
Restricted Recurrent Neural Networks
Enmao Diao

Electrical and Computer Engineering
Duke University
Durham, USA

enmao.diao@duke.edu

Jie Ding
Statistics

University of Minnesota
Minneapolis, USA

dingj@umn.edu

Vahid Tarokh
Electrical and Computer Engineering

Duke University
Durham, USA

vahid.tarokh@duke.edu

Abstract—Recurrent Neural Network (RNN) and its variations
such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), have become standard building blocks for learning
online data of sequential nature in many research areas, including
natural language processing and speech data analysis. In this
paper, we present a new methodology to significantly reduce the
number of parameters in RNNs while maintaining performance
that is comparable or even better than classical RNNs. The new
proposal, referred to as Restricted Recurrent Neural Network
(RRNN), restricts the weight matrices corresponding to the
input data and hidden states at each time step to share a
large proportion of parameters. The new architecture can be
regarded as a compression of its classical counterpart, but it does
not require pre-training or sophisticated parameter fine-tuning,
both of which are major issues in most existing compression
techniques. Experiments on natural language modeling show that
compared with its classical counterpart, the restricted recurrent
architecture generally produces comparable results at about
50% compression rate. In particular, the Restricted LSTM can
outperform classical RNN with even less number of parameters.

Index Terms—Recurrent Neural Networks, Long Short-Term
Memory, Gated Recurrent Unit, Model Compression, Parameter
Sharing.

I. INTRODUCTION

With the increasing volume of online streaming data gener-
ated from mobile devices, deploying efficient neural network
models on smart devices with low computational power has
become an emerging challenge. Recurrent Neural Network
(RNN) is widely used as for online learning tasks such as time
series prediction, language modeling, text generation, machine
translation, speech recognition, and text to speech generation,
etc. It has been known that Vanilla RNN fails to capture long
term dependencies among long sequence of data observations.
Long-Short Term Memory (LSTM) is later developed by [1] in
order to solve this problem by introducing memory state and
multiple gating mechanism. But this creates another practical
issue since large number of states and gates require higher
computational complexity and memory space. To alleviate this
problem, Gated Recurrent Units (GRU) have been developed
to inherit the merit of capturing long term dependencies while
reducing the computational cost [2]. Due to the hidden state
and gating mechanism, RNN, GRU and LSTM have 2x, 6x,
and 8x number of parameters compared with fully connected

This work was supported in part by Office of Naval Research Grant No.
N00014-18-1-2244. We provide our implementation at https://github.com/
dem123456789/Restricted-Recurrent-Neural-Networks.

neural networks. Despite the huge success of applying RNNs
to real-world challenges, there still exists a huge demand in
reducing the model complexity to save training time, or to
facilitate more economical hardware implementations. This
has motivated the recent literature on deep learning model
compression [3]–[5].

In order to address these issues, we propose a new deep
learning architecture called Restricted Recurrent Neural Net-
works (RRNN) to reduce the number of parameters by exploit-
ing the recurrent structures. The main idea of the proposed
architecture is to utilize the sharing of model parameters
corresponding to the input and hidden states while maintaining
comparable or even better performance. Classical RNNs assign
completely separate weight matrices for the input and hidden
states at each gate. The underlying assumption is that those
weight matrices can be trained to adapt to their corresponding
input. An alternative case is where all input and hidden
states at each gate share exactly the same weight matrix.
This may lead to undesirable results because a single weight
matrix cannot be easily trained to accommodate two distinct
distributions of inputs. Nevertheless, it is reasonable to assume
certain dependencies between the input and hidden states in
the context of sequential models with recurrent structure. Our
intuition is that we can utilize shared parameters to account
for the dependencies between two inputs while granting a
portion of specialized free parameters for each distinct source
of inputs. Interestingly, our experiments show that the idea
of enforcing parameter sharing works quite well for RNNs.
By sharing most of the model parameters, we can reduce the
model complexity while still producing comparable or even
better performance than classical models.

The proposed solution can be regarded as a new strategy of
model compression. Classical model compression techniques
mainly fall into two categories, namely parameter pruning
or quantization, and low-rank factorization [5]. Parameter
pruning or quantization typically explores the redundancy of
model parameters and removes non-informative neurons after
pre-training the model. On the other hand, matrix low-rank
factorization recognizes RNN as a combination of multiple
2D matrices and decompose them [6]–[9]. However, the
practical use of both methods are limited by computational
disadvantages. Pruning with L1 or L2 regularization requires

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

ar
X

iv
:1

90
8.

