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Abstract—Subgraph counting aims to count occurrences of
a template T in a given network G(V, E). It is a powerful
graph analysis tool and has found real-world applications in
diverse domains. Scaling subgraph counting problems is known
to be memory bounded and computationally challenging with
exponential complexity. Although scalable parallel algorithms are
known for several graph problems such as Triangle Counting and
PageRank, this is not common for counting complex subgraphs.
Here we address this challenge and study connected acyclic
graphs or trees. We propose a novel vectorized subgraph counting
algorithm, named SUBGRAPH2VEC, as well as both shared mem-
ory and distributed implementations: 1) reducing algorithmic
complexity by minimizing neighbor traversal; 2) achieving a
highly-vectorized implementation upon linear algebra kernels
to significantly improve performance and hardware utilization.
3) SUBGRAPH2VEC improves the overall performance over the
state-of-the-art work by orders of magnitude and up to 660x on
a single node. 4) SUBGRAPH2VEC in distributed mode can scale
up the template size to 20 and maintain good strong scalability.
5) enabling portability to both CPU and GPU.

Index Terms—Subgraph Counting, Vectorization, Portability

I. INTRODUCTION

Counting tree-like subgraphs from a large network is fun-
damental in graph problems. It has been used in real-world
applications across a range of disciplines, including:
• Social network analysis: Online social network has

billion- or trillion-sized network, where a certain group
of users may share specific interests [1] [2].

• Bioinformatics: The frequency or distribution of the oc-
currence of each different testing templates may char-
acterize a protein-protein interaction network [3] [4],
where repeated subgraphs are crucial in understanding
cell physiology as well as developing new drugs. [5]

• Computing kernel of other algorithms: Sub-tree counting
is one of the computing kernels of bounded treewidth
subgraph (such as circles, cactus graphs, series-parallel
graphs etc.) counting problem[6] and also the kernel of
network clustering [7].

Despite subgraph counting plays an important role in dis-
covery of patterns in a graph network, counting the exact
number of subgraphs of size k in a n-vertex network takes
O(nk) time [4], which is computationally challenging even

for moderate values of n and k. In fact, determining whether
a graph G contains a subgraph to H is a related graph
isomorphic problem that is NP-complete [8].

Alon et al. [9] provides an approximate algorithm, color-
coding, to estimate the number of subgraphs with statistical
guarantees. Although the color-coding algorithm in [3] has
a time complexity linear in network size, it is exponential
to subgraph size. Therefore, efficient parallel implementations
are the only viable way to count subgraphs from large-scale
networks. To the best of our knowledge, a multi-threaded
implementation named FASCIA [4] is considered to be the
state-of-the-art work in this area. Still, it takes FASCIA more
than 4 days (105 hours) to count a 17-vertex subgraph from the
RMAT-1M network (1M vertices, 200M edges) on a 48-core
Intel (R) Skylake processor. While our proposed algorithm
named SUBGRAPH2VEC takes only 9.5 minutes to complete
the same task on the same hardware.

The primary contributions of this paper are as follows:
• Algorithmic Design. We identify and reduce the com-

putation complexity of the sequential color-coding algo-
rithm, which also helps reduce communication overhead
in distributed systems.

• System design and optimization. We design a data
structure as well as a thread execution model to leverage
the hardware efficiency of using linear-algebra kernels
in terms of vector processing units (VPU) and memory
bandwidth.

• Portability to the distributed system and GPU We
scale out our single node implementation on a distributed
system with near-linear strong scalability. In addition, we
export the codes to NVIDIA GPU by using NVIDIA
cuSPARSE kernels thanks to our modular system design.

The codebase of our work on SUBGRAPH2VEC is made public
in our open-sourced repository [10].

II. PRELIMINARIES

A. Motivation

Counting repeated subgraphs (motifs) can be used to mea-
sure topological features and further reveal the similarity of
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any given two networks. Fig. 1 illustrates such a real-world ap-
plication in protein-protein interaction network (PPIN), where
we use SUBGRAPH2VEC to count tree-like motifs in Fig. 6(a)
to estimate their frequencies. We compared the PPI networks
of humans[11], yeasts, C. elegans[12], and E. coli[13], and we
have findings on the normalized treelet distributions for the
unicellular organisms: Ecoli and yeasts are very close, while
the more complex C. elegans (a kind of worm) is significantly
different.
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Fig. 1: A comparison of treelet distributions of five PPIN
networks by SUBGRAPH2VEC

As PPINs usually include many false (positive and negative)
and missing interactions[3] in practice, an occurrence of a
specific treelet may include additional (or missing) edges in
different networks. Counting non-induced subgraph is more
suitable to obtain reliable and robust results[3]. In Fig. 6(a),
we show 47 unlabeled treelets with similarity. They have the
same size of 9 vertices but vary slightly in topology. Note
that an induced subgraph of a graph G(V,E) is a subset of
the vertices of the graph G(V,E) as well as with any edges
connecting pairs of vertices in that subset. There are many
more non-induced subgraphs isomorphic to a given topology
as they allow missing edges among vertex pairs. Thus, it is
challenging to count non-induced subgraphs of a network.

