

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/138382

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/138382
mailto:wrap@warwick.ac.uk

Aggregate Query Prediction under Dynamic
Workloads

Fotis Savva
University of Glasgow, UK
f.savva.1@research.gla.ac.uk

Christos Anagnostopoulos
University of Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Peter Triantafillou
University of Warwick, UK

p.triantafillou@warwick.ac.uk

Abstract—Large organizations have seamlessly incorporated
data-driven decision making in their operations. However, as
data volumes increase, expensive big data infrastructures are
called to rescue. In this setting, analytics tasks become very
costly in terms of query response time, resource consumption,
and money in cloud deployments, especially when base data are
stored across geographically distributed data centers. Therefore,
we introduce an adaptive Machine Learning mechanism which
is light-weight, stored client-side, can estimate the answers of
a variety of aggregate queries and can avoid the big data
backend. The estimations are performed in milliseconds and are
inexepensive as the mechanism learns from past analytical-query
patterns. However, as analytic queries are ad-hoc and analysts’
interests change over time we develop solutions that can swiftly
and accurately detect such changes and adapt to new query
patterns. The capabilities of our approach are demonstrated
using extensive evaluation with real and synthetic datasets.

Index Terms—life-long learning, approximate query process-
ing, machine learning, concept drift detection, change-point
detection

I. INTRODUCTION

With the rapid explosion of data volumes and the adop-
tion of data-driven decision making, organizations have been
struggling to process data efficiently. Because of that a number
of companies is turning to popular cloud providers that have
created large-scale systems capable of storing and processing
large quantities of data. However, the problem still remains in
that multiple analytics queries are issued by multiple analysts
(Figure 1) which often overburden data clusters and are
costly. Data analysts should be able to extract information

DC
2

Cloud/Central System

f Adaptation

Change Detection

Data Analysts

Analytic Queries
via Local Models

Analytic Queries

DC
1

DC
1

DC
3

Fig. 1. Aggregate analytics eco-system with analysts’ devices, data centers,
and local adaptive ML models.

without significant delays so as not to violate the interactivity
constraint set around 500ms [15]. Anything over that limit

can negatively affect analysts’ experience and productivity.
This constraint is particularly important in the context of
exploratory analysis [13]. Such analyses are an invariable step
in the process of understanding data and creating solutions to
support business decisions.

Vision: Depicted at Figure 1 is our vision for an aggregate
analytics learning & prediction system that is light-weight,
stored on an Analyst’s Device (AD) and adaptive to dynamic
query workloads. This allows the exploratory process to be
executed locally at ADs providing predictions to aggregate
queries thus not overburdening the Cloud/Central System
(CS). Prediction-based aggregate analytics is expected to save
computational and communication resources, which could be
devoted to cases where accurate answers to aggregate queries
are demanded. From the CS’s perspective, our system acts
as a pseudo-caching mechanism to reduce communication
overhead and computational load when it is necessary, thus,
allowing for other tasks/processes to run.

Our system offers a learning-based, prediction-driven way
of performing aggregate analytics in ADs accessing no data.
It neither requires data transmission from CS to ADs nor from
ADs to CS. What makes such a system possible is the exploita-
tion of previously executed queries and their answers sitting in
log files. We adopt Machine Learning (ML) regression models
that learn to associate past executed queries with their answers,
and can in turn locally predict the answers of new queries.
Subsequent aggregate queries are answered in milliseconds,
thus, fulfilling the interactivity constraint.

Furthermore, our framework can directly adapt to analysts’
(dynamic) query workloads by monitoring the analysts’ query
patterns and adjusting their parameters. Shown at Figure 1 are
the ML models f and mechanisms developed for detecting
and adapting to changes in query patterns. Both of them are
discussed in Sections III and IV.

Challenges & Contribution: A large number of analysts
exist within an organization with diverse analytics interests
thus their query patterns are expected to differ, accessing
different parts of the whole data-space. We are challenged to
support model training over vastly different patterns, which
are to be drastically changing or expanding in dynamic envi-
ronments. Moreover the models have to be up-to-date w.r.t.
pattern changes, which require early query pattern change
detection and efficient adaptation. Given these challenges, our
contributions are:

1) A novel query-driven mechanism and query representa-
tion that associates queries with their respective answers
and can be used by ML models.

