VI.

II. PRELIMINARY STUDIES AND PROBLEM DEFINITIONS

In this section, we first present the preliminary studies of
the proposed study, then introduce the design goals for the
proposed systems as the technical problem definitions.

A. Gradient Boosting and LightGBM

As an ensemble learning technique, the Gradient Boost-
ing classifier trains and combines multiple weak prediction
models, such as decision trees, for better generalization
performance [12], [13]. The key idea of gradient boosting is
to consider the procedure of boosting as the optimization over
certain cost functions [14]. As the result, the gradient descent
directions for the loss function minimization can be transformed
into the decision trees that were obtained sequentially to
improve the classifier.

Given a training dataset, where each data point (x, y) ∼ D,
the problem of gradient boosting is to learn a function F̂ from
all possible hypotheses H while minimizing the expectation
of loss over the distribution D, such that

F̂ = argmin
F∈H

E
(x,y)∼D

L(y, F (x)), (1)

where L(y, F (x)) refers to the prediction loss of F (x) to
the label y. More specific, the gradient boosting intends to
minimize the loss function and obtain F̂ in a gradient descent
way, such that

Fk+1(x)← Fk(x) + αk · hk(x), (2)

where Fk(x) refers to the learned model in the kth iteration,
hk(x) refers to the decision tree learned as the descent direction
at the kth iteration based on the model already obtained Fk(x)

and the training dataset, αk refers to the learning rate of gradient
boosting or namely the weight of hk(x) in the ensemble
of learners, the operator a + b refers to the ensemble of a
and b models, and Fk+1(x) refers to the results of the kth

iteration. More specific, the computation of hk(x) majorly
address (y − Fk(x)) for ∀(x, y) ∈ D, i.e.,the error between
the model fk(x) that is already estimated and the label y that
corresponds to x in training dataset. Note that in the first
iteration, the algorithm starts from F1(x) which is a vanilla
decision tree learned from the dataset. With totally K iteration,
the algorithm obtains the final model F̂ (x) as the FK+1.

Recently, gradient boosting classifiers have attracted further
attentions from both application and algorithmic perspectives.
For example, it has won the KDDCup 2016 [15] and tons of
other competition such as Kaggle2. Gradient boosting trees and
its variants have been used as a major baselines for a great
number of classification/regression tasks with decent results,
ranging from genetic data analytic to the click through predic-
tions [16]. In terms of algorithm implementation, XGBoost [17]
and LightGBM [18] have been proposed to further improve
the performance of gradient boosting trees, where thw two
work followed similar gradient boosting mechanisms for the
decision trees training while made significant contributions to
scalability and efficiency issues.

B. Homomorphic Encryption Models

To secure the security and privacy during the computation,
homomorphic encryption (HE) has been proposed as a set of
operations that work on the encrypted data while resulting in
the secure ones with encryption. More important the results
obtained can be decrypted to match the “true results” of the
corresponding operations [19], [20]. Homomorphic encryption
contains multiple types of encryption schemes, such as partially
homomorphic encryption (PHE), fully homomorphic encryption
(FHE) and pre-fully homomorphic encryption (Pre-FHE), that
can perform different classes of computations over encrypted
data [21]. The progress along these lines of research has been
well surveyed in [22].

As early as 1978, the tentative idea of building a fully
homomorphic encryption scheme was proposed just after the
publishing of RSA algorithm [23]. Thirty years, Gentry emphet
al. in 2009 sketched the first fully homomorphic encryption
scheme based on the lattice cryptography [24]. One year
later, van Dijk et al. presented the second fully homomorphic
encryption scheme [25] based on Gentry’s work, but did not rely
on the use of ideal lattices. The second generation of FHE starts
from 2011, there were some fundemental techniques developed
by Zvika Brakerski et al. [26], [27], where the homomorphic
cryptosystems currently used are stemmed. Thanks to these
innovations, the second generation of FHE tends to be much
more efficient compared with the first generation, and be
applied to a lot of applications.

Later, Gentry et al. proposed a new technique for building
fully homomorphic encryption schemes, namely GSW, which

2https://medium.com/@gautam.karmakar/xgboost-model-to-win-kaggle-
e12b35cd1aad

avoids the use of expensive “relinearization” computation in
homomorphic multiplication [28]. Brakerski et al. observed that,
for certain types of circuits, the GSW cryptosystem features an
even slower growth rate of noise, and hence better efficiency
and stronger security [29].