07
72

4v
4

 [
cs

.C
L

]
 1

4
N

ov
 2

01
9

https://github.com/dem123456789/Restricted-Recurrent-Neural-Networks
https://github.com/dem123456789/Restricted-Recurrent-Neural-Networks

more iterations to converge and sophisticated fine-tuning of
the regularization parameters. Low-rank factorization typically
requires computationally expensive decomposition operations,
and to achieve desirable performance comparable with clas-
sical RNNs, both methods typically require retraining from a
pre-trained model. In fact, the parsimonious architecture can
be regarded as a compression of its classical counterpart, but
with the following advantages.

The main contribution of this paper is as follows. First,
we propose a novel model compression technique specifically
taking advantage of the recurrent structures of RNNs. Unlike
classical model compression techniques, our method does not
require retraining a pre-trained model. Second, our method
can explicitly control the compression rates, whereas deep
compression based on regularization typically cannot directly
relate regularization parameters to the exact compression rates.
Third, since we only alter the structure of the weight matrix,
our method is compatible with the existing regularization
techniques such as Dropout [10]. Finally, our numerical
experiments also show that sharing model parameters also
regularizes the model and produce better performance when
the compression rate is small.

The paper is outlined as below. We review the background
and introduce the notation in Section II. Our proposed method
is introduced in Section III. Experimental results are given in
Section IV. Finally, we make our conclusions in Section V.

II. RELATED WORK

In spite of extensive research on compressing general deep
learning models [5], little attention has been paid to particu-
lar compression techniques for Recurrent Neural Networks.
Existing works on compressing RNN mostly focus on the
application of matrix decomposition to the internal weight
matrix [8], [9]. To some extent they ignore the underlying
recurrent structure and sequential nature of the data. Recently,
there has been a variety of Convolutional Neural Networks
(CNN) which enables efficient compression from the per-
spective of network structural design rather then sophisticated
post-processing after pre-training (that is typically employed
in classical compression techniques [11]–[13]). The success
of parsimonious CNN structures has motivated our work to
introduce a new framework specifically designed for RNN.
We depart from the existing model compression techniques
in RNN, and propose a structure based approach, in the
sense that our proposed method does not require the pre-
training stage, and data-driven pruning of weights or neurons
as the second stage. This enables simpler training, and easier
hardware implementation.

A. Recurrent Neural Networks

RNN has been widely used in modeling online streaming
data such as natural language texts and speech [14], [15]. Its
vanilla version can be simply written as

ht = tanh(Wxhxt + bih +Whhht−1 + bhh) (1)

where the subscript t, x, h denote the time step, input layer,
and hidden layer respectively. Vanilla RNN is known to suffer
from gradient vanishing and explosion problems, and it fails to
capture long term dependencies among sequential data. LSTM
is later developed as a solution to the drawbacks of vanilla
RNN [1]. As shown below, LSTM has an internal memory
cell ct to store the long term dependencies. It also introduces
four gates in order to to control the information flow from
input, hidden state and the memory cell. The input gate it
determines how much information from input and hidden state
should be remembered by the memory cell. A forget gate ft
determines how much long term memory should be saved in
the next time step. gt contains the information of current input
and previous hidden state. The output gate ot controls the
information flows into the next hidden state. Depending on
the switching of gates, LSTM can represent long-term and
short-term dependencies of sequential data simultaneously.

it = σ(Wxixt + bih +Whiht−1 + bhi)

ft = σ(Wxfxt + bif +Whfht−1 + bhf)

gt = tanh(Wxgxt + big +Whght−1 + bhg)

ot = σ(Wxoxt + bio +Whoht−1 + bho)

ct = ft ∗ ct−1 + it ∗ gt
ht = ot ∗ tanh(ct)

Despite its merit of capturing long term dependencies, LSTM
has four times the number of parameters of vanilla RNN and
an extra memory cell. This leads to heavy computational costs
and frequent overfitting issues due to its superfluous degrees
of freedom.
These potential drawbacks popularize GRU, a lighter version
of LSTM. The formulation of GRU is shown below [2].
The reset gate rt decides whether to ignore the information
propagated from previous hidden states. The update gate zt
couples the input and the forget gate in LSTM into one single
gate to control the information flowing to the next hidden state.
Compared with LSTM, GRU is computationally more efficient
because no memory cell is used and its coupling techniques
reduce two weight matrices.