2) A local change detection mechanism for detecting
changes in query patterns based on our prediction-error
approximation.

3) A reciprocity-based adaptation mechanism in light of
novel query patterns, which efficiently engages the CS
to validate the prediction-to-adaptation states transition
and guarantees system convergence.

4) Comprehensive assessment of the system performance
and sensitivity analysis using real and synthetic data and
query workloads.

II. FUNDAMENTALS OF QUERY-DRIVEN LEARNING

The fundamentals of query-driven mechanism for analytics
are: (1) transforming analytic queries in a real-valued vectorial
space, (2) quantization of vectorial space, extracting query pat-
terns and (3) training of local regression models for predicting
query answers using past issued queries. Principally, we learn
to associate the result of a query using the derived query pat-
terns and linking these patterns with local regression models.
Given an unseen query, we project it to the closest query
pattern we have learned and then predict its corresponding
result without executing the query over the data in a DC/CS.

Definition 1: A dataset B = {a}ni=1 is a set of n row data
vectors a = [a1, . . . , ad] ∈ Rd with real attributes ai ∈ R.

Predicates over attributes define a data subspace over
B formed by a sequence of logical conjunctions using
(in)equality constraints (≤,≥,=). A range-predicate restricts
an attribute ai to be within range [li, ui]: ai ≥ li ∧ ai ≤ ui.
We model a range query over B through conjunctions of
predicates, i.e.,

∧d
i=1(li ≤ ai ≤ ui) represented as a vector in

R2d.
Definition 2: A (range) row query vector is defined as q =

[l1, u1, . . . , ld, ud] ∈ R2d corresponding to the range query∧d
i=1(li ≤ ai ≤ ui). The distance between two queries q and

q′ is defined as the L2
2 norm (Euclidean distance): ‖q−q′‖22 =∑d

i=1(li − l′i)2 + (ui − u′i)2.
This representation is flexible enough to accommodate a

wide variety of queries. As the dimensionality of the query
vector is proportional to the data vector, queries with predi-
cates bounding the values of different attributes can be used
by the same ML algorithm. This means that only a number
of (li, ui) values are set w.r.t the number of predicates for a
given query. In addition, we make no assumptions as to the
back-end system as what is being parsed are the filters in a
query. This allows the mechanism to be deployed in parallel
to multiple analytic systems.

In query-driven learning, we learn to associate a query
with its corresponding aggregate result (a scalar y ∈ R).
This is achieved using a training set of query-result pairs
T = {(qi, yi)}Ni=1 obtained after executing N queries over
dataset B. The goal is to develop an ML model based on T to
minimize the expected prediction error between actual y and

predicted ŷ, E[(ŷ − y)2] and predict the result of any unseen
query without executing it over B.

A. Query Space Clustering

Recent research analyzing analytics workloads from various
domains has shown that queries within analytics workloads
share patterns and their results are similar having various
degrees of overlap [23]. Based on this evidence, we mine query
logs (the training set) and discover clusters of queries (in the
vectorial d-dimensional space), having similar predicate pa-
rameters. This partitioning is fundamental to get accurate ML
models for predictive analytics, as we then associate different
ML predictive models with different clusters. In this way,
learning different data sub-sets is proven to be more efficient
in terms of explainability / model-fitting and predictability than
having one global ML model learn everything and is also
known as ensemble learning [10].