B. Statement of Problem

1) Subgraph Counting: Subgraph finding and counting is a
widely studied subject. A (non-induced) subgraph of a simple
unweighted graph G(V,E) is a graph H(VH , EH) satisfying
VH ⊂ V and EH ⊂ E. H is an embedding of a template graph
T if T is isomorphic to H . The subgraph counting problem
is to count the number of all embeddings of a given template
T in a network G. We use emb(T,G) to denote the number
of all embeddings of template T in network G.

2) Color coding: Color coding [9] is an algorithmic tech-
nique to discover network motifs. Given a k-node template T ,
it assigns random colors between 0 and k−1 to each vertex of a
network graph G, and it counts the number of the occurrences
of colorful embedding, which is isomorphic to T while having
distinct colors on each vertex. Both theoretical proof [9],
[14], [6] and experiments [3], [15] show that, with proper
normalization, the count of colorful embeddings is an unbiased
estimator of the actual count of embeddings. Alon et al. [9]
proved a guarantee of bounding the count by (1±ε)emb(T,G)

with a probability of 1−2δ after running at most N iterations
of the algorithm.

Fig. 2: Illustration of the template partitioning within a colored
input G = (V,E)

C. Counting Tree-like Subgraph

By applying color coding, [3] provides a fixed parameter
tractable algorithm to address the subgraph counting problem
where T is a tree. It has a time complexity of O(ckpoly(n)),
which is exponential to template size k but polynomial to ver-
tex number n. Algorithm 1 describes the standard sequential
algorithm with definition and notation shown in Table I, which
contains three important steps as follows.

Algorithm 1: Standard Sequential Algorithm

1 N = O( e
k log(1/δ)

ε2
) // required iterations to

converge
2 Partition T into sub-templates Ts
3 for j = 1 to N do
4 color all Vi ∈ G(V,E) randomly
5 counting Ts in a dynamic programming procedure
6 P ← probability that the template is colorful
7 α← number of automorphisms of T0

8 finalCount[j]← 1
Pα

∑
i

∑
C M0(i, IC)

9 Output the average of all finalCount.

1) Random Coloring: Each vertex v ∈ G(V,E) is given
an integer value of color randomly selected between 0 and
k− 1, where k ≥ |VT | (we consider k = |VT | for simplicity).
G(V,E) is therefore converted to a labeled graph.

2) Template Partitioning: For tree-like templates, we can
recursively partition T into a chain of sub-templates Ts until
the sub-template containing only one vertex When partitioning
a template T , a single vertex ρ is selected as the root while
Ts(ρ) refers to the s-th sub-template rooted at ρ. Secondly,
one of the edges (ρ, τ) adjacent to root ρ is cut, creating two
child sub-templates. The child holding ρ as its root is named
active child and denoted as Ts,a. The child rooted at τ of the
cutting edge is named passive child and denoted as Ts,p.

3) Dynamic Programming: Algorithm 2 describes the dy-
namic programming procedure to count partitioned template T
from the randomly colored G(V,E). For bottom sub-template
|Ts| = 1, Ms(i, Is) is 1 only if Cs equals the color randomly
assigned to Vi, and otherwise it is 0. For non-bottom cases
where |Ts| > 1, we obtain Ms(i, Is) by multiplying the count



Algorithm 2: Dynamic Programming in Standard Se-
quential Algorithm

input : G(V,E), T
output: Ms

1 forall sub-templates Ts in reverse order of their partitioning
do

2 if Ts consists of a single vertex then
3 forall Vi ∈ V do
4 Ms(i, color of Vi)← 1

5 else
// Ts has an active child Ts,a and a
passive child Ts,p

6 forall vertices Vi ∈ V do
7 forall color sets Cs satisfying |C| = |Ts| do
8 forall color sets Cs,a and Cs,p created by

splitting Cs satisfying |Cs,a| = |Ts,a| and
|Cs,p| = |Ts,p| do

9 Ms(i, Is)←∑
Vj∈N(Vi)

Ms,a(i, Is,a)Ms,p(j, Is,p)

values from its two children, which have been calculated in
previous steps of dynamic programming.

TABLE I: Definitions and Notations

Notation Definition

G(V,E) or G The input network
AG |V | × |V | sparse adjacency matrix of G(V,E)
N(Vi) or N(i) Neighbors of vertex Vi
T , Ts The input template and the s-th sub-template
|Ts| Number of vertices in Ts
Ts,a, Ts,p Active and passive child of Ts
n n = |V | is the number of vertices in G
k k = |VT | is the number of vertices in T
Cs Color set for Ts
Ms |V | ×

( k
|Ts|

)
dense matrix to store counts for Ts

Ms,a, Ms,p Dense matrix to store counts for Ts,a, Ts,p
B B = AGMs,p, the sum of the counts of all neighbors.
ICs or, Is Column index of color set Cs

III. RELATED WORK

The graphlet frequency distance was proposed by Przulj et.
al[16] as a global comparative measure based on the local
structural characteristics of different networks. Bordino et al.
[7] demonstrates that one can use the relative frequency of
subgraphs within networks to distinguish and cluster different
networks.