As the fully homomorphic encryption is computationally
expensive, the most of practical secure systems indeed have
been implemented with a partially homomorphic encryption
fashion [22], where only parts of computation are encrypted
with homomorphic encryption. In this work, we hope to secure
the computation and communication of federated learning
through partially homomorphic encryption. Our proposed
method uses ciphertexts to protects parts of computations and
communications in the gradient boosting trees learning.

C. Problems and Overall Design Goals

In this work, we intend to design a novel federated gradient
boosting trees classifier that can learned from view separated
data in a distributed manner while avoiding the leakage of data
privacy and security.

The Federated Learning Problem - Suppose two training
datasets D1 and D2 are owned by two parties A and B
respectively, who hope to collaboratively learn one mode but
don’t trust each other. The schemes of the two datasets are
D1 = (I;X;Y) and D2 = (I;X), where
• I(D1) and I(D2) refer to the identity sets of samples in

the two datasets respectively. When I(D1) ∩ I(D2) 6= ∅,
it indicates that the two datasets share a subset of samples
but with different views (i.e., features);

• X(D1) and X(D2) refer to the feature sets of samples in
the two datasets respectively. More specific, we denote
Xi(D1) as the set of features of the ith sample in D1

and further denote Xi,j(D1) as the jth feature of the ith

sample in D1;
• Y (D1) refers the label set of the data samples in D1. More

specific, ∀y ∈ Y (D1) there has y ∈ R|C| and C refers
to the set of classes. As was mentioned, in the settings
discussed in this paper, only one part would monopoly
the label information.

With above settings, our federated learning problem consists
of two parts as follow.

Training - There needs to propose an dual-party learning
algorithm with secure communication and computation schemes
that can train tree-based Gradient Boosting Machines based
on D1 and D2 with respect to the following restrictions:
• Training Set Identity Protection: I(D1)\I(D2) would

not be obtained by the party B, while the information
about I(D2)\I(D1) would be prohibited from A;

• Training Set Feature Security: The inference procedure
needs to avoid the leakage of X(D1) and Y (D1) to B,
and the X(D2) to the party A.

Testing - Given two testing datasets D′1 = (I;X) and
D′2 = (I;X) owned by the two parties A and B respectively,
where I(D′1) ∩ I(D′2) 6= ∅. There needs an online inference
algorithm, where the party A can initialize the inference

procedure using the identity of the sample for prediction (i.e.,
i′ ∈ I(D′1) ∩ I(D′2)). The party A can obtains the prediction
result of the sample (i.e., yi′) through the secure inference
procedure, with respect to the following restrictions:
• Testing Set Identity Protection: I(D′1)\I(D′2) would

not be obtained by the party B, while the information
about I(D′2)\I(D′1) would be prohibited from A

• Testing Set Feature Security: The inference procedure
needs to avoid the leakage of X(D′1) and yi′ to B, and
X(D′2) to the party A.

In our research, we intend to design PHE-based encryption
schemes to protect the training and inference procedures
(derived from LightGBM [18]) and meet above security goals.

III. FRAMEWORKS AND ALGORITHMS DESIGN

In this section, we present the framework design of
SecureGBM with key algorithms used.

A. Overall Framework Design

The overall framework of SecureGBM consists of two parts
— training and inference, where, given the distributed datasets,
the training procedure obtains the distributed parameter models
for the tree classifiers of SecureGBM and the inference
procedure predicts the labels using the indices of samples.

1) Statistically Accelerated Training Procedure: Given the
training datasets D1 and D2 distributed in the two parties, as
shown in Figure 1, the training procedure learns the ensemble of
decision trees for Gradient Boosting Machines with distributed
parameters in a secure and statistical efficient way. More
specific, the training procedure incorporates an accelerated
iterative process with a specific initialization as follow
• Initialization - The owner of D1 can invoke to initialize

the whole training procedure. First of all, SecureGBM
performs secure join operation to align the shared samples
stored in D1 and D2 through matching I(D1) and I(D2)
under Partial Homomorphic Encryption (PHE) settings.
Later, based on the data in D1 including both features
X(D1) and labels Y (D1) , SecureGBM learns a decision
tree F0 as the base model, which only uses features in
X(D1), for initialization. Please see also in Section III.B.1
for the detailed design and implementation of Secure Join
Operation for sample alignment based on PHE.

