
ar
X

iv
:2

20
8.

06
75

3v
1

 [
cs

.L
G

]
 1

4
A

ug
 2

02
2

Sharp Frequency Bounds for Sample-Based Queries

Eric Bax
Verizon Media

Los Angeles, CA

ebax@verizonmedia.com

John Donald
Verizon Media

Los Angeles, CA

jdonald@verizonmedia.com

Abstract—A data sketch algorithm scans a big data set,
collecting a small amount of data – the sketch, which can be
used to statistically infer properties of the big data set. Some
data sketch algorithms take a fixed-size random sample of a big
data set, and use that sample to infer frequencies of items that
meet various criteria in the big data set. This paper shows how to
statistically infer probably approximately correct (PAC) bounds
for those frequencies, efficiently, and precisely enough that the
frequency bounds are either sharp or off by only one, which is
the best possible result without exact computation.

Index Terms—big data, sampling, statistics

I. INTRODUCTION

Some distributed database and data sketch algorithms take

a fixed-size random sample of a big data set [1]–[5], and

use that sample to infer estimated frequencies of items that

meet various criteria in the big data set. This paper shows

how to compute probably approximately correct (PAC) bounds

for those frequencies. Such bounds can give approximate

query results [6], [7], can communicate a range of likely

answers while a query is still executing [8]–[10], can be a

basis for query planning over very large datasets [6], and

can help secure database information [11]. Direct computation

gives bounds that are sharp (given precise tail probability

computation, and within one otherwise), in contrast to previous

tail bounds [12], [13], which are useful for proofs because they

are smooth and were necessary in practice when computers

were less powerful.

II. FREQUENCY BOUNDS FROM SAMPLES

Let n be the number of items in a big data set. Let S be a

random size-s sample of the items, drawn uniformly at random

without replacement. Let k be the number of items in S that

meet some condition. Let m be the (unknown) number of

items in the big data set that meet the condition. Knowing

n, s, and k, we want to infer probably approximately correct

(PAC) bounds for m. Let δ be the maximum bound failure

probability that we are willing to accept. (For brevity, we state

results here without proof, and we use the conventions that
(

i
j

)

= 0 if j < 0, j > i, or i < 0,
(

0
0

)

= 1, and 0! = 1.)

Note that the probability that k of s samples meet the

condition, given that m of n big data items meet the condition,

has a hypergeometric distribution:

p(n,m, s, k) ≡

(

n

s

)

−1(
m

k

)(

n−m

s− k

)

.

The left tail is the probability that k or fewer samples meet

the condition:

L(n,m, s, k) ≡

k
∑

i=0

p(n,m, s, i).

The right tail is the probability that k or more samples meet

the condition:

R(n,m, s, k) ≡

min(s,m)
∑

i=k

p(n,m, s, i).

Then an upper bound for m is

mu(n, s, k, δ) ≡ max {m|L(n,m, s, k) ≥ δ} ,

and a lower bound is

md(n, s, k, δ) ≡ min {m|R(n,m, s, k) ≥ δ} .

Each bound has failure probability δ. For 1− δ confidence

that upper and lower bounds both hold, use δ
2 in place of δ in

each bound. For 1−δ confidence that upper and lower bounds

hold simultaneously for j different conditions, use δ
2j . (In the

worst case, failures are exclusive, so failure rates sum.)

III. COMPUTATIONAL CHALLENGE

For simplicity, focus on the upper bound, mu. To apply

the results to the lower bound, note that md(n, s, k, δ) =
n−mu(n, s, s− k, δ). One goal is to compute mu to within

one. This is the best possible without exact computation,

because if L(n,mu, s, k) = δ, then any arbitrarily small

negative error in computing L(n,mu, s, k) will disqualify mu

from consideration for the bound. The other goal is to compute

the bound in a reasonable time.

Some notation: let L̂(n,m, s, k) be a computed estimate of

L(n,mu, s, k), and let m̂ be a computed estimate of mu. The

left tail L(n,m, s, k) is positive and strictly decreasing in m
for 0 ≤ m ≤ n − (s − k) and zero for m > n − (s − k).
So we can use binary search to compute a m̂ value such that

L̂(n, m̂, s, k) ≥ δ and L̂(n, m̂+ 1, s, k) < δ:978-1-7281-0858-2/19/$31.00 ©2019 IEEE

http://arxiv.org/abs/2208.06753v1

• Start with low and high m values set to 0 and n,

respectively.

• Let mm be an integer between the low and high values

(near their average).

• If L̂(n,mm, s, k) ≥ δ, assign mm to low. Else assign

mm to high.

• Repeat the last two steps until low and high are successive

integers.

• Return low as m̂.

The starting low and high values need not be 0 and n –

they can be any values such that the left tail is at least δ for

the low value and less than δ for the high value. For example,

the low value can be ⌊k
s
n⌋ if δ << 0.5, and the high value

can be a Hoeffding bound [12]:

min(⌈n





k

s
+

√

ln 1
δ

2s



⌉, n).