A tree subgraph enumeration algorithm by combining color
coding with a stream-based cover decomposition was devel-
oped in [17]. To process massive networks, [18] developed a
distributed color-coding based tree counting solution upon the
MapReduce framework in Hadoop, [19] implemented an MPI-
based solution, and [20] [21] pushed the limit of subgraph
counting to process billion-edged networks and trees up to
15 vertices. [22] developed a coloring method that achieves a
provable confidence value in a small number of iterations.

[9] proved that color-coding could apply to subgraph count-
ing problems, where the template is a tree, a cycle, or any

graph with bounded treewidth. [6] is a color-coding implemen-
tation applying to all templates with a treewidth of no more
than 2. Beyond counting trees, a sampling and random-walk
based technique [23][2] could count graphlets, small induced
graph with size up to 4 or 5.

Other subgraph topics include: 1) subgraph finding. As
in [24], paths and trees with size up to 18 could be de-
tected by using multilinear detection; 2) Graphlet Frequency
Distribution estimates relative frequency among all subgraphs
with the same size [25]; 3) clustering networks by using
the relative frequency of their subgraphs [26]. Subgraph
Matching finds and enumerates all isomorphic subgraphs to
a given template from input network. [27] contributes an
online algorithm to query subgraph templates from billion-
node network by using intelligent graph exploration to replace
expensive join operations. [28] compares and summarizes
subgraph isomorphism algorithms in graph databases. Later
on [29] improves the performance of subgraph matching
up to three orders of magnitude by postponing the Cartesian
products based on the structure of a query to minimize the
redundant Cartesian products. [30], [31] provides a pruning
method on labeled networks and graphlets to reduce the vertex
number by orders of magnitude prior to the actual counting.

IV. ALGORITHMIC DESIGN OF SUBGRAPH2VEC

Unlike standard sequential algorithm in Algorithm 2, we
decouple the dynamic programming into two stages, as shown
in Algorithm 3: 1) A vertex-neighbour traversal stage, and 2)
A counts updating stage. This design brings a two-fold benefit.
First, it helps us identify and remove redundant computation
and thus reduce the complexity of Algorithm 2, and secondly
it enables us to apply the optimization on system design.

In Algorithm 2, it requires
( |T |
|Ts|
)( |Ts|
|Ts,a|

)
times of vertex

neighbor traversal for each Vi from line 7 to 9. However, we
find that redundancy of traversal exists as shown in Figure 3,
where it counts a two-vertex sub-template with a total of

Fig. 3: Identify the redundancy of standard color coding in a
two-vertex sub-template Ts.

three colors. The left case and the middle case have the
same color set (the same Is,p) assigned to their passive child
Ts,p, which causes redundant access to Ms,p(j, Is,p) when
traversing neighbor vertices.

On the contrary, SUBGRAPH2VEC proposes a novel way
to accomplish the vertex neighbor traversal described from 1
to 4 of Algorithm 3:

1) The vertex neighbor traversal is decoupled from line 9
of Algorithm 2.



Fig. 4: Decouple the vertex neighbor traversal from updating of
the count value according to distributive property of addition
and multiplication in Equation 1.

Algorithm 3: Dynamic Programming in SUB-
GRAPH2VEC

input : G(V,E),Ms,p, Ts
output: Ms: matrix storing traversal results

1 for Vi ∈ G(V,E) do
2 for color sets Cs,p satisfying |Cs,p| = |Ts,p| do
3 forall Vj ∈ N(Vi) do
4 B(i, Is,p)← B(i, Is,p) +Ms,p(j, Is,p)

5 for Vi ∈ G(V,E) do
6 for color set Cs satisfying |Cs| = |Ts| do
7 for color sets Cs,a, Cs,p split from Cs do
8 Ms(i, Is)←Ms(i, Is) +Ms,a(i, Is,a)B(i, Is,p)

2) Only
( |T |
|Ts,p

)
times of traversal is applied on each vertex.

According to distributive property of addition and multiplica-
tion, line 9 of Algorithm 2 can be re-written as∑

Vj∈N(i)

Ms,a(i, Is,a)Ms,p(j, Is,p)

= Ms,a(i, Is,a)
∑

Vj∈N(i)

Ms,p(j, Is,p)
(1)

, where the first item Ms,a(i, Is,a) at right-hand only
contains count values of Vi while the second item∑

Vj∈N(i) Ms,p(j, Is,p) only involves traversing neighbors of
Vi. This decoupled design enables a caching and re-using of
the traversal results (the summation of Ms,p(j, Is,p) shown in
Figure 4), which allows us to reduce the traversal times.