With the model initialized, SecureGBM takes a statistically
accelerated iterative process for GBM training, where each
iteration uses mini-batch sampling to reduce the computa-
tional/communication costs [13]. Specifially, each iteration
(e.g., the kth iteration and k ≥ 0) consists of three steps:
• Batched Secure Inference - Given the shared samples

in D1 ∩ D2, SecureGBM first randomly selects a subset
of samples Bk ⊆ (I(D1) ∩ I(D2)), where |Bk| = b
and b refers to the batch size. With the model already
estimated, denoted as Fk, SecureGBM then obtains the

“soft prediction” results of all samples in Bk through the
secure inference under PHE settings. Such that

yki ← Fk(Xi(D1);Xi(D2)), ∀i ∈ Bk, (3)

where Fk(Xi(D1);Xi(D2)) refers to the inference result
based on the features from both datasets. Please see also
in Section III.A.2 for the PHE-based implementation of
the inference procedure.

• Residual Error Estimation - As was mentioned, both
labels and soft prediction results are a |C|-dimensional
vector, where |C| refers to the number of classes. Then,
SecureGBM estimates the residual errors of the current
model using the cross-entropy as follow

εki ← H(yki) + DKL

(
yki ||Yi(D1)

)
, ∀i ∈ Bk. (4)

Note that to secure the security of labels, yki and εki for
∀i ∈ Bk are all stored in the owner of D1.

• Secure Tree Creation and Ensemble - Given the
residual error estimated εki , ∀i ∈ D1 ∩D2, SecureGBM
boosts the learned model Fk through creating a new
decision tree hk that fits the residual errors εki using the
features of both datasets X(D1) ∪X(D2) in an additive
manner. SecureGBM then ensembles hk with the current
model Fk and obtains the new model Fk+1 through
gradient boosting [12]. As was mentioned in Eq. (2),
a specific learning rate α has been given as the weight for
model ensembling. Please see also in Section III.B.2 for
the detailed design and implementation of Secure Splits
Search Operation for decision tree creation based on PHE.

2) Inference Procedure via Execution Flow Compilation:
Given the model learned after K iterations, denoted as
FK , the inference component first complies all these trees
into distributed secure execution flow, where the nodes in
every decision trees are assigned to the corresponding parties
respectively. As shown in Figure 2, all communications,
computation and binary comparisons are protected through
SEAL-based Homomorphic Encryption schemes. With the
secure distributed execution flow, given a index of sample
e.g., i′ ∈ I(D′1) ∩ I(D′2), SecureGBM runs the inference
procedure over the execution flow. Please see also in Section
III.B.3 for he design and implementation of PHE-based Binary
Comparison Operator. Note that in our research, we assume the
party B has no way to access the labels of training and testing
samples, while securing the monopoly of the label information
at the party A side. To protect the label information through
the inference, the result of PHE-based Binary Comparison
Operator (i.e., true or false) has been secured and cannot be
deciphered by the party A.

Furthermore, for the sample with index that is contained
in I(D′1) only, i.e., i′ ∈ I(D′1)\I(D′2), SecureGBM would
first learn a comprehensive GBM (LightGBM classifier) based
on the dataset D1 using the features X(D1) and labels Y (D1)
only. With such model, SecureGBM makes prediction for the
samples in I(D′1)\I(D′2) all using the features in X(D′1).

Please note that the overall framework of SecureGBM is
derived from the vanilla implementation of LightGBM [18],
while most of calculation and optimization to gradient boost-
ing trees [12] has been preserved with coverage of partial
homomorphic encryption.

D1 D2D1 D2

ResidualInitialize Residual

DATASETS Secure Splits Search for Tree Creation

Update Update
MODEL MODEL MODELD1 D2

Secure Splits Search for Tree Creation

Gradient Boosting : Incremental Ensemble of Learned Trees

Fig. 1: The Training Procedure of SecureGBM

Trees Learned by GBM

… …

Classification Outputs

Compile

Execution Flow

softmax

Fig. 2: Execution Flow Compilation for the Inference Procedure

B. Key Algorithms

Here, we present the detailed design of several key algo-
rithms.

1) Secure Join for Sample Alignment: To align the samples
with identical indices across the two index sets I(D1) and
I(D2) for training (and I(D′1) and I(D′2) for inference),
SecureGBM intends to obtain the intersection between the
two index sets in a private and secure manner. Specifically, we
adopt the private sets intersection algorithms proposed in [30],
[31] to achieve the goal. The security and privacy eniforcement
of proposed component highly relies on the techniques called
Obvious Transfer Extension (OT Extension), which supports
fast and private data transfer for small payloads with limited
overhead [32]. The use of OT Extension can avoid the use of
time-consuming error correcting code but instead accelerate the
secure data transmission through leveraging a pseudo-random
code. We also tried other OT extension based private sets
intersection algorithm, such as the one using Bloom Filter [33].
The speed and scalability is not as good as [30], [31].