rt = σ(Wxrxt + bir +Whrht−1 + bhr)

zt = σ(Wxzxt + biz +Whzht−1 + bhz)

nt = tanh(Wxnxt + bin + rt ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

Apart from LSTM and GRU mentioned above, there still exist
many other variations of RNN. Many of them are designed
to specialize on specific type of sequential data [16]–[19].
Although our numerical experiments are based on RNN,
LSTM and GRU, it is straightforward to utilize our method in
other recurrent models.

B. Model Compression

As neural networks with higher layers and parameters have
been achieving state-of-the-art performance in many real world
challenges, reducing their computational and storage cost

becomes critical. Recent advances in internet of things and
wireless sensor networks have been driving an ever-increasing
volume of online streaming data. Big data on small devices
has motivated deploying deep learning systems on devices
with very limited computational resources. Classical model
compression techniques like parameter pruning and low-rank
factorization have been introduced to deep learning models
[5]. Although these methods have shown to be feasible, they
usually require model pre-training and sophisticated retraining
in order to achieve desirable results. Moreover, these tech-
niques demand cumbersome fine-tuning of hyper-parameters.
Another active direction of model compression is to design
new architectures which are inherently more efficient than
the standard models. For example, group convolutions are
adopted by [11]–[13] to reduce the number of parameters of
vanilla CNN. Motivated by this thread, we propose a novel
compression methodology specifically for RNN by taking
advantage of its recurrent structure.

III. METHOD

In this section, we first describe the restriction method that
reduces the number of parameters of neural networks by en-
forcing parameter sharing. We will elaborate the formulations
of Restricted RNN, LSTM and GRU. The degrees of freedom
of Restricted RNN can be easily calculated based on our
formulations.

A. Restricted Recurrent Neural Networks (RRNN)

At each time step t, xt and ht−1 serve as two inputs to
RNN. Suppose that the size of xt and ht−1 are kxh × n
and khh × n respectively. Classical methods employ separate
parameter matrices, say Wxh and Whh, for each type of input.
An alternative way of modeling is to restrict the two inputs
to use exactly the same parameter matrix, i.e. Wxh = Whh

assuming the hidden channel size is the same as the input
channel size. Intuitively speaking, the hidden states from the
last time step contribute equally with the instantaneous data
input. This is because ht is a function of Wxh(xt + ht−1).
While the equal weighting may not be too extreme to be
practically useful, it may help to consider the scenario that
lies between the above two extreme cases, namely to let Wxh

and Whh share part of the parameters. Intuitively, this reduces
overfitting by enforcing parameter sharing while allocating
sufficient degrees of freedom to either type of input. By
assuming that the inputs are not totally independent with each
other, one could imagine shared parameters are able to capture
the similarities among the inputs while non-shared parameters
grant enough degrees of freedom for innovations.

Specifically, suppose that the size of Wxh and Whh are
dxh × kxh and dhh × khh respectively. Since we need to sum
up Wxhxt and Whhht−1, the common practice is that dxh is
equal to dhh. Suppose that rxh ∈ [0, 1] and rhh ∈ [0, 1] are
sharing rates. Then the restricted parameter matrices W r

xh and

W r
hh are formulated as below. Additionally, for illustration, a

diagram is provided in Figure 1.

sxh = Round(rxh × dxh), shh = Round(rhh × dhh)
qxh = dxh − sxh, qhh = dhh − shh,
sr = max(sxh, shh), kr = max(kxh, khh)

dr = sr + qxh + qhh

W ∼ (dr, kr), b ∼ (dr,)

W r
xh =

(
W [: sxh, : kxh]

W [sr : sr + qxh, : kxh]

)
brxh =

(
b[: sxh]

b[sr : sr + qxh]

)
W r

hh =

(
W [: shh, : khh]

W [sr + qxh : sr + qxh + qhh, : khh]

)
brhh =

(
b[: shh]

b[sr + qxh : sr + qxh + qhh]