The second stage of SUBGRAPH2VEC is to update the
count values by multiplying Ms,a(i, Is,a) and B(i, Is,p), and
both of them are local to vertex i, which improves data locality
and allows a vectorized computation when compared to the
standard sequential Algorithm 2 where the non-consecutive

indices of i and j at line 9 do not meet the requirement of
SIMD paradigm.

V. SYSTEM DESIGN OF SUBGRAPH2VEC

We propose a new scheme in SUBGRAPH2VEC to achieve
two goals: 1) Vectorize [32] both stages in Section IV.
2) Transform and leverage the vectorized codes into BLAS
kernels.

A. Vectorize Vertex-Neighbor Traversal
SUBGRAPH2VEC utilizes an adjacency matrix, notated as

AG, to store input network G(V,E) in Sparse Row Com-
pressed (CSR) format. AG is a sparse 0-1 matrix satisfying
AG(i, j) = 1 if and only if Vj ∈ N(Vi). Correspondingly, we
re-write line 1 to 4 of Algorithm 3 by Algorithm 4, where for
each Is,p, we schedule loops of Vi to threads while each thread
is vectorizing its own work. We observe that j has successive

Algorithm 4: Vectorized Vertex-Neighbor Traversal in
SUBGRAPH2VEC

input : AG, Ts,Ms,p

output: B
1 forall color sets Cs,p satisfying |Cs,p| = |Ts,p| do
2 forall Vi ∈ AG do // loop is scheduled to

threads
3 forall j = AG.rowIdx[i] to AG.rowIndex[i+ 1]

do
// thread workload is vectorized

4 B(i, Is,p)← B(i, Is,p) +
AG.val[j]Ms,p(AG.colIdx[j], Is,p)

values from AG.rowIdx[i] to AG.rowIdx[i+ 1] resulting in
coalesced data access to three dense arrays of AG. Unfor-
tunately, AG.colIdx[j] does not guarantee successive values
due to the sparsity of AG. However, advanced compilers still
provide partial vectorization support to this indexed access
pattern. We will introduce our customization in addressing this
partial vectorization issue in Section V-C.

B. Vectorize Count Updating
In Algorithm 3, counting templates at line 8 cannot be

vectorized because the indices are not successive. To address
this issue, we propose a new scheme illustrated in Figure 5.

1) Change memory layout from row-majored order to
column-majored order.

2) All threads are working on same columns of
Ms,Ms,a,Ms,p concurrently and processing the ma-
trices column by column.

3) All rows of a column are evenly distributed to threads.
4) Each thread vectorizes the work on its own portion of

rows.
Compared to Algorithm 2, the length of vectorization is
converted from

( |T |
|Ts|
)

to the million-level number of vertices in
G(V,E), which is sufficient to utilize the hardware fully and
invariant to different sub-templates. Furthermore, the stride
one regular memory access is efficient in prefetching data from
memory to cache lines.



Fig. 5: Comparing the thread execution order, where (a) Graph traversal Model counts data stored in memory with a row-majored
layout, and (b) SUBGRAPH2VEC (Vectorized Model) counts data stored in memory with a column-majored layout.

C. Invocation of Linear Algebra Kernels

Compared to the graph traversal model, SUBGRAPH2VEC
is designed to be portable among hardware platforms while
keeping high-performance. The vectorized vertex neighbor
traversal module in Algorithm 4 mathematically equals to
an operation of sparse matrix dense vector multiplication
(SpMV), which is an essential sparse linear solver on different
hardware platforms. Correspondingly, line 8 of Algorithm 3
equals an element-wised multiplication and addition of dense
vectors (eMA). A complete SUBGRAPH2VEC made of SpMV
and eMA kernels is described in Algorithm 5, which also
applies in-place storage of the SpMV results from the column
vector buffer B back to Ms,p to reduce the memory footprint.

To achieve better kernel performance than by using public
libraries, we customize both of SpMV and eMA kernels.
For SpMV, we combine a bundle of SpMV operations in
Algorithm 5 into a Sparse matrix dense matrix (SpMM)
operation shown in Algorithm 6, where the right-hand dense
matrix is Ms,p. To save peak memory utilization, we also split
columns of Ms,p into batches with pre-selected batch size.
To improve the load balancing and data locality, we utilize
a split compressed sparse column (CSC-Split) format instead
of the default compressed sparse row (CSR) format that is
widely used by public libraries. CSC-Split format converts
the standard CSC format into a fixed number of partitions.
Entries of CSC matrix are distributed to a partition when their
row IDs fit into a pre-defined range of that partition. Inside
a partition, the entries are ordered by their column IDs of
CSC format, and therefore entries sharing the same column
ID and adjacent row IDs are bundled together to improve the
data locality and cache usage. Meanwhile, we store batches
of right-hand vectors from Ms,p in a row-majored memory
layout, and we set up the batch size to the maximal concurrent
element number of the hardware SIMD unit. Finally, when a
partition is assigned to a thread, the thread processes its entries
one by one while vectorizing the computation work on a batch
of row entries from Ms,p.