2) Secure Splits Search for Tree Creation: For each round of
iteration (e.g., the kth iteration), SecureGBM needs to create
a decision tree with the size t (here t refers to the number of
learned split nodes in the tree) to fit the “residual error” of the
model that is already estimated Fk, as as to enable the gradient
boosting mechanism. Specifically, we adopt a leaf-wise tree
growth mechanism that was derived from LightGBM [18] to
learn the tree, where SecureGBM vertically grows the tree

using totally t rounds of computation/communication, and it
always picks up the leaf node with maximal “residual error”
reduction to grow.

In each round of computation for the decision tree creation,
for the party A owning features X(D1) and labels Y (D1),
SecureGBM searches new splits using the raw data. Similar
to vanilla LightGBM, SecureGBM selects the “best” split
with the maximal residual error reduction for the samples in
the mini-batch Bk as the a candidate of the split at the party
A side. This candidate split would be compared to the “best”
splits from the party B as the final split selection for this round.

On the other hand, for the party B only occupying features
X(D2), SecureGBM first propose a set of potential splits
in X(D2) (in a random or unsupervised manner), and sends
the potential classification results of the samples in Bk using
every proposed split to the party A. Note that the potential
classification results have been formed into multiple sets
of samples (or sample index), which have been categorized
according to their results. Such sets have been encrypted as
private sets to protect the privacy of label information from
the party B. Certain secure domain isolation has been used to
protect the splits [34].

Then, at the party A side, SecureGBM estimates the residual
errors of each split proposed by the party B using their potential
classification results. Specifically, SecureGBM leverage the
aforementioned private set intersection algorithm to estimate
the overlap between the sample sets categorized using potential
classification results and the true labels, in order to obtain the
prediction results and estimate the accuracy [30], [31]. Finally,
SecureGBM selects the split (the best splits from A versus B)
that can further lower residual error as the split in this round
and “adds” the split to the decision tree.

To further secure the privacy of label information, the splits
at the party B are deployed in an isolated domain, while the
party B cannot obtain the decision making result of splits.
Please refer the section in below for the implementation of the
binary comparison.

3) Secure Binary Comparison for Decision Making: As was
mentioned, SecureGBM operates an isolated domain over the
machines at the party B, where the computation and comparison

criterion for decision making are all stored in the isolated
domain, which is trusted by both parties. To further secure
the label information and prediction results during inference,
SecureGBM uses the public keys generated the party A to
encrypted the decision making results from B, while the public
keys keep being updated per inference task.

C. Discussion and Remarks

In this section, we intends to justify the proposed framework
and algorithms from costs and learning perspectives.

Communication Costs - In SecureGBM, we replaced the
gradient boosting mechanism used by GBM with stochastic
gradient boosting [13], in order to accelerate the learning
procedure through lowering the computational/communication
costs per iteration. Let denote N = |I(D1) ∩ I(D2)| as the
total number of aligned samples shared by D1 and D2, while
the size of batch for each iteration is defined as b = |Bk|.

For each iteration of GBM and SecureGBM, there needs to
create a t-sized decision tree after t rounds of communication
between the two parities. For each round of such communi-
cation, GBM and SecureGBM need to exchange data with
payloads size of O(N 2) and O(b2), respectively. In this way,
the cost of communication per iteration should be O(t · N 2)
and O(t · b2) for GBM and SecureGBM.

Statistical Acceleration - To simplify our analysis on the
statistical performance, we make an mild assumption that con-
siders the learning procedure of LightGBM and SecureGBM
as the gradient descent (GD) and stochastic gradient descent
(SGD) based loss minimization over certain convex loss [12],
[13], [35]. Under mild convexity and smoothness conditions,
GD and SGD would converge to the minimum of the loss
functions at the error convergence rate [36]–[38] of O(1/k)
and O(1/

√
k) respectively, where k denotes the number of

iterations. More discussion can be found in [35]. While the costs
of each iteration are O(t · N 2) and O(t · b2) respectively, we
can roughly conclude a trade-off exists between the statistical
performance and communication complexity for SecureGBM
Training.

IV. EXPERIMENTS AND RESULTS

In this section, we mainly report the experiments that evaluate
SecureGBM, and compares the performance of SecureGBM
with other baseline methods including vanilla LightGBM,
XGBoost, and other downstream classifiers.

A. Experimental Setups

In this section, we present the dataasets, baseline algorithms
as well as tbe experimental settings of our evaluation study.

