
Analysis of Evolutionary Behavior in Self-Learning
Media Search Engines

Nikki Lijing Kuang∗, Clement H.C. Leung†‡
∗ Department of Computer Science and Engineering, University of California San Diego, La Jolla, USA

† School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
‡Shenzhen Research Institute of Big Data, Shenzhen, China

l1kuang@ucsd.edu, clementleung@cuhk.edu.cn

Abstract—The diversity of intrinsic qualities of multimedia
entities tends to impede their effective retrieval. In a Self-
Learning Search Engine architecture, the subtle nuances of
human perceptions and deep knowledge are taught and captured
through unsupervised reinforcement learning, where the degree
of reinforcement may be suitably calibrated. Such architectural
paradigm enables indexes to evolve naturally while accommo-
dating the dynamic changes of user interests. It operates by
continuously constructing indexes over time, while injecting
progressive improvement in search performance. For search
operations to be effective, convergence of index learning is of
crucial importance to ensure efficiency and robustness. In this
paper, we develop a Self-Learning Search Engine architecture
based on reinforcement learning using a Markov Decision Process
framework. The balance between exploration and exploitation is
achieved through evolutionary exploration Strategies. The evolu-
tionary index learning behavior is then studied and formulated
using stochastic analysis. Experimental results are presented
which corroborate the steady convergence of the index evolution
mechanism.

Index Terms—Dynamic Multimedia Information Retrieval, In-
dex Evolution, Point Processes, Reinforcement Learning, Markov
Decision Process, Self-Learning Search Engine

I. INTRODUCTION AND RELATED WORKS

With the explosive growth of multimedia information in
contemporary social networks, effective retrieval of a wide
variety of digital media has drawn increasing attention in
both business and research realms [1], [2]. Current prevailing
search methods, such as PageRank, tf-idf, and BGSA [3],
has achieved impressive performance in classic text retrieval
[4], [5]. Nevertheless, the emergence of distinct genres of
high-dimensional multimedia entities [6], [7], such as avant-
garde 3D models and culture artifacts, has introduced higher
complexity and unfulfilled challenges to multimedia and cross-
media search [8]–[10].

One of the basic and long-standing issues in different forms
of multimedia information retrieval is to address the semantic
gap between low-level features and high-level semantics [11]–
[13]. To resolve the issue, in Content-Based Image Retrieval
(CBIR) systems, general supervised learning algorithms with
deep neural networks are adopted for deep knowledge learning
[14], [15]. In the relatively young and challenging field of
Music Information Retrieval (MIR), the wide adoption of
practical musical recommendation systems induces a research
shift to contextual feature categories [16]–[18], which could

be associated with audio-based techniques for enhancement
[19], [20]. On the other hand, in the more sophisticated Video
Retrieval where visual attributes, audio features, and narration
text content are coupled, with standard protocol disappoint-
ingly absent [21], [22], partly due to the lack of high-quality
training dataset and supporting information for queries [23].
Popular techniques such as deep learning and agents networks
are often deployed to effect improvements in performance
[24]–[27], and existing methods sometimes involve fusing
distinct categories of information together through feature
learning [28]. Likewise, research in the newly-emerged cross-
media retrieval attempts to project heterogeneous features
into a common latent feature space to facilitate similarity
computation [29]–[32]. However, such tradeoff generally fails
to deliver the best performance.

The lack of an efficient generalization method that is inde-
pendent of media modalities imposes an imperative need for a
novel architecture to retrieve diversified forms of data. Unlike
most of the above methods that rely on content-based analysis,
indexing technique empowered by relevance feedback (RF)
[33] has shown to be promising for significant performance
improvement in multimedia and cross-media search engines
[34]. The search engine architectural paradigm proposed in
[33] captures the knowledge of human perceptions by adopting
an implicit RF technique to empower the system for evo-
lution; however, rigorous performance analysis has not been
performed.

Meanwhile, index learning has generated considerable in-
terests in multimedia information retrieval [35]–[38], where
indexing is enabled by utilizing available textual metadata or
RF information to improve search precision. In [36], Datta et
al. use indexing and matching score calculation to expand tex-
tual queries on both image search and the corresponding text
retrieval. By developing indexing and searching algorithms for
Metric Permutation Table, Mohamed et. al. achieves efficient
retrieval in large-scale multimedia databases [37]. To support
efficient CBIR in large image sets, Amato [38] makes use of
Deep Convolutional Neural Networks.

In this paper, we develop a novel Self-Learning Search
Engine (SLSE) Architecture based on Reinforcement Learning
(RL) that continuously learns to adjust its actions to meet
changing demands. RL is a natural paradigm to be widely
adopted for addressing the problem of sequential decision

ar
X

iv
:1

91
1.

09
88

2v
1

 [
cs

.A
I]

 2
2

N
ov

 2
01

9

making. It is concerned with the task of how an intelligent
agent takes optimal actions in interaction with an environment
through a trial-and-error learning process, with the ultimate
goal to maximize the long-term rewards [39]. Since the
development of AlphaGo [40] and AlphaGo Zero [41], RL
has been widely adopted in different contexts [42]–[45]. By
learning from useful evaluative information provided by users
it is shown to be a viable solution for web recommendation
[44] and information retrieval systems [43], [46] to yield
satisfactory recommendations and search results.