To put this in context, consider a discrete time domain
t ∈ T = {1, 2, 3, . . .}, where at each time instance t an
analyst issues a query qt. The query is executed and an answer
yt is obtained, forming the pair (qt, yt). The issued queries
are stored in a growing set Ct = {(q1, y1), . . . , (qt, yt)} =
Ct−1 ∪ {(qt, yt)}. Given this set, we incrementally extract
knowledge from the query vectors and then train local ML
models that predict the associated outputs given new, unseen
queries. This is achieved by on-line partitioning the vectors
{q1, . . . ,qt} ∈ Ct into disjoint clusters that represent the
query patterns of the analysts (fundamentally, within each
cluster the queries are much more similar than the queries
in other clusters). The distance between queries quantifies
how close the predicate parameters are in the vectorial space.
Close queries q and q′ are grouped together into K1 clusters
w.r.t. ‖q − q′‖22. The objective is to minimize the expected
quantization error E[mink=1,...,K‖q − wk‖22] of all queries
to their closest cluster representative wk, which reflects the
analysts query patterns and best represents each cluster. The K
query representatives W = {w1, . . . ,wK} optimally quantize
Ct minimizing the expected quantization error while each
query q is projected onto its closest representative w∗ =
arg minw∈W‖q − w‖22. Based on the partitioning of Ct, we
produce K query-disjoint sub-sets such that Ck ∩ Cl ≡ ∅ for
k 6= l and Ck = {(q, y) ∈ Ct|wk = arg minw∈W‖q −w‖2}.
A local ML model is then trained over each subset using the
pairs in Ck, k ∈ [K].

B. Query-Answer Predictive Model

Each aggregate result y from the pair (q, y) ∈ Ct represents
the exact answer produced by the CS. Essentially, y is pro-
duced by an unknown function g which we wish to learn. Such
function produces query-answers w.r.t an unknown distribution
p(y|q). Our aim is to approximate the true functions g for
aggregate functions (descriptive statistics) e.g., count, average,
max, sum etc. Regression algorithms are trained using query-
answer pairs from Ct to minimize the expected prediction

1The number of clusters K is automatically identified by the clustering
algorithm used. [2]

error between actual y = g(q), from the true function
g, and predicted ŷ from an approximated function ĝ, i.e.,
E[(g(q) − ĝ(q))2]. After having partitioned the query space
into clusters C1, . . . , CK , we therein train K local ML models,
M = {ĝ1, . . . , ĝK} that associate queries q belonging to
cluster Ck with their outputs y. Each ML model ĝk is trained
from query-response pairs (q, y) ∈ Ct from those queries q
which belong to Ck such that wk is the closest representative
to those queries. The originally trained ML models in DC/CS
are then sent to ADs to be used for predicting answers. Given
a query q only the most representative model ĝk is used for
prediction, corresponding to the closest wk:

ŷ =

K∑
k=1

Ikĝk(q) (1)

where Ik = 1 if wk = arg minw∈W‖q−w‖22; 0 otherwise.

III. QUERY PATTERN CHANGE DETECTION

Suppose that all trained ML models {ĝk}Kk=1 are delivered
to the analysts from CS, indicating that the mechanism enters
its prediction mode. That is, for each incoming query, it
predicts the answer and delivers it back to the analysts without
query execution. However assuming a stationary query pattern
distribution is not realistic. It is highly likely that analysts
interests change over time (e.g., during exploratory analytics
tasks, which are considered as ad-hoc processes [13]). So,
dynamic workloads may render the {ĝk}Kk=1 models obsolete,
as they were trained using past query patterns following dis-
tributions which may now be different. When p(y|q) changes
to p′(y|q), it is highly likely that any previous approximation
would produce high-error answers, unless p(y|q) ≈ p′(y|q).
We capture such dynamics as concept drift [9], [21] – many
methods have been developed for adjusting when this arises
[9], [11].

We introduce a Change Detection Mechanism (CDM) and
an Adaptation Mechanism (ADM) (shown at Figure 1) ad-
dressing this concern raising a number of challenges: (1) How
to detect a query pattern change (2) What kind of action should
we take in case that happens (3) How should we notify users,
analysts about such change(s) We explore these challenges
and describe the decisions we take in tackling them in the
remainder.