1) Datasets: In our study, we intend to evaluate
SecureGBM using three datasets as follow.
• Sparse - This is a private dataset consisting of 11,371

users’ de-anonymized financial records data, where each
sample with 8,922 extremely sparse features and a binary
label. These features are separately owned by two parties
— the bank is with 5,000 features and the real estate
loaner owns the rest 3,922 features, while the bank owns

the label information about bankruptcy. The goal of this
dataset is to predict the bankruptcy of a user, incorporating
their sparse features distributed in the two parties. As the
dataset is quite large, we set the mini-batch size b as
the 1% of the overall training set. Note that the labels in
Sparse are extremely imbalanced, while most samples are
negative.

• Adult - This an open-access dataset consisting of 27,739
web pages’ information, where each web page is with
123 features and 1 binary label (whether the web page
contains adult contents). We randomly split the features
into two sets, each of which is with 61 and 62 features
respectively. As this dataset is quite small, we use the
whole dataset for each iteration i.e., b = 100% of the
overall training set.

• Phishing - This an open-access dataset consisting of
92,651 web pages’ information, where each web page
is with 116 features and 1 binary label (whether the
web page contains phishing risk). We randomly split the
features into two sets, each of which is with 58 features
respectively. As this dataset is comparatively large, we use
the the mini-batch with b = 10% of the overall training
set.

2) Baseline Algorithms with Settings: To understand the
advantage of SecureGBM, we compare SecureGBM with
the baseline algorithms in below.

• LightGBM - We consider the vanilla implementation
of LightGBM as a key baseline algorithm, where we
include two settings LightGBM-A and LightGBM-(A,B).
LightGBM-A refers to the LightGBM that is trained
using the features and labels in the dataset A only,
while LightGBM-(A,B) refers to the vanilla distributed
LightGBM that is trained using the both datasets in A
and A, without encryption protection. Finally, we also
include a baseline LightGBM-B∗ that might not exist in
the real-world settings — LightGBM-B∗ aggregates the
features from the party B and label information from A
as the training dataset. The comparison to LightGBM-
A and LightGBM-B∗ would show the information gain
of federated learning beyond the model that was trained
using any single party.

• XGBoost - Following the above settings, we include
two settings XGBoost-A and XGBoost-(A,B). XGBoost-
A refers to the vanilla XGBoost that was trained using
the features and labels in the dataset A only, while
XGBoost-(A,B) refers to the vanilla XGBoost trained
through aggregating the both datasets from A and B, in
a centralized manner. Similarly, XGBoost-B∗ that was
trained through aggregating the features from the party
B and label information from A was given a baseline to
demostrate the information gain of collaboration.

• LIBSVM - Following the same settings, we include two
settings LIBSVM-A and LIBSVM-(A,B). LIBSVM-A
refers to the vanilla LIBSVM that is trained using the
features and labels in the dataset A only, while LIBSVM-

TABLE I: Overall Classification AUC (%) Comparison (N/A: During the experiments, LightGBM reported failure to train the
model due as the features of the given datasets are too sparse to learn.)

Sparse Adult Phishing
Methods Training Testing Training Testing Training Testing

SecureGBM 93.227 66.220 92.465 90.080 62.855 61.823
Using the Aggregated Datasets from A and B

LightGBM-(A,B) 96.102 68.528 92.199 90.145 67.994 63.430
XGBoost-(A,B) 93.120 67.220 91.830 89.340 67.090 61.990

LIBSVM-Linear-(A,B) 73.490 64.560 58.641 59.280 50.073 50.980
LIBSVM-RBF-(A,B) 79.850 63.210 75.549 72.060 52.789 47.479

Using the Single Dataset at A
LightGBM-A N/A* N/A* 89.849 88.052 64.693 59.743

XGBoost-A 65.170 57.370 89.490 87.620 64.070 59.740
LIBSVM-Linear-A 52.360 50.675 66.293 34.347 50.007 50.489

LIBSVM-RBF-A 56.740 52.380 72.909 55.076 50.248 50.306
Using the Datasets that aggregate Features from B and Labels from A (Not exist in the real case)

LightGBM-B* 96.102 68.528 85.708 84.587 62.396 58.929
XGBoost-B* 93.190 67.390 85.700 85.410 61.720 58.420

LIBSVM-Linear-B* 67.480 60.990 46.527 46.840 50.627 48.567
LIBSVM-RBF-B* 78.230 64.880 56.927 74.987 50.336 50.415

(A,B) refers to the vanilla XGBoost that is trained using
the both datasets in A and A, in a centralized manner.
Similarly, SVM-B∗ that was trained through aggregating
the features from the party B and label information from
A was given a baseline. More specific, the LIBSVM
algorithms with RBF kernel and linear SVM are used
here.