The main contributions of this paper are as follows:
• We introduce a novel reinforcement learning based Self-

Learning Search Engine (SLSE) Architecture for mul-
timedia search and multimedia data retrieval. The pre-
sented SLSE paradigm is capable of dynamically adjust-
ing its inner workings to adapt to the latest user interests
by learning online from the collective feedback behavior
of users.

• We propose a dynamic indexing technique for SLSE
architecture that is able to dynamically build up index
tuples according to relevance and destruct historical ones
to handle exceptions along with time.

• To prevent local optimum and to enable proactive ex-
ploration, we propose evolutionary exploration strategies
to retrieve search results, which balance the commonly
occurring exploitation and exploration problem in rein-
forcement learning.

• We study the problem of learning convergence by under-
taking rigorous analysis from the theoretical perspective.
Closed-form solutions are obtained, which support the
viability of SLSE architecture. The evaluations and ex-
periments also corroborate the theoretical results.

The rest of the paper is organized as follows: Section II
provides the essential background information of techniques
involved in SLSE, followed by Section III that describes
the architecture of SLSE and formulates it as a Markov
Decision Process. Specifically, we elaborate on the problem of
learning convergence that concerns the performance of SLSE.
Section IV then analyzes the learning convergence behavior
theoretically to provide systematic and closed-form evaluation.
Experimental results are given in Section V, followed by the
conclusions in Section VI.

II. BACKGROUND

A. Framework of Self-Learning Search Engine
Self-Learning Search Engine. A Self-Learning Search En-
gine (SLSE) is a multimedia search engine that continuously
learns and evolves to adapt its answer lists to queries submitted
by users, so as to provide search results according to the
current user preferences while considering future utility. When
a user submits a query Q, the search engine takes a hybrid
evolutionary exploration strategy to construct and present a
result retrieval list of M objects M List to the user for
evaluation. It functions through an online learning process by
building indexes to encapsulate knowledge learned from pre-
vious interactions with users, i.e. rewards received from users.

Designed to overcome the difficulty in semantic multimedia
search, the combination of RL with dynamic indexing helps
to eliminate individual bias of users and random deviations
caused by heedless errors to assure its robustness.
Dynamic Indexing. Dynamic indexing is an indexing tech-
nique that dynamically builds semantic indexes to associate
query terms with multimedia objects. Unlike all other indexing
structures that only concerns with the construction of indexes,
in dynamic indexing, new query terms could be constructed
as indexes for desired objects, while existing indexes are able
to be deconstructed in accordance with actual demand. The
relevance score of an index then continuously changes during
the process. Such mechanism is achieved automatically in the
course of evolution without human invention, which confers
significant practical value. In order to include the richest and
the latest - potentially realtime, information and to provide the
most satisfying search results, search engines generally collect
data from various data sources instead of storing massive
complete data in a database. Such channels include but not
limit to personal blogs, social media, news portals, music
and video streaming media etc. Most of these websites and
mobile applications require users to register accounts in order
to trace user-specific information for precision marketing,
including personal information, published articles and songs,
personal images and other sensitive information. As more
and more social dilemmas and uneasiness are caused by
making personal data public online, the function that allows
users to set their own privacy levels for different content is
provided to address the increasing concern of privacy. When
previously public multimedia information is deleted, or the
level of privacy is raised to be private or group-oriented, it is
obligatory for search engines to deconstruct related indexes,
if any, to preserve the rights of owners. Meanwhile, illegal
and misleading information, such as news that is proved to
be inauthentic or infringing the rights of reputation, images
that are corrected for wrong classification, and music without
copyright authorization should not be promulgated with origi-
nal indexes as well. Compared with manual monitoring that is
time-delayed and labor-intensive, dynamic indexing automates
the monitoring process for effective information dissemination
and economizes on manpower. The deconstruction of indexes
also helps address the newly-emerged concerns such as privacy
legitimacy, and potential issues in online social networking.
Relevance Index Value. By capturing, analyzing, and trans-
lating the selection behaviors of the users, the computation
engine of SLSE creates a learning function L between the
object space and the query Q to measure the relevance liaison:

L : T ×O → R+ ∪ 0,

where T is the space of query terms that represents the
input query Q, and O is the object space. The output of
the function is the set of non-negative real numbers that
specify the corresponding relevance with 0 indicating complete
irrelevance. For each link between an index term τ and a

multimedia object o, the function L is of the form:

L(τ, o)→ ωR, ω ∈ (0, 1),

where R is a relevance base adopted by the search engine
that could be flexibly adjusted, and ω is a normalized weight
that measures the degree of relevance. A larger value of R
will increase the dispersion of indexes in the system, and vice
versa. For brevity of notation, r is adopted to substitute for
ωR, which can be seen as a Relevance Index Value (RIV)
that assesses the relevance and importance of an object to
a term. A higher numerical value of r indicates multiple
repeated learning reinforcements and hence a greater degree of
importance of an object o associated with a term τ , and vice
versa. At the beginning, all RIV scores are initialized by the
system. Later in the usage, the learning function L takes the
results of the reward function as input to update pertinent RIV
scores iteratively. Unlike extracting keywords from text-based
documents, the indexing of multimedia objects is often an
evolutionary learning process, since it is generally impossible
to incorporate all the properties of an object in an index at
the very beginning. The usage of dynamic indexing enables
SLSE architecture to encapsulate the deep knowledge from
higher-level human perception for effective retrieval, which is
achieved by learning proactively from the relevance feedback
provided by users.