)
ht = tanh(W r

xhxt + brxh +W r
hhht−1 + brhh)

sih and shh represent the output channel size of shared
parameters for the input and hidden state. We first allocate
parameter pools W and b for the restricted parameters to index
from. The parameter kr, the input channel size of W , is equal
to the maximum of input channel size of input and hidden
state. The parameter dr, the output channel size of W , is
equal to the summation of the maximum shared output channel
size and non-shared channel size q for each state. Restricted
parameters for each state, W r

ih and W r
hh, are selected from

parameter pools W with indices that enforce parameter sharing
among the input and hidden state. Restricted parameters are
concatenated from the shared and non-shared sub-matrices
indexed from parameter pools (i.e. W and b). Those indices
also make sure the size of our restricted model exactly match
its non-restricted counterpart (which does not employ shar-
ing). Therefore, it is straightforward to replace non-restricted
parameters in RNN with their restricted versions. It is worth
mentioning that non-indexed parameters in W are not involved
in training and only treated as placeholders for notational con-
venience. The trainable parameters involved in computation
are W r

· and br· . The number of shared parameters Sr and the
number of overall parameters Pr of Restricted RNN can be
computed as follows. Let

d := dxh = dhh

Pxh = d× (kxh + 1)

Phh = d× (khh + 1)

P = Pih + Phh

Sr = min(sxh, shh)× (min(kxh, khh) + 1)

Pr = P − Sr

Then compression rate C can be calculated by

C =
Pr

P

Fig. 1. Illustration of parameter restriction in RRNN.

Assuming the common practice that k := kxh = khh, r :=
rxh = rhh, we have

s := sxh = shh = r × d
P = 2d · (k + 1), Sr = s · (k + 1)

The compression rate C can be simplified as follows.

C =
Pr

P
=
P − Sr

P
=

2d− s
2d

=
2− r
2

It can be seen that C ∈ [0.5, 1]. In fact, C = 0.5 corresponds
to the extreme case that input and hidden state share all the
parameters, while C = 1 corresponds to the classical case
without any sharing.

B. Generalized RRNN for LSTM and GRU

Since our method is designed to take advantage of the
recurrent structures, it can also be applied to other variations of
RNN such as LSTM and GRU. The distinction between these
more complex recurrent models and vanilla RNN is the gating
mechanism. As shown in Section 2, the gating mechanism
simply replaces tanh with sigmoid activations functions as
a soft switch to control the information flow. Naturally, we
can also enforce parameter sharing among gates through our
restriction method. The formulations of Restricted LSTM and
GRU are analogous to Restricted RNN. Here we generalize
our previous formulation of Restricted RNN to handle multiple
inputs and outputs. This is common in other variations of RNN
like Tree-LSTM which can have more inputs than input and
hidden state [17]. For example, RNN, LSTM and GRU all
have two inputs including the input and hidden state. They also
have one, four and three outputs representing different gates
respectively. Given m inputs and n outputs, we can generalize
our formulation as follows. The matrix sm×n indicates that
each pair of input and output can have its own sharing rate.

The non-linearity fn can be either tanh or sigmoid function
depending on the structure of RNN.

sm×n = Round(rm×n × dm×n)

qm×n = dm×n − sm×n

sr = max(sm×n), kr = max(k1:m)

dr = sr +

m∑
i=1

n∑
j=1

qij

W ∼ (dr, kr), b ∼ (dr,)

W r
mn =

(
W [: smn, : km]

W [sr +
∑

1≤i≤m
1≤j≤n−1

qij : sr +
∑

1≤i≤m
1≤j≤n

qij , : km]

)

brmn =

(
b[: smn]

b[sr +
∑

1≤i≤m
1≤j≤n−1

qij : sr +
∑

1≤i≤m
1≤j≤n

qij]

)

ynt = fn(

m∑
i=1

W r
mnx

m
t + brmn)

The number of parameters of Generalized RRNN can be
computed as follows.

Pmn = dmn × (km + 1)

P =

m∑
i=1

n∑
j=1

Pij

Sr = (mn− 1)×min(sm×n)× (min(k1:m) + 1)

Pr = P − Sr

By assuming all sharing rates, input and output channel
size are the same size and no rounding is performed, the
compression rate C can be simplified as follows.