Note that in all experiments, 80% samples are used for training
and the rest 20% samples are remained for testing. The training
and testing sets are randomly selected for 5-folder cross
validation. The default learning rate for LightGBM, XGBoost
and SecureGBM are all set to 0.1.

B. Overall Performance

To evaluate the overall accuracy of SecureGBM, we
measured the Area Under Curve (AUC) of the SecureGBM
prediction results and compared to the baseline algorithms.
Table I presents the overall comparison on AUC achieved
by these classifiers under the same settings. SecureGBM,
LightGBM, and LIBSVM all have been trained using 200
iterations, where we measure the AUC on training and testing
datasets.

The result in Table I shows that, compared to LightGBM-
(A,B), SecureGBM achieved similar training and testing AUC
based on the same settings, while significant outperforming
LightGBM-A that used the single dataset of A. Furthermore,
under both settings, LightGBM performed better than XGBoost
in terms of testing AUC. Similar observations can be obtained
through the comparisons between LIBSVM and LightGBM.
In short, it is reasonable to conclude that multi-party gradient
boosting over two distributed datasets can significantly improve
the performance and outperforms the one that uses datasets
from the party A only.

Furthermore, the comparison to LightGBM-B* shows that,
except the experiments based on Sparse datasets, SecureGBM
significantly outperforms the one that aggregates the features
from B and labels from A. For the Sparse datasets, one can
easily observe that LightGBM-A failed to train the model,

when using the datasets on A only, as the features in A are
too sparse to learn. The comparison between LightGBM-(A,B)
and LightGBM-B* further demonstrates that the incorporation
of the features in A can not improve the performance of
LightGBM learning. Due to the same reason, SecureGBM
performed slightly worse than LightGBM-B* with marginal
testing AUC degradation.

We conclude SecureGBM boosts the testing accuracy of
learners from the party A perspectives, as (1) SecureGBM
consistently outperforms LightGBM-A, XGBoost-A and other
learners that uses datasets on A only; (2) The algorithms that
aggregates datasets from the both sides, such as LightGBM-
(A, B) or LightGBM-B*, only perform marginally better
than SecureGBM, while these algorithms scarifying the data
privacy of the two parties.

C. Case Studies

To further understand the performance of SecureGBM, we
traced back the the models obtained after each iteration and
analysis their accuracy from both accuracy and efficiency
perspectives.

1) Trends of Accuracy Improved per Iteration: Figure 3
presents the the comparison of training AUC and F1-score
per iteration, between SecureGBM versus vanilla LightGBM.
More specific, we evaluated the performance when t = 3, 4,
and 5 (as the LightGBM and SecureGBM use leaf-wise growth
strategy, t is equivalent to the depth of each decision tree
learned), where we clearly observed the error convergence of
the model.

It has been observed that, in most cases, the training F1-
score could be gradually improved with the increasing number
of iterations. For sparse and Adult datasets, the overall trends
of AUC and F1-score for LightGBM and SecureGBM were
almost same under all settings — even though, for Sparse
dataset, SecureGBM only used 1% training data as the mini-
batch for the model update per iteration (while LightGBM
used the whole). Furthermore, even though SecureGBM did
not perform as good as LightGBM for the Phishing dataset

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(a) t = 5 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(b) t = 4 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(c) t = 3 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(d) t = 5 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(e) t = 4 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(f) t = 3 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(g) t = 5 on Phishing

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(h) t = 4 on Phishing

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.55

0.6

0.65

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(i) t = 3 on Phishing

Fig. 3: The Comparison of Training AUC and F1-Score per Iteration SecureGBM vs. LightGBM-(A,B): : Labels in sparse
datasets (personal bankruptcy status) are imbalanced with most samples negative; in this case, the learned models are usually
imbalanced with very low recall and F1-score.

when t = 5 and 4, it still achieved decent performance
like LightGBM under the appropriately setting t = 3. Such
observations are quite encouraging that the use of mini-batch
seems to not hurt the learning progress of SecureGBM
for these datasets, with appropriate settings. The lines of
SecureGBM are with more jitters, due to the use of stochastic
approximation for statistical acceleration. Similar observations
have been obtained in the comparison of testing AUC and
F1-score per iteration which has been shown in Figure 4.