Here, we assume the only form of knowledge that the search
engine learns from users is the implicit clicking information.
When evaluating a returned M List, the user is assumed to
click on an object if and only if it is pertinent or not click at
all if the whole list is irrelevant. For learning purpose, scalar
positive or negative reward is then calculated by a reward
function to adjust the future actions of the search engine, so
as to provide more satisfying results to users. Random errors
could be eliminated in the iterative learning process. Such
clicking information represents human preferences in different
stages and possesses the inherent advantage of requiring no
supplementary toolkits for the collection of data compared
with browser cache, logs and metadata files. Therefore, it could
be readily exploited to boost up the preciseness and relevance
of search results along with time.

III. A SLSE ARCHITECTURE WITH REINFORCEMENT
LEARNING

A. Reinforcement-Learning Based Architecture

The fact that RL intrinsically matches with the mechanism
of SLSE architecture makes it a promising solution to multi-
media search. Different from supervised learning with prede-
fined input-output pairs, there is no instructive information to
explicitly define correct actions for SLSE. Instead, the search
engine learns and chooses an action from the action space
in each round of searching based on its current state and
the knowledge it possesses. Reward is then observed via the
clicking information generated by the user, helping the search
engine to evolve into a new state by transforming and updating
the internal index pool. While ultimately aiming to retrieve the
most relevant objects, the search engine architecture maintains

a balance between exploitation and exploration to prevent
local optima during evolution. To do this, an evolutionary
exploration strategy is applied to allow the appearance of new
objects while considering the relevance relationship revealed
in the index learning process.

In our framework, the SLSE architecture acts as an agent
that learns to act, and the user submitting query requests takes
the role of the environment. In particular, the SLSE archi-
tecture is formulated as a Markov Decision Process with five-
tuple {S, A, T , R, γ} [39]. In particular, we consider discrete
states and discrete actions in continuous time, with infinite
time horizon, and let S denote the state space, A denote the
action space. At a specific time step t, the SLSE agent is in
state St ∈ S, choose an action at ∈ A(St) to take from A
according to the policy π. When the policy is deterministic,
it is a mapping from states to actions π : S → A. On the
other hand, when stochastic policy is considered, π can be
seen as a state dependent probability mass function (pmf) such
that π: S → p (A) ⊂ [0, 1] is a mapping from states to the
probabilities over possible actions. In such a case, π(a|s) gives
the probability of taking action at = a in state st = s:

π(a|s) = Pr[at = a|st = s], s.t.
∑
a∈A

π(a|s) = 1.

Due to the non-deterministic elements presented in the envi-
ronment, taking an action at leads the agent to transit from the
current state st to the next state st+1 according to the transition
kernel T . When an observation Ot is made, a one-time reward
signal rt is observed given by the reward function R(s’, s, a),
which is a random variable with the following expectation:

R(s’, s, a) = E[rt|st+1 = s′, st = s, at = a]

In each learning episode, it is essential to obtain the expected
value of discounted rewards for a given policy, where γ ∈
(0, 1) is the discount factor. The goal is to find optimal policies
that maximize the expected infinite-horizon discounted sum
of rewards

∑∞
t=0 γ

trt. The corresponding long-term mission
of SLSE therefore is to build up indexes to return the most
relevant objects as search results to users.
Action Space. The action space A consists of a series of
actions that the agent selects M objects to form a M List
and presents it to the user. The size of the initial action
space is intuitively huge and fundamentally increases the
computational complexity, as it involves a huge number of
possible permutations of M objects. Nonetheless, our hybrid
evolutionary exploration strategy will significantly decrease
the size of the action space by excluding those permutations
that lead to poor performance. A large number of searchable
objects tend to be irrelevant to a particular query, and including
them as candidate members of the permutation in each round
of learning will be inefficient. We will examine further the
action strategies below, but for the moment, it suffices to
regard the action as selecting a certain number of objects for
presentation to users in response to their query.
State Space. The state space S can be seen as an in-
finitely large bounded set. It is a set of all indexes in the

Fig. 1: Framework of SLSE Architecture

dynamic indexing component - including both the explored
and unexplored ones - together with their RIVs. In the case
of unexplored indexes, their RIV are below a pre-defined
threshold h > 0, while for explored indexes, their RIV are at or
above it. After taking a particular action, RIV scores change
accordingly, causing a corresponding state transition in the
system. The long-term goal of SLSE is to expose unexplored
indexes for satisfactory retrieval, and reward will be the net
change in the total RIV scores as a result of an action.

B. Problem of Learning Convergence

Here, a TOR-tuple [τi, oj , rij] can be used to represent
the relationship between a query term τi and an object oj ,
where rij is the output calculated by the learning function L
of the computation engine. For such a tuple to be an index,
rij must attain or surpass the pre-defined threshold value
h, which indicates oj is sufficiently relevant to τi. Assume
there are two categories of indexes: explored indexes and
unexplored indexes. All TOR-tuples initially reside in the
index generator. When rij exceeds or equal to the threshold,
a TOR-tuple becomes an explored index and is squeezed out
from index generator into another component named the index
pool. On the other hand, an unexplored index is a potential
index where oj is intrinsically sufficiently relevant to τi, but is
still in the evolutionary stage. Ideally, all unexplored indexes
shall become explored indexes when the learning process is
completed so that the search engine is able to function most
efficiently. Note that although unexplored indexes are in the
index generator before becoming explored indexes, not all
TOR-tuples in the generator are unexplored indexes. Fig. 1
shows the whole framework of SLSE with RL.