A. Change Detection Mechanism

Our approach can be best understood by first assuming that
the CDM maintains an on-line average of the prediction error
(y − ŷ)2 such that : uk ≈ E[(y − ŷ)2|q]. This is done for
each query representative wk across different users. Should the
expected error uk escalate significantly, then this may signal
that a query pattern has shifted around the ‘region’ represented
by the representative wk. But, recall that during the prediction
mode, the actual y is unknown since our goal is to predict
accurate answers but without executing the query itself. Hence,
we develop an approximation mechanism for change detection,
not requiring query executions over CS/DC.

Once we have trained the individual ML models M and
calculated their expected prediction accuracy (using an inde-
pendent test sample drawn from the original set of queries)
we obtain the Expected Prediction Error (EPE), which will
be constant across all possible queries associated with a
particular query representative defined as: EPE = E

[(
g(q)−∑K

κ=1 Iκĝκ(q)
)2]

. Using the EPE, we wish to find a fine-
grained estimate of the true prediction error rather just assum-
ing this is constant for each and every unseen query.

To do this, we have analyzed the error behaviour under
changing query patterns2. Our findings reveal an interesting
fact: The Euclidean distance d(q,wk) = ‖q − wk‖22 of a
random query q from its closest query representative wk is
strongly correlated with the associated prediction error (y −
ŷ)2.3 Considering the correlation between d(q,wk) and the
local uk, we define a distance-based prediction error ũk of a
query q as:

ũi = ln (1 + d(q,wk)− min
q`∈Ck

d(wk,q`)) · uk, (2)

where the natural-log operator acts as a penalizing/discount
factor for queries given their distance from the closest repre-
sentative wk. The second term within the natural-log operator,
minq`∈Ck d(wk,q`) is the minimum distance between the
query representative wk and the associated queries q ∈ Ck.

Consider the incoming unseen (random) queries
(q0,q1, . . . ,qt) arriving in a sequence during prediction
mode. They are answered by specific local ML models
(ĝ0, ĝ1, . . . , ĝk), generating a series of distance-based error
estimations {ũt}. The CDM monitors this series and, based
on a specific threshold, signals the existence of concept
drift, i.e., checks whether the probability distribution of
the queries has changed. Based on the series of error
estimations, we learn two query distributions: (1) the
expected query distribution, which is represented by the query
representatives and (2) the novel query distribution, which
cannot be represented by the current query representatives.
The expected distribution p0(ũ) is estimated given a training
period from ũk values corresponding to queries with closest
representative wk. The novel distribution p1(ũ) is estimated
from ũm values corresponding to error values derived from
the rival representatives wm of queries with closest wm and
k 6= m. Based on this, we estimate the distribution of the
error values generated from representatives which were not
the closest to the queries, thus, approximating novel error
values. Both distributions were approximated by fitting the
p(ũ) ∼ Γ(e1, e2) distribution with scale e1 and shape e2.

Given a ũt value, we calculate the likelihood ratio st =
log p1(ũt)

p0(ũt)
and the cumulative sum of st up to time t, Ut =∑t

τ=0 sτ . Based on the sequential ratio monitoring for a
progressive concept drift in distribution [12] from p0 to p1,

2The datasets used are described in the Experimental Section
3A 0.3 Pearson’s Correlations was obtained on a real dataset described in

the Experimental Section.

a decision function is introduced for signaling a potential
concept drift expressed as:

Gt = Ut − min
0≤τ≤t

Uτ−1. (3)

The decision function in (3) indicates the current cumula-
tive sum of ratios minus its current minimum value. This
denotes that the change time estimate t∗ is the time fol-
lowing the current minimum of the cumulative sum, i.e.,
t∗ = arg min0≤τ≤t Uτ .

Hence, a concept drift of query patterns projected over the
query representatives space is detected at time tD: tD =
min{t ≥ 0 : Gt > h}. The parameter h is usually set
3σ ≤ h ≤ 5σ with σ the standard deviation of ũ. The cumu-
lative sum of ratios exceeds the threshold h as soon as queries
are issued from an unknown distribution as the error estimates
become steadily larger and are not just random fluctuations
in errors. As soon as a change is detected the CDM signals
the ADM component, that new query patterns have been
detected. In turn, the ADM signals the Prediction Component
(containing the M and W) to be put in BUFFERING mode
since the prediction component can no longer provide reliable
answers for all queries. However, the AD can still leverage the
complete system to ask queries following known distributions.
By entering BUFFERING mode our ADM starts to adjust for
the new query patterns under the AD until converging. At that
point it signals the Prediction Component to switch back to
PREDICTION mode, resuming normal operation.