To customize the eMA kernel, we utilize Intel (R) AVX
intrinsics, where multiplication and addition are implemented
by using the fused multiply-add (FMA) instruction, which

Algorithm 5: SUBGRAPH2VEC with Linear Algebra
Kernels

input : AG, T, ε, δ
output: A (ε, δ)-approximation to emb(T,G)

1 N = O( e
k log(1/δ)

ε2
) // required iterations to

converge
2 Partition T into sub-templates Ts
3 for j = 1 to N do
4 forall Vi ∈ G(V,E) do
5 Color Vi by a value randomly drawn from 1 to

k = |T |
6 for s = 0, 1, . . . , S − 1 do
7 forall color sets Cs,p satisfying |Cs,p| = |Ts,p| do
8 B← AGMs,p(:, Is,p) // SpMV kernel

9 Ms,p(:, Is,p)← B // Sum of neighbor
counts

10 forall color sets Cs satisfying |Cs| = |Ts| do
11 Ms(:, Is)← 0
12 forall color sets Cs,a and Cs,p, created by

splitting Cs satisfying |Cs,a| = |Ts,a| and
|Cs,p| = |Ts,p| do

13 Ms(:, Is)←Ms(:, Is) +Ms,a(:
, Is,a)�Ms,p(:, Is,p) // eMA
kernel

14 P ← probability that the template is colorful
15 α← number of automorphisms of T0

16 finalCount[j]← 1
Pα

∑
i

∑
C M0(i, IC)

17 Output the average of all finalCount.

cuts the computation instructions by half. In addition, there
are already substantial research work in developing high-
performance linear algebra kernels. The invocation of linear
algebra kernels in SUBGRAPH2VEC benefits from: 1) using
formats and kernel implementations tailored for different input
datasets; 2) increasingly improved kernel performance on
various hardware platforms.

VI. EXPERIMENTS AND RESULTS

A. Datasets and Templates

The datasets in our experiments are listed in Table II, where
E.coli [13], Worm [12] and Yeast [12] are from Biology;



Algorithm 6: CSCSplit SpMM for sub-template Ts in
SUBGRAPH2VEC

input : AG,Ms,p, sIdx,BSize, SplitPars
output: Out

1 forall Par ∈ SplitPars do // partition per
thread

2 forall e ∈ Par do // workload per thread
3 for j = sIdx, . . . , sIdx+BSize do
4 Out(e.rowId, j)← Out(e.rowId, j) +

AG(e.rowId, e.colId)Ms,p(e.colId, j)
// rowId, colId are row and
column indices in CSC-Split
compressed sparse format

Graph500 Scale=20, 21, 22 are collected from [33]; Miami,
Orkut, and NYC are from [34] [35] [36]; RMAT are widely
used synthetic datasets generated by the RMAT model [37],
where we increase parameter K to generate datasets with
increasingly skewed degree distribution. Figure 6(a) shows
all the templates with 9 nodes. The template in Figure 6(b)
is from [4], and the templates with more than 12 nodes are
randomly selected. The script used to generate the templates
can be found in our open-sourced repository [10].

(a) For protein-protein interaction networks comparison

(b) For Social networks, Graph500 and Synthetic data comparison

Fig. 6: Templates used in the experiments

B. Hardware and Software

In the experiments, we use: 1) a single node of a dual-socket
Intel(R) Xeon(R) CPU E5-2670 v3 (architecture Haswell), 2)
a single node of a dual-socket Intel(R) Xeon(R) Platinum 8160
CPU (architecture Skylake-SP) processors, and 3) a single
node of Tesla V100 SXM2 paired with an Intel(R) Xeon(R)
CPU E5-2630 v4. More details of the testbed hardware as well
as the computation environment are released in the Artifact
Description file.

We use the following implementations.
• FASCIA implements the graph traversal model of color-

coding algorithm with multi-threading on a single CPU
[4], which serves as a performance baseline.

• SUBGRAPH2VEC implements SUBGRAPH2VEC on
CPU by using our in-house CSC-Split format with a
SpMM kernel and eMA kernel (threaded by OpenMP).
It is the default implementation of SUBGRAPH2VEC and
supports distributed systems.

• SUBGRAPH2VEC-MKL implements SUBGRAPH2VEC
on a single CPU by using CSR based SpMV kernel from
Intel MKL and eMA kernel (threaded by OpenMP). It
also supports distributed systems.

• SUBGRAPH2VEC-cuSPARSE SUBGRAPH2VEC on
GPU by using CSR based SpMV kernel from NVIDIA
cuSPARSE and eMA kernel (threaded by CUDA).
Supports distributed systems by using the CSR format
API from distributed mode of SUBGRAPH2VEC-MKL.