The problem of Learning Convergence is concerned with
whether unexplored indexes will eventually evolve to become
explored indexes. The index learning behavior is considered
to be convergent if the vast majority of unexplored indexes
become explored indexes in the learning process. As objects
are only traceable through query terms, each object is at
least minimally indexed in the inception phase to ensure it
is searchable, and a predefined RIV score Rinit is assigned
for such purpose. SLSE gradually tunes the initial results to
be optimal answers by learning from the observed rewards. We
therefore assume that for an explored index to exist between
an object oj and a term τi, we have rij � Rinit. When
rij approximately equals to Rinit, the TOR-tuple [τi, oj , rij]
fails to be installed as an explored index. That is, oj is not
sufficiently relevant to τi.

The successful construction of explored indexes guarantees
appropriate objects can be effectively retrieved with semantic
indexes for intelligent query answering. Notice that semantic
indexes are built in an evolutionary process. Consider a query
with multiple terms Q(τ1, ..., τt, τt+1, ..., τn), where explored
indexes exist for {τ1, ..., τt} with a set of multimedia objects,
and {τt+1, ..., τn} are entirely new terms input for the first
time. In such case, the candidate returned objects for M List
of Q is a union set decided by the evolutionary explo-
ration strategies, which encompasses a k−object subset Oa:
{o1, o2, ..., ok} that has the highest cumulative RIV scores, and
a subset Ob of several random objects selected for exploration.
The algorithm of constructing Oa is defined as follows:

Algorithm 1 Constructing k−object subset Oa
Require: Rinit, M , K, query Q(τ1, ..., τt, τt+1, ..., τn)

1: Initialize RIV score buffer B as ∅
2: Initialize k−object subset Oa as ∅
3: Initialize object counter k as 0
4: for j = 1, ..., |O| do
5: Initialize rTj ← 0
6: for i = 1, ..., t do
7: Retrieve RIV score: rTj ← rTj + rij

8: Append RIV score rTj to buffer B ← B ∪ {rTj}
9: while k < K do

10: j = argmaxjB . Find the index of object oj with
highest rTj from buffer B

11: Retrieve oj and append to Oa: Oa ← Oa ∪ {oj}
12: Remove rTj from buffer B

When the final M List is presented, objects of the greatest
interest are expected to receive positive rewards from the user
and RIV scores related to all query terms in Q are boosted. Af-
ter some time of evolution, explored indexes for {τt+1, ..., τn}
will be successfully constructed and the reinforcement of
iterative learning process will dynamically expose the most
desired objects to queries that contain any of these terms.

C. Evolutionary Exploration Strategies

The action in response to a query Q consists of two steps:
(a) a selection of a set of M objects,
(b) ranking of the objects for presentation.

We shall refer to this set as MQ. As we indicated above, the
set MQ is a union of the two sets,

MQ = Oa ∪Ob.

We shall normalize β with 0 ≤ β ≤ 1 to represent the
proportion of objects selected based on their RIV, i.e.

β =
|Oa|

|Oa|+ |Ob|
.

In extreme cases where |Oa| = 0 or |Ob| = 0, then we have
β = 0 or β = 1 respectively. For the time being, we let β be

deterministic and to avoid involving non-integral number of
objects, we have

β ∈
{ 1

|MQ|
,

2

|MQ|
,· · · , M

|MQ|

}
.

Thus, value for β needs to be chosen firstly. A high value
for β risks landing on a local optimum, whereby highly
relevant objects may never be presented for clicking with its
RIV remaining low, while less relevant objects are repeatedly
presented, leading in time to a high RIV for them. Conversely,
a low value for β may undermine retrieval efficiency, with the
users often not being able to find the target objects. A variation
of the above strategy is to allow β to be random, taking
values in the interval (0, 1). β then becomes a random variable
uniformly distributed over the unit interval. The number |Oa|
of Oa objects selected is βM rounded to the nearest integer:

Oa = bβM + 1/2c.

Irrespective of whether β is random or deterministic, we
retrieve the set Oa based on the algorithm given above. After
this selection, let there be J objects remaining in the index
pool, then each of these J objects will be chosen with equal
probability without replacement, i.e. the first one is chosen
with probability 1/J , the second with probability 1/(J − 1),
and so on. In this way, having selected the MQ objects, step
(a) is completed. Since a high-ranked object tends to receive
greater attention, the set of MQ objects needs to be ordered.
These may be ordered in different ways.

1) Completely Random Ordering
Here the MQ objects are all treated the same with the
top object chosen from among the MQ objects with
equal probability. Similarly, the next object is chosen
from among the remaining ones with equal probability.

2) Sectionally Random Ordering
Here all the Oa objects are all treated the same with
the top object chosen from among them with equal
probability similar to 1. Likewise, all the Ob objects
are chosen in a similar manner. Here, the Oa objects
will always precede the Oa objects in the ordering, i.e.
Oa > Ob.

3) Partially Random Ordering
Here we also have Oa > Ob. However, the Oa objects
are not treated the same with the top object chosen from
among them based on their RIV. A particular object oj ∈
Oa is chosen as the top object with probability based on
its relative RIV, i.e. with probability

Oa =

∑
i rij∑
ij rij

.