IV. MODEL ADAPTATION

A. Model Adaptation & Reciprocity

In the CS, when a query is selectively forwarded from an
AD4, the process of model adaptation has as follows: for
adapting to new query patterns, we rely on the principle of
explicit partitioning [9], [21], as a natural extension of our
strategy using an ensemble of local ML models. To adjust to
new query patterns, we train a new model ĝK+1 using executed
queries and their answers in CS. This is the optimal strategy
for expanding the current M as other methods might lead to
catastrophic forgetting [11].

The adaptation process is performed with parameters: the
K query prototypes W and their associated ML models M.
Recall that the analyst’s device has cached models M and
the CS adapts the received parameters by learning the new
underlying query patterns and based on these trains the new
ML model. Let the queries series {q1,q2, . . .} coming from
the AD to CS based on selective forwarding. This means that
most likely a query qt conforms to new query patterns thus
sent to CS for execution. Once query q1 is executed and its
actual answer y1 is obtained, it is then considered as a new
(initial) representative wK+1 forMK+1. The pairs (qt, yt) are
then used to incrementally update wK+1 and then buffered in
Q, which will be the training set for ĝK+1. The adaptation
of wK+1 to follow the new query pattern is achieved by

4Specifics of selectively forwarding queries can be found at https://arxiv.
org/abs/1908.04772

Stochastic Gradient Descent (SGD) [7], which is widely
used in statistical learning for training in an on-line manner
considering one training example (query-answer) at a time. We
focus on the convergence of the query distribution by moving
the new query representative towards the estimated median of
the queries in Q and not the corresponding centroid. This is
introduced so that the new representative converges to a robust
statistic, free of outliers and more reliable than the centroid
(mean vector). The convergence to the median denotes with
high reliability convergence to the distribution, which is what
we desire for model convergence. In this case, we provide the
adaptation rule of the new query representative to converge to
the median of the forwarded queries, as provided in Theorem
1.

Theorem 1: The novel representative wK+1 converges to
the median vector of the queries executed in the DC w.r.t.
update rule ∆wK+1 ∝ γsgn(q −wK+1), γ ∈ (0, 1); sgn(·)
is the signum function.

Proof 1: Proof is omitted and can be found at [19]
The convergence of the representatives is checked by the

subsequent adjustments in positions that wK+1 makes. If that
change is lower than a threshold c then convergence has been
achieved. After the convergence of the query representative,
the CS trains the new models ˆgK+1 and {ĝj}, using Q. The
new ML models and new representatives are then delivered to
AD.

V. EVALUATION RESULTS

A. Implementation & Experimental Environment

To implement our algorithms we used XGBoost [8] and
an implementation of the Growing-Networks algorithm
[17]. We performed our experiments on a desktop machine
with a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz and 16GB
RAM. Real datasets: We use the Crimes dataset from [1]
and the Sensors dataset from [3]. The Crimes dataset contains
|R1| = 6.6 · 106 and the Sensors dataset |R2| = 2.3 · 106

data vectors. We created synthetic query workloads over these
datasets as real query workloads do not exist for this purpose
as also attested by [23].