P = mnd(k + 1)

C =
Pr

P
=
P − Sr

P
=
mnd− (mn− 1)s

mnd
≈ 1− s

d
= 1− r

TABLE I
COMPARISON WITH STATE-OF-THE-ART ARCHITECTURES IN TERMS OF TEST PERPLEXITY ON PENN TREEBANK DATASET

Model Model parameters (M) Test Perplexity

LR LSTM 200-200 [9] 0.928 136.115
LSTM-SparseVD-VOC [20] 1.672 120.2

KN5 + cache [21] 2 125.7
LR LSTM 400-400 [9] 3.28 106.623
LSTM-SparseVD [20] 3.312 109.2

RNN-LDA + KN-5 + cache [21] 9 92
AWD-LSTM [22] 22 55.97

RLSTM-Tied-Dropout (r=0.5) 2 (Embedding) + 0.553 (RNN) 103.5

IV. EXPERIMENTS

A. Experimental setup

To demonstrate the effectiveness of our RRNN methodol-
ogy, we conduct sequential prediction experiments on the Penn
Treebank (PTB) dataset and the WikiText-2 (WT2) dataset
[23], [24]. The Penn Treebank dataset is a well-recognized
benchmark dataset for language modeling experiments. The
language model is supposed to make prediction of the next
word based on the previous text. The dataset has 10k words
in its vocabulary and consists of 929k training words, 73k
validation words, and 82k test words. It does not contain capi-
tal letters, numbers, or punctuation which constitute 5.8% out
of vocabulary (OoV) tokens. WikiText-2 contains sentences
sourced from Wikipedia articles and is more challenging com-
pared with PTB dataset. The dataset contains a vocabulary of
33,278 words and includes 2M training words, 210K validation
words, and 240K test words. Unlike PTB dataset, it retains
capitalization, punctuation, and numbers and has 2.6% OoV
tokens.

A typical neural network architecture used in language
modeling consists of an embedding layer, recurrent layers and
a softmax layer. Both embedding layer and softmax layer are
fully connected neural networks. We experiment with three
recurrent layers with 200 hidden units and 200 embedding
size. To train our models, we minimize cross entropy loss
averaged over all words with Stochastic Gradient Descent
(SGD) optimizer of 0.9 momentum and 1e-6 weight decay.
We carry out gradient clipping with maximum norm 0.25
and an initial learning rate of 1 for training 100 epochs. We
use cosine annealing learning rate as it empirically produces
much more stable results than using a holdout validation
set [25]. We use a batch size 80 and 35 Back Propagated
Through Time (BPTT) length for both datasets. We evaluate
all our models against two quantitative metrics, perplexity
and the number of free model parameters. The perplexity,
which is the exponentiation of the cross entropy, is a classical
metric for language modeling. It evaluates the uncertainty of
words predicted by a model. High perplexity means that the
model produces near-uniform random predictions from the
vocabulary, and thus is undesirable.

To demonstrate the tradeoff between perplexity versus the
number of model parameters, we apply our restriction method
with RNN, LSTM and GRU at different sharing rates r =

{0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 1}. We also demonstrate the re-
sult of models regularized by tied embedding and Dropout
with 0.2 rate [26].

B. Results

The main results of our compressed models are summarized
in Table I. We compare our results to several state-of-the-art
recurrent models for language modeling which either use a
small number of parameters or is compressed from a larger
model. We are unable to find baseline results on WT2 dataset,
so we only compare over PTB dataset.

TABLE II
MODEL COMPLEXITY OF OUR PROPOSED RRNN AND ITS VARIANTS

(UNIT: MILLION)

r 1 0.95 0.9 0.7 0.5 0.3 0.1 0

RRNN 0.130 0.136 0.142 0.167 0.191 0.215 0.239 0.251
RGRU 0.130 0.161 0.191 0.311 0.432 0.553 0.673 0.733

RLSTM 0.130 0.173 0.215 0.384 0.553 0.721 0.890 0.975

We summarize the model complexities of all of our trained
models in Table II. Since we focus on compressing RNN
instead of embedding layers, we also include the number
of RNN parameters in addition to overall model parameters.
We demonstrate the performance of our restricted models on
both PTB and WT2 datasets at different sharing rates s in
Table III and IV. From the experimental results, we discovered
an interesting phase transition from all-parameters-sharing to
partial-parameter-sharing (particularly for Restricted LSTM).
To demonstrate it, we graphically illustrate perplexity versus
the number of RNN parameters in Figures 2 and 3.