Where the bottom summation is ranged over all the Oa
objects. Likewise, the remaining Oa objects are chosen
in descending order based on their relative RIV. The Ob
objects are chosen as in 2 above.

4) Non-Random Ordering Here we also have Oa > Ob. All
the Oa objects are simply ranked in descending order of
their RIV (i.e. the top object is the one with the highest

RIV) from among the Oa objects, while the Ob objects
are chosen as in 2 above.

IV. ANALYSIS OF LEARNING CONVERGENCE BEHAVIOR

If an unexplored index is elevated into the index pool,
it can be regarded as exposed. Conversely, it is regarded to
be extant and still in the evolutionary process. To study the
characteristics of index learning behavior in SLSE, we first
need to consider the evolution of a single unexplored index.
Note that the time that an unexplored index evolves into
an explored index tends to be random, due to the fact that
the exact time point of query input is not deterministic. Let
the random variable X(t) be the number of times that an
unexplored index is being indexed (i.e. receive reinforcement)
in the time interval (0, t). Since X(t) are point events in time,
the evolution pattern of a single TOR-tuple [τi, oj , rij] is a
point process, and furthermore as we are dealing with a single
index, we have Pr[X(t, t+ε) > 1] = o(ε). We let the random
variable dX(t) denote the number of times the unexplored
index is indexed in the time interval (t, t+ dt), and we let

a(t) = E[dX(t)]/dt.

The value of a(t) depends on actual usage, popularity and
indexing frequency of the search engine. Very often the point
process is taken to be a stationary non-homogeneous process,
so that a(t) = α. In addition, for many practical situations
when the point events are uncorrelated, the underlying process
may be approximated by a Poisson process, in which case
the probability that the unexplored index remains unindexed
in the time interval (0, t) is e−αt. The evolution of such an
unexplored index will be considered an instantaneous failure.

The counting of indexes is defined for each term-object
pair. N indexes are counted if a single term τi has explored
indexes with N objects, or for an object oj associated with
N query terms with RIV sores higher than the threshold
value. Since the relevance relationship between each object
and each query term is intrinsically determined under the
semantic environment during a particular time frame, it is
reasonable to assume there are a total of C unexplored indexes
in SLSE initially. The index learning process starts from time
t = 0; for simplicity in our stochastic analysis, we shall use
the reduced state space and let St denote the reduced system
state, omitting the RIV scores, so that S0 = C. The utilization
of rewards in RL mechanism will lead to the decrease of St
compared with S0. Whenever an unexplored index is exposed,
St is decreased by one. The present situation is an instance
of the general birth-death stochastic population process, and
from [47], the mean and variance of St are respectively

E(St) = S0e
−αt, (1)

V (St) = S0e
−αt
(
1− e−αt

)
. (2)

Since the limit of E(St) → 0 as t → ∞, this indicates
eventually, the entire collection of unexplored indexes will be
fully discovered.

(a) Behavior of ESt (Left), p(Right):S0 = 500, 000 (b) Behavior of ESt (Left), p(Right):S0 = 6, 000, 000

Fig. 2: Theoretical Analysis of Convergence behavior

We also note that the limit V (St) → 0 as t → ∞, which
reveals the fact that the effect of stochastic fluctuation tends
to diminish in the course of the learning process, so that with
the passage of time, the index learning behavior acts like
a deterministic evolution, resulting in a robust and effective
dynamic indexing method for multimedia search.

Let Ts denote the expected time spent on indexing a
proportion p of unexplored indexes. Then the proportion of
exposed explored indexes during a time interval Ts is:

p =
S0 − S0e

−αTs

S0
. (3)

Fig. 2(a)(b) demonstrate the evolutionary behavior of E(St)
and p in the index learning process, with different parameter
combinations of S0 and α for comparison. Consider that the
index learning behavior is convergent when p is over 90%. As
can be seen from Fig. 2(a)(b), a higher index discovery rate
α allows the number of extant unexplored indexes to drop
more rapidly, resulting in a faster convergence of the indexing
behavior within a shorter time. In Fig. 2(a), it takes the SLSE
45, 90 and 135 days to converge with the index discovery rate
α of 1/20, 1/40 and 1/60 respectively. In particular, with the
same index discovery rate but different S0, we can expect the
same curve shapes of p as indicated by (3). Such intuition sug-
gests that the initial number of unexplored indexes exerts no
influence on the learning convergence behavior. Furthermore, a
conclusion can be drawn that for a large number of unexplored
indexes, higher index discovery rate plays an important role
in providing satisfactory search performance, as the learning
task of indexing is shared among a larger number of users,
requiring less learning effort for each user and thus leading to
a quick convergence.

V. EXPERIMENTAL EVALUATIONS

To empirically study the index learning behavior and to
validate the theoretical analysis, experiments are performed
to simulate the interactive learning process between users
and SLSE. Specifically, we adopt Monte Carlo simulations
for reproducible experimental evaluations so as to gage the
validity of the results obtained above.

A. Experimental Setup

Consider the event that an end user submits a query through
the frontend interface of SLSE and furnishes evaluative feed-
back information by clicking interested returned objects. If
such event streams are represented by a Poisson process with

rate α, then the inter-event time has the following exponential
density function

f(t) = λe−λt.