B. Predictability

We experiment with real datasets to demonstrate the ap-
plicability of our system under real conditions. As evident
from Figure 2 our system provides estimations for descriptive
statistics over different types of real datasets with relative
error below 10%. (A relative error below 10% is the target
of modern state of the art approximate-answer production sys-
tems [14]). We also tested these datasets usng VerdictDB [18],
a state-of-the-art system in Approximate Query Processing.
The errors obtained varied from 1% − 14% with sampling
ratio of 1% − 10%. These results are comparable to ours
and show that our system can be reliably used in parallel
to such engines when local access is needed and resource
consumption at CS is to be minimized. After training the
system with more than ca. 2000 queries the relative error
starts approaching its minimum value rather swiftly for both

datasets (named Crimes and Sensors). This demonstrates
the capabilities of the proposed learning approach to offer
high accuracy estimates for approximating analytical query
answers with only a fairly small number of training queries.
Note that typical industrial-strength in-production big data
analytics clusters used for approximating answers to such
analytical queries receive several million of queries per day
[14]. Therefore, one can expect that a system employing our
approach would receive a few thousand of training queries in
a just few tens of seconds.

25
00

50
00

75
00

10
00

0
12

50
0
15

00
0
17

50
0
20

00
0
22

50
0
25

00
0

Queries

0

5

R
el

at
iv

e
E

rr
or

(%
) COUNT SUM MEAN

15
00

30
00

45
00

60
00

75
00

90
00

10
50

0
12

00
0
13

50
0
15

00
0

Queries

0

1

2

R
el

at
iv

e
E

rr
or

(%
) COUNT SUM MEAN

Fig. 2. Relative error vs. number of training queries; (left) Crimes (right)
Sensors.

C. Performance

We examine the performance and storage requirements of
our system. This is important as our solution has to be light-
weight both in terms of storage overhead for ADs and efficient
in transferring models through the network. We examine all
the above-mentioned models to identify the most efficient
ones in training and prediction. A synthetic workload with
50 predicates and 100 columns is used for training all the
models. For Prediction Time (PT) in Table I we report on the
mean and standard deviation of prediction time. The central
takeway here is that PTs are negligible – much less than a
millisecond, thus, guaranteeing efficient statistics estimation.
Even though there are multiple models trained, to account
for varying query patterns, the time complexity associated is
O(K) with K usually being small.

For measuring the training time of individual models, we
varied the number of training samples and examined the
expected model Training Time (TT) in Table I. We used 11
training samples varying in size wrt {4 · 102, . . . , 4 · 105}. We
note that its TT is no more than 53 seconds without using its
multi-threading capabilities.

We also, examine the model Size in KB shown in Table I
and observe that it refers to a minimal cost fulfilling our initial
requirements about the system being light-weight to reside in
the ADs memory. The results are for one individual model
therefore the resulting storage cost is K times the initial one.
However, the cost incurred is not preventive as the benefit of
decreasing latency times, offloading queries otherwise issued
to the cluster and no extra monetary cost are far greater.

Size (KB) TT (s) PT (ms)
XGB 65.42± 4 52.58± 90 0.008± 0.005201

TABLE I
PERFORMANCE AND STORAGE RESULTS ACROSS MODELS

D. Adaptivity

To examine our CDM, ADM due to concept drift we devised
the following experiment: consider a Mi that has already
learned a particular distribution of y being deployed to answer
queries. Our aim is to examine whether CDM detects a query
pattern shift from one distribution to another. If remained
undetected, it will cause detrimental problems in accuracy
due to different distributions of y. We first set the detection
threshold h = 3σũ and convergence threshold c = 0.008.
We gradually introduce new query patterns and compare our
system with an approach where no adaptation is deployed.
Figure 3 shows the different queries being processed by our
mechanism and the associated true prediction error. We first
measure the error of queries using the known distribution until
t = 66. From that point onward, we shift to the unknown
distribution and evidently the error increases dramatically
should no adaptation mechanism be employed. On the other
hand, CDM detects that a shift has happened and transits
the system from prediction mode to buffering mode until the
exiting criteria are met. At the end, a new model is introduced
which is trained using the new distribution as evidenced by
the decreased error at Mnew.

0 100 200 300 400

t - Time Step

0

250

500

750

1000

1250

R
el

at
iv

e
E

rr
or

(%
)

Concept Drift

Buffering Phase Mnew

No Adaptivity

Adaptivity

Fig. 3. Error with concept drift detection/adaptation.