2) Time Consumption over Scale of Problem: To test the
time consumption of SecureGBM over varying scale of the
problem, we synthesize a dataset based on Sparse with increas-
ing number of samples. The experiment results showed that
the time consumption per iteration for the training procedure
of SecureGBM is significantly longer than LightGBM and

TABLE II: Time Consumption per Iteration (seconds) on a
Synthesized Dataset over Varying Number of Training Samples

Samples 1,000 2,000 4,000 8,000 16,000
SecureGBM 10.20 10.50 11.4 11.75 14.30

LightGBM 0.16 0.32 0.70 1.41 2.45
XGBoost 0.51 0.73 1.09 2.20 4.30

XGBoost.
We estimate the slowdown ratio of SecureGBM as the ration

between the time consumption per iteration for SecureGBM
versus vanilla LightGBM. The range of slowdown ratio is
around 3x∼ 64x in this experiment. Furthermore, with the num-
ber of samples increases, the slowdown ratio of SecureGBM
would decrease significantly. For example the ratio is around
63.75x when comparing SecureGBM to LightGBM with 1,000

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(a) t = 5 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(b) t = 4 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(c) t = 3 on Sparse

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(d) t = 5 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(e) t = 4 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(f) t = 3 on Adult

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(g) t = 5 on Phishing

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(h) t = 4 on Phishing

0 10 20 30 40 50 60 70 80 90 100

Training iteration

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

SecureGBM AUC
LightGBM AUC
SecureGBM F1

LightGBM F1

(i) t = 3 on Phishing

Fig. 4: The Comparison of Testing AUC and F1-Score per Iteration SecureGBM vs. LightGBM-(A,B): : Labels in sparse
datasets (personal bankruptcy status) are imbalanced with most samples negative; in this case, the learned models are usually
imbalanced with very low recall and F1-score.

training samples, while it is only 5.8 when compared to
LightGBM with 16,000 training samples. It is not difficult
to conclude that SecureGBM is quite time efficient due to
its statistical acceleration strategies used, SecureGBM would
become more and more efficient when the scale of training
set increases. The experiments are carried out using two
workstations based on 8-core Xeon CPUs and 16GB memory.
The two machines are interconnected with a 100 MBit cable
with 1.55ms latency.

V. DISCUSSION AND CONCLUSION

In this work, we present SecureGBM a secure multi-party
(re-)design of LightGBM [18], where we assume the view
(i.e., set of features) of the same group of samples has been
split into two parts and owned by two parties separately. To
collaboratively train a model while preserving the privacy of the

two parties, a group of partial homomorphic encryption (PHE)
computation models and multi-party computation protocols
have been used to cover the key operators of distributed
LightGBM learning and inference over two parties. As the
use of PHE and multi-party computation models cause hudge
computational and communication overhead, certain statistical
acceleration strategies have been proposed to lower the cost
of communication while securing the statistical accuracy of
learned model through stochastic approximation. With such
statistical acceleration strategies, SecureGBM would become
more and more efficient, with decreasing slowdown ratio, when
the scale of training datasets increases.

The experiments based on several large real-world datasets
show that SecureGBM can achieve decent testing accuracy
(i.e., AUC and F1-score) as good as vanilla LightGBM (based

on the aggregated datasets from the two parties), using a time
consumption tolerable training procedure (5x∼ 64x slowdown),
without compromising the data privacy. Furthermore, the
ablation study that compares SecureGBM to the learners,
which uses the single dataset from one party, showed that such
collaboration between two parties can improve the accuracy.

REFERENCES

[1] H. Chen and R. Cramer, “Algebraic geometric secret sharing schemes
and secure multi-party computations over small fields,” in Annual
International Cryptology Conference. Springer, 2006, pp. 521–536.

[2] M. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy
via aggregation of locally trained classifiers,” in Advances in Neural
Information Processing Systems, 2010, pp. 1876–1884.

[3] J. Bian, H. Xiong, W. Cheng, W. Hu, Z. Guo, and Y. Fu, “Multi-party
sparse discriminant learning,” in 2017 IEEE International Conference
on Data Mining (ICDM). IEEE, 2017, pp. 745–750.

[4] L. Tian and Q. Gu, “Communication-efficient distributed sparse linear
discriminant analysis,” arXiv preprint arXiv:1610.04798, 2016.

[5] B. Jayaraman, L. Wang, D. Evans, and Q. Gu, “Distributed learning
without distress: Privacy-preserving empirical risk minimization,” in
Advances in Neural Information Processing Systems, 2018, pp. 6343–
6354.

[6] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp.
49–67, 2015.

[7] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[8] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in International Conference on
Algorithmic Applications in Management. Springer, 2008, pp. 337–348.

[9] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in Advances in neural information processing systems, 2012, pp. 1223–
1231.