When a user gains access to the frontend interface of SLSE
to submit a search query, a new round of iterative learning
process that leads to the internal transformation of SLSE
is triggered automatically. Concerning the indexing behavior,
three different scenarios exist in regard to the submitted query
Q(τ1, ..., τt, τt+1, ..., τn):

• Case 1: For each τi in Q, it is input into the system for the
first time. This case typically happens in the initial stage
of evolution. As introduced earlier, links of each new term
are randomly established with certain multimedia objects
initially, where the extent of exploration is maximized for
discovery and minimal for indexing purpose. Therefore,
fluctuations can vary significantly under such situation.

• Case 2: Each τiin Q was input into the system previously.
In this scenario, the evolution of indexes for each τiis
either in progress or even completed depending on the
previous iterations of learning. Results are expected to
be more satisfactory compared to Case 1 and fluctuations
tend to drop significantly. The relevance of each object oj
to Q is decided by calculating the cumulative RIV score
of oj to all terms in Q.

• Case 3: Query Q is composed of both new and existing
terms. This is a hybrid scenario that occurs continuously
in the normal usage of SLSE or when significant changes
of the semantic environment take place. It is more com-
plicated compared to the above two cases in the sense
that while the evolution of indexes for existing terms is
still in progress, the requirement to discover indexes for
new terms is raised as a new learning task. The injection
of the indexes for new terms is accelerated by utilizing
the previous learning outcomes for existing terms.

Note that in all the above situations, there are also two
different scenarios concerning the user evaluative feedbacks,
which are used to feed the reward function:

• Case 1: Explicit clicking information is observed for
interested objects in M List, resulting in the positive
rewards to boost the corresponding RIV scores for en-
hancement in the later learning iterations.

• Case 2: No explicit clicks are observed in the whole
M List, indicating the returned objects are not satisfactory
as query response; SLSE will consequently castigate the

Fig. 3: Changes of Remaining Unexplored Indexes: (a)S0 = 60, 000;λ = 8, 000, α = 1/15 (b)S0 = 500, 000;λ = 50, 000, α = 1/20
(c)S0 = 500, 000;λ = 67, 000, α = 1/15 (d)Overview of the Number of clicks when converged

objects by assigning negative rewards calculated by the
reward function.

Each time that an arrival of a user occurs, the user selection
behavior is enacted by randomly clicking on some objects in
M List, triggering the internal changes of SLSE. To accurately
assess the method, we choose multiple different random seeds
to perform repetitive experiments in each case, where over 1
million queries are generated in each experiment.

B. Results Interpretation

Fig. 3 presents graphs of the evolutionary behavior con-
cerning the remaining number of unexplored indexes at each
arrival time t and the number of clicks when converged,
where comparison is done with the corresponding theoretical
predictions. For better visualization, we sample and retrieve
the experimental results at five-day intervals. The green dotted
lines represent the Monte Carlo simulation results, whereas the
green lines correspond to the theoretical analysis.

It can be seen that the results of simulations match closely
with the corresponding theoretical predictions with only small
statistical errors. Graphs (a)(b)(c) in Fig. 3 show that in both
simulation and theoretical analysis, regardless of the number
of S0, the indexing behavior converges as expected during the
normal usage of SLSE. Because of the adoption of dynamic
indexing, the number of indexes may not necessarily decrease
and thus empirical results would have variance along with
time. Fig. 3(b) and 3(c) also reveal that the time spent on
convergence is determined by the feedback rate λ: for the same
S0, a greater value of λ results in shorter convergence time.
In practice, a higher feedback rate always implies the greater
popularity of the search engine, as larger communities of users
are inclined to use it for searching the desired information and
therefore causing the learning process to evolve proactively
in a shorter time. In the later stage of evolution, only few
unexplored indexes remain in the index generator. It signifies
a sign of the completion of the evolution, where SLSE evolves
into a steady state, providing satisfactory search results to
users. At the time when SLSE converges, the majority of
indexes receive substantial number of clicks, signifying the
effectiveness of human evaluations, as shown in Fig. 3(d).

Theoretical analysis and simulation outcomes reveal the fact
that a greater population of users helps provide a larger volume
of useful evaluative data to guide the learning process, leading
to a better search performance for SLSE. Besides correcting
the perturbation caused by random initial indexing, dynamic
indexing and RL techniques also ensure that the search results

returned by SLSE are able to adapt to the latest requirements
of the end users. It is particularly useful in a community where
a group of people share similar interests.

VI. SUMMARY AND CONCLUSION

Multimedia search is a fundamental part of effective infor-
mation retrieval. Unlike text-based documents, the indexing of
multimedia entities for deep knowledge retrieval is a learning
and evolutionary process, since it is generally impossible to
discover and index all properties of an object at a single point
in time. In the current big data climate, the task to manually
index online multimedia information is time-consuming, fail-
ing to keep up with the exploding amount of newly generated
data, and therefore necessitating a novel automated method.
By applying reinforcement learning to SLSE within a Markov
decision process framework, the subtle nuances of human
perceptions and deep knowledge are captured and learned for
evolution, where the degree of reinforcement may be flexibly
adjusted, and semantic indexes are built dynamically to inter-
connect search terms with the most relevant media entities.
The dynamic indexing of query terms enables effective search
for multimedia objects, introducing steady improvements in
search performance over time.