Binaries on CPU are compiled by the Intel(R) C++ compiler
for Intel(R) 64 target platform from Intel(R) Parallel Studio
XE 2019, with compilation flags of “-O3“, “-xCore-AVX2”, “-
xCore-AVX512”, and the Intel(R) OpenMP. Binaries on GPU
are compiled by CUDA release 9.1 (V9.1.85). The distributed
binaries are compiled by Intel MPI 2019. We use, by default,
a thread number equal to the physical core number of CPU,
i.e., 48 threads on a Skylake node and 24 threads on a
Haswell node. The threads are bind to cores with a spread
affinity. For GPU, we use a thread block with a size of 1024
for the eMA kernel. For kernel invoked by Intel MKL and
NVIDIA cuSPARSE, we use the default setup. We mainly
use the SUBGRAPH2VEC to evaluate our work except for
Section VI-G, where SUBGRAPH2VEC with public library
kernels are evaluated against FASCIA.

C. Overall Performance Improvement

We first examine the performance improvement of SUB-
GRAPH2VEC over the state-of-the-art FASCIA on a Skylake
node. The best performance we can obtain is by using a
customized matrix format and SpMM kernel. Note that we
scale the template size up to the memory limitation on our
Skylake testbed for each dataset in Table III. The reduction of
execution time is significant, particularly for template sizes
larger than 14. For instance, FASCIA spends four days to
process a million-vertex dataset RMAT-1M with template
u17 while SUBGRAPH2VEC only spends 9.5 minutes. For
relatively smaller templates such as u12, SUBGRAPH2VEC
still achieves 10x to 100x of improvement on datasets Miami,
Orkut, and RMAT-1M.

In Table III, we observe that the improvement is approxi-
mately proportional to the average degree of datasets. For in-
stance, SUBGRAPH2VEC achieves 10x and 20x improvements
on datasets Miami (average degree of 49) and Orkut (average
degree of 76), respectively. It implies that our optimization
works better on dense graph network when compared to
FASCIA.

The three Graph500 datasets in Table II have compara-
ble average degrees but growing vertex number and edge
number. For the same template, SUBGRAPH2VEC obtains
similar improvements over FASCIA across the three datasets



Fig. 7: The hardware utilization on one Skylake node for template u12.

TABLE II: Datasets used in the experiments (K=103, M=106)

Data Vertices Edges Avg Deg Max Deg Abbreviation Source

Human STRING10 10,971 214,298 19.53 2009 Human Biology [11]
EcoliGO-BP 1,474 6,896 9.36 72 Ecoli Biology [13]
WI-2004 1,239 1,736 2.8 74 Worm1 Biology [12]
WI-2007 1,498 1,817 2.43 86 Worm2 Biology [12]
Combined-APMS 1,622 9,070 11.18 127 Yeast1 Biology [12]
LC-multiple 1,536 2,925 3.81 40 Yeast2 Biology [12]
Graph500 Scale=20 600K 31M 48 67K GS20 Graph500 [33]
Graph500 Scale=21 1M 63M 51 107K GS21 Graph500 [33]
Graph500 Scale=22 2M 128M 53 170K GS22 Graph500 [33]
Miami 2.1M 200M 49 10K MI Social network [34]
Orkut 3M 230M 76 33K OR Social network [35]
NYC 18M 960M 54 429 NY Social network [36]
RMAT-1M 1M 200M 201 47K RT1M Synthetic data [37]
RMAT(K=3) 4M 200M 52 26K RTK3 Synthetic data [37]
RMAT(K=5) 4M 200M 73 144K RTK5 Synthetic data [37]
RMAT(K=8) 4M 200M 127 252K RTK8 Synthetic data [37]

TABLE III: Execution time (s) of SUBGRAPH2VEC (S) versus
FASCIA (F) with increasing template sizes from U12 to U17.
Tests run on a Skylake node.

Dataset Impl u12 u13 u14 u15-1 u15-2 u16 u17

Miami F 163 400 944 2663 2435
Miami S 18 38 55 160 150
Orkut F 642 2006 4347 1.5e4 1.2e4
Orkut S 30 67 80 238 230
RMAT 1M F 1535 5378 1.2e4 3.4e4 3.2e4 1.1e5 3.8e5
RMAT 1M S 16 32 34 97 97 224 573
Graph500 20 F 132 452 923 3379 2679
Graph500 20 S 7 14 21 63 56
Graph500 21 F 289 1044 2036 7535 5914
Graph500 21 S 12 26 36 105 102
Graph500 22 F 764 2814 5477 1.9e4 1.6e4
Graph500 22 S 26 53 74 220 194
RMAT K=3 F 1191 4890 9711 3.0e4 3.2e4
RMAT K=3 S 39 110 170 377 262
RMAT K=5 F 2860 9906 2.0e4 9.0e4 5.4e4
RMAT K=5 S 29 60 82 233 240
RMAT K=8 F 5620 2.0e4 3.3e4 9.4e4 8.5e4
RMAT K=8 S 25 51 67 217 234

implying that SUBGRAPH2VEC has a scalable performance
improvement with respect to the dataset size.

Finally, we compare RMAT datasets with increasingly
skewed degree distribution, which causes a thread-level work-
load imbalance. The results show that SUBGRAPH2VEC has
comparable execution time regardless of the degree distribu-
tion. On the contrary, FASCIA spends significantly (2x to 3x)
more time on datasets with skewed degree distribution.