In Table I, we show the best known results of compressed
RNN for the PTB dataset. Due to the large vocabulary size,
LSTM-SparseVD and LR LSTM not only focus on compress-
ing RNN layers but also on embedding and softmax layers.
However, our restricted models only focus on compressing
RNN layers. Therefore, to maintain a reasonable comparison,
we train our models with tied embedding where the weight
matrices of embedding and softmax layers are completely
shared [26]. Tied embedding is a common regularization
technique which prevents the model from learning a one-to-
one correspondence between the input and output [27]. We
also empirically add Dropout with rate 0.2 to regularize our

TABLE III
TEST (VALIDATION) PERPLEXITY OF THE PROPOSED ARCHITECTURES (DENOTED BY PREFIX ‘R’) ON PENN TREEBANK DATASET

r 1 0.95 0.9 0.7 0.5 0.3 0.1 0

RRNN 188.9 (197.9) 208.6 (219.5) 200.4 (211.8) 175 (183.9) 176.5 (186.7) 156.9 (165.1) 156.6 (164.4) 154.8 (162.4)
RGRU 154.2 (162) 153.7 (160) 153.5 (160.9) 152.4 (157.4) 148.4 (154.9) 148.1 (153) 146.6 (151.5) 144.9 (150.3)

RLSTM 188.2 (199.5) 159.9 (167.8) 148.1 (155.8) 133.6 (139.8) 129 (133.9) 127.9 (133.8) 123.8 (129.8) 124.6 (130.4)
RRNN-Tied-Dropout 244.8 (252) 242.1 (248.7) 239.8 (246.6) 231.2 (238.7) 226.6 (233.7) 224.3 (229.9) 223.3 (230) 221.7 (228)
RGRU-Tied-Dropout 199 (207.8) 190.3 (198.5) 184.2 (191.1) 169.8 (175.9) 163.6 (168.6) 161.6 (168.3) 162.2 (168) 156 (162.8)

RLSTM-Tied-Dropout 188.5 (197) 141.2 (148.6) 126.7 (131.8) 106.6 (111.4) 103.5 (108.6) 104.1 (109.7) 105.8 (110.7) 107.7 (112.5)

TABLE IV
TEST (VALIDATION) PERPLEXITY OF THE PROPOSED ARCHITECTURES (DENOTED BY PREFIX ‘R’) ON WIKITEXT2 DATASET

r 1 0.95 0.9 0.7 0.5 0.3 0.1 0

RRNN 289.5 (314.6) 293.5 (319.3) 283.5 (308.8) 257.3 (280.4) 249.6 (272) 242.1 (264.1) 240.5 (262.9) 230.8 (253.1)
RGRU 177.8 (193.2) 175.1 (189.3) 177.7 (191.9) 174.9 (189.8) 169.6 (187.3) 169.6 (184.6) 170.9 (185.8) 167.5 (181.8)

RLSTM 181.2 (196.1) 174.5 (187.6) 170.9 (182.9) 162.8 (175.6) 158.7 (171.2) 154.3 (167.5) 151.8 (165) 154.5 (167.6)
RRNN-Tied-Dropout 303.8 (331.8) 304.2 (332.7) 300.2 (328.1) 288.7 (316.2) 283.9 (311.3) 279.5 (305.7) 279.1 (305.4) 276 (302.3)
RGRU-Tied-Dropout 228.5 (249.8) 215.7 (235) 205.8 (223.7) 179.6 (195) 168.1 (182.4) 161.2 (174.5) 154.3 (167) 150.4 (163)

RLSTM-Tied-Dropout 334.4 (356) 170.9 (184.8) 152.3 (164.4) 128.8 (137.1) 119.1 (126.4) 114.7 (121.6) 112.6 (118.4) 112.9 (119.4)

models. Through various experiments we found that the final
result is not very sensitive to small Dropout rates.

We illustrate the model complexity of Restricted RNN, GRU
and LSTM in Table II. As described in Section III, sharing rate
s = 1 will force input and hidden states at all gates to share the
same parameters while s = 0 indicates classical RNN where
each each input and hidden state at each gate corresponds
to separate parameters. It is worth noting that it is possible to
compress LSTM to a size smaller than that of vanilla RNN. In
fact, our detailed results shown in Table III and IV demonstrate
that RLSTM (RLSTM-Tied-Dropout) with s = 0.9 has lower
model complexity and also outperforms vanilla RNN (RNN-
Tied-Dropout). Moreover, RLSTM (RLSTM-Tied-Dropout)
with s = 0.3 significantly outperforms vanilla GRU (GRU-
Tied-Dropout) when both have similar model complexity. It
suggests that the merit of RNN and GRU is their faster
training time, due to their less complicated recurrent structure.
However, to reduce the model complexity, we should exploit
the dependencies and enforce parameter sharing among input
and hidden states at each gate.