Theorem 1. Together, the following conditions ensure that the

m̂ computed by binary search is within one of mu:

• ∀i > 0 : L̂(n,mu − i, s, k) > δ
• ∀i > 1 : L̂(n,mu + i, s, k) < δ
• L̂(n,mu−1, s, k) ≥ L̂(n,mu, s, k) ≥ L̂(n,mu+1, s, k)

Proof. The first two conditions imply that binary search re-

turns as m̂ neither mu−2 or less nor mu+2 or more, since it

makes the condition L̂(n,m, s, k) ≥ δ and L̂(n,m+1, s, k) <
δ impossible for those m values. Adding the third condition

ensures that there is a unique value m̂ such that ∀m ≤
m̂ : L̂(n,m, s, k) ≥ δ and ∀m ≥ m̂ : L̂(n,m, s, k) < δ.

This ensures that the algorithm progresses and returns that m̂
value.

The first two conditions in Theorem 1 imply that estimates

of left tails need not be very accurate for m values far from

mu. Let

∆(m) = L(n,m, s, k)− L(n,m+ 1, s, k).

The third condition is met if estimates have more accuracy

than the gaps between left tails for m values near mu:

∀m ∈ {mu − 1,mu,mu + 1} :

L̂(n,m, s, k) > L(n,m, s, k)−
∆(m− 1)

2
,

and

L̂(n,m, s, k) < L(n,m, s, k) +
∆(m)

2
.

The next theorem indicates the sizes of these gaps.

Theorem 2.

∆(m) = p(n,m, s, k)
s− k

n−m
.

Proof. The difference between left tails for m and for m+ 1
is the probability that converting a random ”failure” in the

population into a ”success” causes a sample with k or fewer

successes to have k + 1 or more. This requires the sample to

have k successes before the conversion, which has probability

p(n,m, s, k), and, given that, the converted element must be

a sample, which has probability s−k
n−m

.

The left tail L(n,m, s, k) has k + 1 terms, and around

mu they sum to approximately δ, with the rightmost term

p(n,m, s, k) the largest. So

p(n,m, s, k) ≈
δ

k + 1

is a conservative estimate. That gives

∆(m) ≈
δ

k + 1

s− k

n−m
≥

δ

nk
.

So left tail estimates with error less than δ
nk

should yield m̂
within one of mu. For example, with δ = 0.01, k ten million,

and n one trillion, we would like about 2 + 7 + 12 = 21
digits of accuracy. For reference, most platforms map Python

floating point numbers to the IEEE-754 doubles, which have

about 16 digits (53 bits) of precision.

IV. METHODS OF COMPUTATION

To compute mu within one, we will need to do some

combination of:

• Limit k, n, and 1
δ

.

• Use higher-precision arithmetic than for standard doubles.

• Use numerical methods that avoid loss of precision.

On the first point, for big data, population sizes n can be

in the billions or on the order of a trillion, and sample sizes s
tend to be in the millions, so k can be of the same order.

Often, for 95% confidence, δ = 5%, but δ values can be

one or two orders of magnitude smaller, to achieve higher

confidence or to have reasonable confidence in simultaneous

estimates of multiple frequencies. Packages such as Python’s

stat.hypergeom offer about 5 digits of accuracy in estimating

the cdf of the hypergeometric distribution – not enough to

differentiate between left tails that differ by δ
nk

for n more

than a million. So it is important to explore the other two

points.
On the second point, Python offers a Decimal class that

allows programmers to select the level of precision for arith-

metic operations. It is easy to use, and using it does not

cause infeasible slowing, at least not for precision up to a few

hundred digits. For the computation methods that we describe

next, setting precision to 30 digits gives sufficient accuracy to

produce m̂ within one of mu for δ = 0.05, n one trillion, and

k nine million.
On the third point, we have had success with two different

methods of computing the left tail: one is computing terms

p(n,m, s, j)for 0 ≤ j ≤ k using combinatorial identities

and ordering computations to reduce loss of precision, and

the other is estimating terms using Stirling’s approximation.

In both cases, we ignore very small tail terms, which may

increase error but reduces computation.
For the first method, recall that:

p(n,m, s, j) ≡

(

n

s

)

−1(
m

j

)(

n−m

s− j

)

.

Define

T (h, j) ≡

j−1
∏

i=0

(h− i).

Since

T (h, j) =
h!

(h− j)!
,

(

h

j

)

=
T (h, j)

j!
.

Then

p(n,m, s, j) =
T (m, j)T (n−m, s− j)s!

j!(s− j)!T (n, s)

=
T (m, j)T (n−m, s− j)

T (n, s)

(

s

j

)

=
T (m, j)T (n−m, s− j)T (s, j)

j!T (n, s)
.