[10] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based distributed
optimization: Practical issues and applications in large-scale machine
learning,” in Communication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on. IEEE, 2012, pp. 1543–1550.

[11] P. Smyth, M. Welling, and A. U. Asuncion, “Asynchronous distributed
learning of topic models,” in Advances in Neural Information Processing
Systems, 2009, pp. 81–88.

[12] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[13] ——, “Stochastic gradient boosting,” Computational statistics & data
analysis, vol. 38, no. 4, pp. 367–378, 2002.

[14] L. Breiman, “Arcing the edge,” Technical Report 486, Statistics Depart-
ment, University of California at . . . , Tech. Rep., 1997.

[15] V. Sandulescu and M. Chiru, “Predicting the future relevance of research
institutions-the winning solution of the kdd cup 2016,” arXiv preprint
arXiv:1609.02728, 2016.

[16] D. Nielsen, “Tree boosting with xgboost-why does xgboost win" every"
machine learning competition?” Master’s thesis, NTNU, 2016.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[18] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in
Advances in Neural Information Processing Systems, 2017, pp. 3146–
3154.

[19] C. Gentry, “Computing arbitrary functions of encrypted data,” Communi-
cations of the ACM, vol. 53, no. 3, pp. 97–105, 2010.

[20] V. Vaikuntanathan, “Computing blindfolded: New developments in fully
homomorphic encryption,” in 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. IEEE, 2011, pp. 5–16.

[21] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter,
and M. Strand, “A guide to fully homomorphic encryption.” IACR
Cryptology ePrint Archive, vol. 2015, p. 1192, 2015.

[22] S. Halevi, “Homomorphic encryption,” in Tutorials on the Foundations
of Cryptography. Springer, 2017, pp. 219–276.

[23] R. A. DeMillo, “Foundations of secure computation,” Georgia Institute
of Technology, Tech. Rep., 1978.

[24] C. Gentry et al., “Fully homomorphic encryption using ideal lattices.”
in Stoc, vol. 9, no. 2009, 2009, pp. 169–178.

[25] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2010, pp. 24–43.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, p. 13, 2014.

[27] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing, vol. 43,
no. 2, pp. 831–871, 2014.

[28] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-
based,” in Annual Cryptology Conference. Springer, 2013, pp. 75–92.

[29] Z. Brakerski and V. Vaikuntanathan, “Lattice-based fhe as secure as
pke,” in Proceedings of the 5th conference on Innovations in theoretical
computer science. ACM, 2014, pp. 1–12.

[30] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on {OT} extension,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 797–812.

[31] ——, “Scalable private set intersection based on ot extension,” ACM
Transactions on Privacy and Security (TOPS), vol. 21, no. 2, p. 7, 2018.

[32] M. Keller, E. Orsini, and P. Scholl, “Actively secure ot extension with
optimal overhead,” in Annual Cryptology Conference. Springer, 2015,
pp. 724–741.

[33] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets big
data: an efficient and scalable protocol,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM,
2013, pp. 789–800.

[34] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1607–1619.

[35] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean, “Boosting algorithms
as gradient descent,” in Advances in neural information processing
systems, 2000, pp. 512–518.

[36] A. Shapiro and Y. Wardi, “Convergence analysis of gradient descent
stochastic algorithms,” Journal of optimization theory and applications,
vol. 91, no. 2, pp. 439–454, 1996.

[37] S. Shalev-Shwartz, “Stochastic convex optimization.” in COLT, 2003.
[38] O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal averaging schemes,” in
International Conference on Machine Learning, 2013, pp. 71–79.

	I Introduction
	II Preliminary Studies and Problem Definitions
	II-A Gradient Boosting and LightGBM
	II-B Homomorphic Encryption Models
	II-C Problems and Overall Design Goals

	III Frameworks and Algorithms Design
	III-A Overall Framework Design
	III-A1 Statistically Accelerated Training Procedure
	III-A2 Inference Procedure via Execution Flow Compilation

	III-B Key Algorithms
	III-B1 Secure Join for Sample Alignment
	III-B2 Secure Splits Search for Tree Creation
	III-B3 Secure Binary Comparison for Decision Making

	III-C Discussion and Remarks

	IV Experiments and Results
	IV-A Experimental Setups
	IV-A1 Datasets
	IV-A2 Baseline Algorithms with Settings

	IV-B Overall Performance
	IV-C Case Studies
	IV-C1 Trends of Accuracy Improved per Iteration
	IV-C2 Time Consumption over Scale of Problem

	V Discussion and Conclusion
	References