The convergence of the index learning behavior is one of the
critical factors to ensure that the architectures using indexing
techniques are capable to operate effectively and robustly. We
employ stochastic analysis to study the evolution of index
learning behavior, the results of which are able to corrob-
orate the effectiveness of the underlying SLSE architecture.
Apart from demonstrating that the vast majority of hidden
unexplored indexes would be exposed during evolution, we
also examine the dynamic changes of index behavior from
distinct perspectives. Our study is able to show that learning
convergence will be eventually achieved in the course of nor-
mal usage, indicating the SLSE architecture based on RL and
dynamic indexing is both effective and efficient, conferring
distinct advantages compared with conventional approaches.

ACKNOWLEDGMENT

This research is supported by Shenzhen Fundamental Re-
search Fund under grants No. KQTD2015033114415450 and
No. ZDSYS201707251409055.

REFERENCES

[1] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki,
and K. Aizawa, “Sketch-based manga retrieval using manga109 dataset,”
Multimedia Tools and Applications, vol. 76, no. 20, 2017.

[2] J. Song, L. Gao, L. Liu, X. Zhu, and N. Sebe, “Quantization-based
hashing: a general framework for scalable image and video retrieval,”
Pattern Recognition, vol. 75, pp. 175–187, 2018.

[3] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Bgsa: binary grav-
itational search algorithm,” Natural Computing, vol. 9, no. 3, 2010.

[4] P. Lofgren, S. Banerjee, and A. Goel, “Personalized pagerank estimation
and search: A bidirectional approach,” in Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM, 2016.

[5] C. C. Aggarwal, “Information retrieval and search engines,” in Machine
Learning for Text. Springer, 2018, pp. 259–304.

[6] S. Zhao, Y. Gao, G. Ding, and T.-S. Chua, “Real-time multimedia social
event detection in microblog,” IEEE transactions on cybernetics, vol. 48,
no. 11, pp. 3218–3231, 2017.

[7] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for
efficient similarity retrieval,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[8] L. Gao, J. Song, X. Liu, J. Shao, J. Liu, and J. Shao, “Learning in high-
dimensional multimedia data: the state of the art,” Multimedia Systems,
vol. 23, no. 3, pp. 303–313, 2017.

[9] S. Pouyanfar, Y. Yang, S.-C. Chen, M.-L. Shyu, and S. Iyengar,
“Multimedia big data analytics: A survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, p. 10, 2018.

[10] G. Bello-Orgaz, J. J. Jung, and D. Camacho, “Social big data: Recent
achievements and new challenges,” Information Fusion, vol. 28, 2016.

[11] P. Over, C. Leung, H. Ip, and M. Grubinger, “Multimedia retrieval
benchmarks,” IEEE MultiMedia, vol. 11, no. 2, pp. 80–84, 2004.

[12] I. Azzam, C. H. Leung, and J. F. Horwood, “Implicit concept-based im-
age indexing and retrieval,” in 10th International Multimedia Modelling
Conference, 2004. Proceedings. IEEE, 2004, pp. 354–359.

[13] K. Stevenson and C. Leung, “Comparative evaluation of web image
search engines for multimedia applications,” in 2005 IEEE International
Conference on Multimedia and Expo. IEEE, 2005, p. 4.

[14] C. Iakovidou et al., “Composite description based on salient contours
and color information for cbir tasks,” IEEE Transactions on Image
Processing, vol. 28, no. 6, pp. 3115–3129, 2019.

[15] C. Bai, L. Huang, X. Pan, J. Zheng, and S. Chen, “Optimization of
deep convolutional neural network for large scale image retrieval,”
Neurocomputing, vol. 303, pp. 60–67, 2018.

[16] Y. Jin, N. N. Htun, N. Tintarev, and K. Verbert, “Contextplay: Evaluating
user control for context-aware music recommendation,” in Proceedings
of the 27th ACM Conference on User Modeling, Adaptation and Per-
sonalization. ACM, 2019, pp. 294–302.

[17] S. Volokhin and E. Agichtein, “Towards intent-aware contextual music
recommendation: Initial experiments,” in The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval.
ACM, 2018, pp. 1045–1048.

[18] D. Wang, S. Deng, X. Zhang, and G. Xu, “Learning to embed music and
metadata for context-aware music recommendation,” World Wide Web,
vol. 21, no. 5, pp. 1399–1423, 2018.

[19] S. Oramas, V. C. Ostuni, T. D. Noia, X. Serra, and E. D. Sciascio, “Sound
and music recommendation with knowledge graphs,” ACM Transactions
on Intelligent Systems and Technology (TIST), vol. 8, no. 2, p. 21, 2017.

[20] K. Gupta, N. Sachdeva, and V. Pudi, “Explicit modelling of the implicit
short term user preferences for music recommendation,” in European
Conference on Information Retrieval. Springer, 2018, pp. 333–344.

[21] D. R. Pardhi and J. R. Neve, “Performance rise in novel content
based video retrieval using vector quantization,” in 2016 International
Conference on Electrical, Electronics, and Optimization Techniques
(ICEEOT). IEEE, 2016, pp. 1378–1381.

[22] S. Hong, W. Im, and H. S. Yang, “Cbvmr: content-based video-music
retrieval using soft intra-modal structure constraint,” in Proceedings of
the 2018 ACM on International Conference on Multimedia Retrieval.
ACM, 2018, pp. 353–361.