The numerator and denominator each have s+ j terms, with

some terms as large as n−m or n, making both huge. To avoid

creating huge numbers or floating point underflow/overflow

problems, use Loader’s [14] method:

• Start with a list (or iterator) of numerator terms, and one

of denominator terms.

• Assign v = 1.

• If v < 1 and there are more numerator terms, multiply v
by one of them, and remove it.

• If v > 1 and there are more denominator terms, divide v
by one of them, and remove it.

• If there are more terms in either list, repeat.

• Return v.

Use that method for the largest term in the tail. For smaller

terms, note that

p(n,m, s, j+1)/p(n,m, s, j) =
(m− j)(s− j)

(j + 1)(n−m− s+ j + 1)
,

and multiply or divide by that ratio to compute successive

terms. This reduces computation.
For the second method, use a version of Stirling’s approxi-

mation:

lnn! ≈ n lnn−n+
1

2
ln(2πn)+

1

12n
−

1

360n3
+

1

1260n5
−

1

1680n7
.

(Compute the terms in reverse order to avoid losing the smaller

terms to roundoff.) Let A(n) be the RHS. Then

lnT (h, j) = A(h)−A(h− j),

so

ln p(n,m, s, j) =

A(m)−A(m−j)+A(n−m)−A(n−m−s+j)+A(s)−A(s−j)

−A(j)−A(n) +A(n− s),

and we can compute the p(n,m, s, j) by exponentiating the

RHS. As before, do this for the largest term. For the other

terms, use

ln p(n,m, s, j + 1)− ln p(n,m, s, j) =

ln(m− j) + ln(s− j)− ln(j + 1)− ln(n−m− s+ j + 1).

Both the direct computation method and the Stirling’s

approximation method have been tested for a variety of inputs.

For δ = 0.05, n one trillion, s ten million, and k nine

million, the gaps between tails for m values near mu are

on the order of one in three billion. Both methods return

m̂ = 900 156 008 220 and compute the corresponding lower

bound to be 899 843 820 749. This is for normal Python floats

for direct computation (no need for Decimal with higher

precision) and with precision set to 30 for the Stirling’s

approximation method.

For the direct computation method, it is O(s) to compute

the largest term of the tail, O(1) for each of the other k
terms, and there are O(lgn) tail computations for the binary

search. So the entire computation uses O(s lgn) time. Using

Stirling’s approximation, each of the k tail terms, including

the largest, requires O(1) time. So the overall computation

requires O(k lg n) time. For n one trillion, neither computation

is instant; they require a few minutes on an old iMac.

REFERENCES

[1] C. T. Fan, M. E. Muller, and I. Rezucha, “Development of Sampling
Plans by Using Sequential (Item by item) Selection Techniques and
Digital Computers,” Journal of the American Statistical Association, vol.
57, pp. 387–402, 1962.

[2] J. S. Vitter, “Faster Methods of Random Sampling,” Comm. of the ACM,
vol. 27, no. 7, pp. 703–718, 1984.

[3] J. S. Vitter, “Random Sampling with a Reservoir,” ACM Trans. on
Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.

[4] F. Olken and D. Rotem, “Simple random sampling from relational
databases,” Proceedings of the 12th International Conference on Very
Large Data Bases, VLDB ’86, pp. 160-169, 1986.

[5] F. Olken and D. Rotem. “Random sampling from database files: A sur-
vey, ” Statistical and Scientific Database Management, 5th International
Conference, SSDBM, pp. 92–111, 1990.

[6] F. Olken, “Random Sampling from Databases,” PhD Thesis, University
of California at Berkeley, 1993.

[7] S. Acharya, P. B. Gibbons, and V. Poosala, “Congressional samples for
approximate answering of group-by queries,” SIGMOD Rec., vol. 29,
no. 2, pp. 487–498, 2000.

[8] P. J. Haas, “Hoeffding inequalities for join-selectivity estimation and
online aggregation,” IBM Research Report RJ 10040, IBM Almaden
Research Center, San Jose, CA, 1996.

[9] P. J. Haas, “Large-sample end deterministic confidence intervals for
online aggregation,” IBM Research Report RJ 10050, IBM Almaden
Research Center, San Jose, CA, 1996.

[10] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
SIGMOD Rec., vol. 26, no. 2, pp. 171-182, 1997.

[11] D. E. Denning, “Secure Statistical Databases with Random Sample
Queries,” ACM Trans. Database Syst., vol. 5, no. 8, pp. 291–315, 1980.

[12] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[13] V. Chvátal, “The tail of the hypergeometric distribution,” Discrete
Mathematics, vol. 25, no. 3, pp. 285–287, 1979.

[14] C. Loader, “Fast and accurate computation of binomial probabilities,”
2000.

	I Introduction
	II Frequency Bounds from Samples
	III Computational Challenge
	IV Methods of Computation
	References