D. Benefit of System Design

To evaluate the benefit of our system design, we remove the
optimization in Section V while only applying multi-threading
in both stages of Algorithm 3 as a baseline in Figure 8. We
observe that on Miami dataset, SUBGRAPH2VEC obtains 8x
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Fig. 8: The performance improvement brought by vectorization
and the overall performance improvement. The Scaling tests
run on a Skylake node.

speedup by average and up to 30x for some templates. The
reason behind that is a significant improvement in hardware
utilization, which is evaluated from: 1) The CPU and VPU
utilization, 2) An overall efficiency by using the roofline
model.

1) CPU and VPU Utilization: Figure 7(a) first compares
the CPU utilization defined as the average number of concur-
rently running physical cores. For Miami, FASCIA achieves
60% of CPU utilization. However, the CPU utilization drops
down below 50% on Orkut and NYC. Conversely, SpMM
kernel keeps a high CPU utilization from 65% to 78% for



all datasets. The eMA kernel has a growing CPU utilization
from Miami (46%) to NYC (88%). We have two explanations:
1) the SpMM kernel splits and regroups the nonzero entries
by their row IDs, which mitigates the imbalance of nonzero
entries among rows; 2) the eMA kernel has its computation
workload for each column of Ms,a,Ms,p evenly dispatched
among threads.

Secondly, we examine the code vectorization in Figure 7.
VPU in a Skylake node is a group of 512-bit registers. The
scalar instruction also utilizes the VPU, but it cannot fully
exploit its 512-bit length. Figure 7 refers to the portion of
instructions vectorized with a full vector capacity. For all of
the three datasets, FASCIA only has 6.7% to 12.5% VPU
utilization, implying that the codes are not vectorized. While
for SpMM and eMA kernels of SUBGRAPH2VEC, the VPU
utilization is 100%. A further metric of packed float point
instruction ratio (Packed FP) justifies the implication that FAS-
CIA has zero vectorized instructions, but SUBGRAPH2VEC
has all of its float point operations vectorized.

2) Roofline Model: The roofline model in Figure 9 reflects
hardware efficiency. The horizontal axis is the operational
intensity (FLOP/byte), and the vertical axis refers to the
measured throughput performance (FLOP/second). The solid
roofline is the maximal performance the hardware can deliver
under a certain operational intensity. Because of the low
operational intensity, the performance of FASCIA and SUB-
GRAPH2VEC are bounded by the memory bandwidth, and we
consider it as a memory-bound roofline. For a relatively small
dataset like Miami, both of FASCIA and SUBGRAPH2VEC are
close to the memory-bound roofline because the data can be
fit into the 33 MB L3 cache. For dataset Orkut, whose data
size is beyond the capacity of L3 cache, SUBGRAPH2VEC is
much closer to the memory-bound roofline than that of FASCIA
because of its regular and vectorized memory access pattern.
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Fig. 9: Apply roofline model to FASCIA and SUB-
GRAPH2VEC. Dataset Miami, Orkut for template u15-1. Tests
are done on a Skylake node.

3) Memory Bandwidth and Cache Usage: In Table IV, we
compare SpMM and eMA of SUBGRAPH2VEC to FASCIA. It
shows that the eMA kernel has the highest bandwidth value
around 110 GB/s for the three datasets, which is due to the
highly vectorized codes and regular memory access patterns.
The data is prefetched into cache lines, which mitigates the
cache miss rate as low as 0.1%. The SpMM kernel also enjoys

TABLE IV: Memory and Cache Usage of FASCIA, SpMM,
and eMA of SUBGRAPH2VEC on a Skylake Node

Orkut Bandwidth L1 Miss Rate L2 Miss Rate L3 Miss Rate

FASCIA 8 GB/s 9.6% 5.3% 46%
SpMM 59.5 GB/s 6.7% 42.8% 45%
eMA 116 GB/s 0.32% 22.2% 9.0%
NYC Bandwidth L1 Miss Rate L2 Miss Rate L3 Miss Rate

FASCIA 7 GB/s 2.4% 8.1% 87%
SpMM 96 GB/s 7.7% 76% 74%
eMA 122 GB/s 0.1% 99% 14.8%

a decent bandwidth usage of around 70 to 80 GB/s by average
when compared to FASCIA.

E. Parallelization on a Single Node

We perform a strong scaling test using up to 48 threads
on Skylake node in Figure 10. We choose RMAT generated
datasets with increasing skewness parameters of K = 3, 5, 8.
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Fig. 10: Strong scaling test of RMAT datasets with increasing
cores on a Skylake node.

As the performance is bounded by memory, which has 6
memory channels per socket, we have a total of 12 memory
channels on a Skylake node that bounds the thread scal-
ing. Eventually, SUBGRAPH2VEC obtain a 7.5x speedup at
48 threads when K = 3. When increasing the skewness
of datasets to K = 5, 8, the thread scalability of SUB-
GRAPH2VEC drop down because the skewed data distribution
brings workload imbalance.