As mentioned in Section III, the intuition behind our method
is that either sharing all parameters or no parameters is not the
optimal modeling for multiple dependent inputs. Figure 2 and
3 show that there exists a phase transition of parameter sharing
in Restricted RNN. No parameters sharing apparently produces
inferior result since the model parameters are learned to make
a compromise among inputs. Thus, the outputs fails to address
the distinction among the inputs. Sharing all parameters in
most cases produces ideal result. However, it suffers from

potential overfitting and low efficiency. As shown in Figures
2 and 3, performance improvement with sharing rate r ≥ 0.5
tends to be much more significant than the improvement with
r < 0.5. It means that we only need to grant a small portion of
degrees of freedom for each input to achieve a result which is
comparable to classical settings. This phenomenon is obvious
for RLSTM-Tied-Dropout. In fact, as shown in Tables III
and IV, RLSTM with small sharing rate also regularizes its
classical counterparts which have more parameters and more
complex recurrent structure than that of RNN and GRU. As
to the choice of r in practice, better performance-compression
tradeoff can be obtained by fine-tuning r in specific data
domains. From various experimental studies, we suggest to
set r = 0.5 as the default option.

V. CONCLUSION

In this work, we propose a novel model compression
methodology called Restricted Recurrent Neural Networks
(RRNN). Unlike pruning weights and decomposing estimated
parameter matrices, our structure based model does not require
pre-training and fine-tuning of pre-trained models. Our method
explicitly takes the advantage of the recurrent structures of
RNN by enforcing parameter sharing among the input and
hidden state. Our work can be generalized to compress gated
variations of RNN like LSTM and GRU. Our results show that
both extreme cases of sharing all and none parameters are not
the optimal solution to model multiple dependent input data.
Sharing partial parameters can exploit the dependencies among
inputs and greatly reduce the number of RNN parameters.

Fig. 2. Perplexity vs. Number of RNN parameters for Penn Treebank dataset.

Fig. 3. Perplexity vs. Number of RNN parameters for WikiText2 dataset.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[2] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[4] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems (NIPS), 2016, pp. 2074–2082.

[5] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[6] R. Prabhavalkar, O. Alsharif, A. Bruguier, and L. McGraw, “On
the compression of recurrent neural networks with an application to
lvcsr acoustic modeling for embedded speech recognition,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 5970–5974.

[7] Z. Lu, V. Sindhwani, and T. N. Sainath, “Learning compact recurrent
neural networks,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 5960–5964.

[8] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neural
network with tensor train,” in 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2017, pp. 4451–4458.

[9] A. M. Grachev, D. I. Ignatov, and A. V. Savchenko, “Compression of
recurrent neural networks for efficient language modeling,” Applied Soft
Computing, vol. 79, pp. 354–362, 2019.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929–1958, 2014.

[11] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[12] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 6848–6856.

[13] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 2752–2761.

[14] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Fifteenth annual conference of the international speech communication
association, 2014.

[15] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

[16] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in International Conference on
Machine Learning (ICML), 2015, pp. 2342–2350.

[17] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[18] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE transactions on neural
networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[19] D. Kent and F. M. Salem, “Performance of three slim variants of the
long short-term memory (lstm) layer,” arXiv preprint arXiv:1901.00525,
2019.

[20] N. Chirkova, E. Lobacheva, and D. Vetrov, “Bayesian compression for
natural language processing,” arXiv preprint arXiv:1810.10927, 2018.

[21] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model,” in 2012 IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2012, pp. 234–239.

[22] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” arXiv preprint arXiv:1708.02182, 2017.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.

[24] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[25] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[26] O. Press and L. Wolf, “Using the output embedding to improve language
models,” arXiv preprint arXiv:1608.05859, 2016.

[27] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word
classifiers: A loss framework for language modeling,” arXiv preprint
arXiv:1611.01462, 2016.