[23] Z. Cheng, X. Li, J. Shen, and A. G. Hauptmann, “Which information
sources are more effective and reliable in video search,” in Proceedings
of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. ACM, 2016, pp. 1069–1072.

[24] Y. Yu, J. Kim, and G. Kim, “A joint sequence fusion model for video
question answering and retrieval,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 471–487.

[25] Z. Dong, C. Jing, M. Pei, and Y. Jia, “Deep cnn based binary hash
video representations for face retrieval,” Pattern Recognition, vol. 81,
pp. 357–369, 2018.

[26] H. L. Zhang, C. H. Leung, and G. K. Raikundalia, “Topological analysis
of aocd-based agent networks and experimental results,” Journal of
Computer and System Sciences, vol. 74, no. 2, pp. 255–278, 2008.

[27] J. Song, H. Zhang, X. Li, L. Gao, M. Wang, and R. Hong, “Self-
supervised video hashing with hierarchical binary auto-encoder,” IEEE
Transactions on Image Processing, vol. 27, no. 7, pp. 3210–3221, 2018.

[28] J. Lokoč, W. Bailer, K. Schoeffmann, B. Muenzer, and G. Awad, “On
influential trends in interactive video retrieval: video browser showdown
2015–2017,” IEEE Transactions on Multimedia, vol. 20, no. 12, pp.
3361–3376, 2018.

[29] T. Yao, X. Kong, H. Fu, and Q. Tian, “Discrete semantic alignment
hashing for cross-media retrieval,” IEEE transactions on cybernetics,
2019.

[30] J. Dong, X. Li, and D. Xu, “Cross-media similarity evaluation for web
image retrieval in the wild,” IEEE Transactions on Multimedia, vol. 20,
no. 9, pp. 2371–2384, 2018.

[31] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep
hashing network for cross-modal retrieval,” IEEE Transactions on Image
Processing, vol. 27, no. 8, pp. 3893–3903, 2018.

[32] Y. Wei, Y. Zhao, Z. Zhu, S. Wei, Y. Xiao, J. Feng, and S. Yan, “Modality-
dependent cross-media retrieval,” ACM Transactions on Intelligent Sys-
tems and Technology (TIST), vol. 7, no. 4, p. 57, 2016.

[33] C. H. Leung et al., “Intelligent social media indexing and sharing using
an adaptive indexing search engine,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 3, no. 3, 2012.

[34] C. Cobârzan, K. Schoeffmann, W. Bailer, W. Hürst, A. Blažek, J. Lokoč,
S. Vrochidis, K. U. Barthel, and L. Rossetto, “Interactive video search
tools: a detailed analysis of the video browser showdown 2015,” Multi-
media Tools and Applications, vol. 76, no. 4, pp. 5539–5571, 2017.

[35] G. Awad, D.-D. Le, C.-W. Ngo, V.-T. Nguyen, G. Quénot, C. Snoek,
and S. Satoh, “Video indexing, search, detection, and description with
focus on trecvid,” in Proceedings of the 2017 ACM on International
Conference on Multimedia Retrieval. ACM, 2017, pp. 3–4.

[36] D. Datta, S. Varma, S. K. Singh et al., “Multimodal retrieval using
mutual information based textual query reformulation,” Expert Systems
with Applications, vol. 68, pp. 81–92, 2017.

[37] H. Mohamed, H. Osipyan, and S. Marchand-Maillet, “Fast large-scale
multimedia indexing and searching,” in 2014 12th International Work-
shop on Content-Based Multimedia Indexing (CBMI). IEEE, 2014.

[38] G. Amato, F. Debole, F. Falchi, C. Gennaro, and F. Rabitti, “Large scale
indexing and searching deep convolutional neural network features,”
in International Conference on Big Data Analytics and Knowledge
Discovery. Springer, 2016, pp. 213–224.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[41] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, p. 354, 2017.

[42] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, 2019.

[43] Y. Hu et al., “Reinforcement learning to rank in e-commerce search
engine: Formalization, analysis, and application,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining. ACM, 2018, pp. 368–377.

[44] G. Zheng et al., “Drn: A deep reinforcement learning framework for
news recommendation,” in Proceedings of the 2018 World Wide Web
Conference, 2018, pp. 167–176.

[45] H.-Y. Lee, P.-H. Chung, Y.-C. Wu, T.-H. Lin, and T.-H. Wen, “Interactive
spoken content retrieval by deep reinforcement learning,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP),
vol. 26, no. 12, pp. 2447–2459, 2018.

[46] C. Rosset, D. Jose, G. Ghosh, B. Mitra, and S. Tiwary, “Optimizing
query evaluations using reinforcement learning for web search,” in The
41st International ACM SIGIR Conference on Research & Development
in Information Retrieval. ACM, 2018, pp. 1193–1196.

[47] N. S. Goel and N. Richter-Dyn, Stochastic models in biology. Elsevier,
2016.

	I Introduction and Related Works
	II Background
	II-A Framework of Self-Learning Search Engine

	III A SLSE Architecture With Reinforcement Learning
	III-A Reinforcement-Learning Based Architecture
	III-B Problem of Learning Convergence
	III-C Evolutionary Exploration Strategies

	IV Analysis of Learning Convergence Behavior
	V Experimental Evaluations
	V-A Experimental Setup
	V-B Results Interpretation

	VI Summary and Conclusion
	References