F. From Single Node to Distributed System

A distributed SUBGRAPH2VEC extends the memory capac-
ity of a single node that enables to run larger templates. As
an example, dataset RT1M in Table III can only run templates
with size up to u17 on a single node. However, we can scale
up the template size to u20 with a cluster of 16 nodes as shown
in Figure 12.

Our distributed SUBGRAPH2VEC has a good strong scal-
ability, which even achieves super linear speedup in Figure
13 from 1 node to 8 nodes. According to the analysis in
Section VI-D2, SUBGRAPH2VEC is memory bounded, and in-
creasing the number of nodes scales out not only computation
resources but also memory bandwidth and cache resources.
Having less data on each node can increase the percentage of
data held by the last level of the CPU cache.



Fig. 11: Execution Time of SUBGRAPH2VEC on three platforms. On Haswell and Skylake nodes, we use CSR based SpMV
kernel from Intel MKL; On Volta GPU V100, we use CSR based SpMV kernel from NVIDIA cuSPARSE
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Fig. 12: Scaling up the templates up to u20 by distributed
SUBGRAPH2VEC on 16 Haswell nodes.
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G. Portability to Other Platforms

Hardware platforms such as NVIDIA GPU already have
highly-optimized public libraries of linear algebra kernels. For
SpMV operation, we have the mkl sparse s mv kernel from
Intel MKL library on CPU and the cusparseScsrmv kernel
from NVIDIA cuSPARSE library on GPU. For eMA kernel,
we can use a combination of vsMul and vsAdd kernels from
Intel MKL or hand-implement such kernels whenever the
kernel is absent because of its simplicity. Hence, we have
ported SUBGRAPH2VEC to GPU by keeping the CPU codes
other than SpMV and eMA on the host side while invoking
cuSPARSE and CUDA kernels for the two linear algebra
operations.

In Figure 11, we port the performance of SUBGRAPH2VEC
to three platforms by using CSR-SpMV libraries ker-
nels. When the template size is small, SUBGRAPH2VEC-
cuSPARSE has comparable or even better performance than
SUBGRAPH2VEC-MKL. However, the performance of SUB-
GRAPH2VEC-cuSPARSE drops down when the template size
grows up. As NVIDIA-V100 only has 16GB of device mem-
ory, it is probable that the large memory footprint of Ms

brought by large template size cannot fit into the device
memory, and the bi-directional data transfer between the host
and device memory compromises the performance of SUB-
GRAPH2VEC-cuSPARSE. Nevertheless, both of Intel MKL
and NVIDIA cuSPARSE are not open-sourced, and we cannot

conclude on their performance gap. Also, the three hardware
platforms have different theoretical peak performances and
memory bandwidths. This result is only meant to demonstrate
the portability of our SUBGRAPH2VEC across hardware plat-
forms.

H. Error Discussion

We implement the standard color coding algorithm that
Alon et al. [3] prove to run at most N iterations to control
approximation quality as in Algorithm 1. In practice, the
subgraph counting with color-coding requires only 100 iter-
ations for a 7 node template on H.pylori with an error of less
than 1% in FASCIA [15]. SUBGRAPH2VEC with its pruning
and vectorization optimization only differs from the FASCIA
due to the restructuring of the computation from Algorithm 2
to Algorithm 3. It should give identical results with exact
arithmetic in Equation 1.
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Fig. 14: Relative error on dataset Graph500 Scale=20.

However, when dealing with large graphs, the counted value
will exceed the range of integer variables. As a consequence,
both FASCIA and our SUBGRAPH2VEC use 32-bit floating-
point numbers to avoid overflow. Hence, slightly different
results are observed between FASCIA and SUBGRAPH2VEC
due to the rounding error consequent from floating-point
arithmetic operations. Figure 14 reports such relative errors
between SUBGRAPH2VEC and FASCIA in the range of 10−6

across all the tests on a Graph500 GS20 dataset with increasing
template sizes, which is negligible.

VII. CONCLUSION

In this paper, we fully vectorize a sophisticated algorithm
of subgraph analysis, and the novelty is a co-design ap-
proach with pattern identification of linear algebra kernels that
leverage hardware vectorization of Intel CPU and NVIDIA
GPU architectures. The overall performance achieves signif-
icant improvements over the state-of-the-art work by orders
of magnitude by average and up to 660x (RMAT1M with
u17) within a shared-memory multi-threaded system. The



distributed memory system runs large tree subgraphs with sizes
up to 20.

This work demonstrates that fundamental algorithms, such
as subgraph mining, could be efficiently explored. More sig-
nificantly, by implementing it with hardware vectorization, we
point a direction where scaling performance of complex graph
applications with random access to the vast memory region and
dynamic programming workflow is possible and can be done
with sparse linear algebra kernels in contrast to conventional
graph traversal. An interesting future work will be exploring
machine learning as the irregularity of memory access remains
a roadblock to improve hardware utilization. It will lead to new
research and improvements on portability to other emerging
hardware accelerators and heterogeneous architectures.
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