VI. RELATED WORK

Our work is related to prior work in analytical-query pro-
cessing and in applied ML research communities and to prior
work focusing on the benefits of the query-driven approach in
analytical query processing and tuning [5], [6], [16]. Analytical
queries nowadays are executed over underlying systems that
provide either exact answers [20] or approximate answers [4],
[14], [18] working over large big data clusters in CS requiring
several orders of magnitude longer query response times. The
contributions in this work are largely complementary to all
this work. Specifically, during the training phase and in the
adapting phase the system proposed here can be supported
either by an exact or an approximate query processing engine.
In addition, what makes our solution different is that it can
be stored locally on an analyst’s device as it has low storage
overhead and also requires no communication to the cluster.

Query-driven models are largely being deployed for both ag-
gregate estimation [5], [6] and for hyper-tuning [22] database
systems. Unlike [5], [6] our focus is on a wide variety

of aggregate operators and not just COUNT for selectivity
estimation. Furthermore, we address the crucial problem of
detecting query pattern changes and adapting to them, which
(to our knowledge) has not been addressed in this context
before. Hence,our framework can be leveraged by all query-
driven implementations in cases of dynamic/non-stationary
workloads.

Moreover, concept drift adaptation is well understood [11],
[21], mostly dealing with classification tasks, where classifiers
adapt to new classes. We utilise concept drift in the con-
text of query-driven analytical processing, relying on explicit
partitioning [11], ensuring it avoids destructive forgetting
while remaining accurate of previously learned query patterns.
It is also favorable given our initial off-line design which
already uses partitioning for clustering the query patterns
and learning local models in given sub-spaces. Our work
contributes with monitoring and detecting real-time query
patterns change based on approximating the prediction error,
which differentiates with the previous concept drift methods
by measuring the actual error; evidently, this is not applicable
in our case. Finally, we propose a novel reciprocity-driven
adaptation mechanism in which we set a mechanism deciding
when a new model should be trained engaging the knowledge
derived from other possibly changing models in the CS.

VII. CONCLUSIONS

In this work we contribute a novel framework for adapting
trained models under concept drift. We focus on models
used for estimating analytical query answers efficiently and
accurately, however we note that the framework is applicable
in other domains as well. The contributions centre on a novel
suit of ML models, which mine past and new queries and
incrementally build models over quantized query-spaces using
a vectorial representation. The described mechanisms (ADM
and CDM) bear the ability to adapt under changing analytical
workloads, while maintaining high accuracy of estimations. As
shown by our evaluation (using real and synthetic datasets),
the proposed approach enjoys high accuracy (well below 10%
relative error) across all aggregate operators, with low response
times (well below a millisecond) and low storage and training-
time overheads. The contributed CDM,ADM mechanisms are
able to detect changes using estimated errors and swiftly adapt.
Furthermore, as more queries are processed our system has
the potential to reach global convergence as no more query
patterns remain undiscovered. This can significantly reduce
unnecessary communication to cloud providers thus reduce
network load and monetary costs.

VIII. ACKNOWLEDGEMENT

We would like to thank Dr Kostas Kolomvatsos for his
contributions to this work. This research received funding from
the European’s Union Horizon 2020 research and innovation
programme under the grant agreement No. 745829. The author
is funded by an EPSRC scholarship.

REFERENCES

[1] Crimes - 2001 to present. URL: https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2, 2018. Accessed: 2018-08-10.

[2] Growing networks. URL: https://github.com/Skeftical/GrowingNetworks,
2018. Accessed: 2018-08-10.

[3] Intel lab data. URL: http://db.csail.mit.edu/labdata/labdata.html, 2018.
Accessed: 2018-08-10.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
Blinkdb: queries with bounded errors and bounded response times on
very large data. In Proceedings of the 8th ACM European Conference
on Computer Systems, pages 29–42. ACM, 2013.

[5] C. Anagnostopoulos and P. Triantafillou. Learning set cardinality in
distance nearest neighbours. In Data Mining (ICDM), 2015 IEEE
International Conference on, pages 691–696. IEEE, 2015.

[6] C. Anagnostopoulos and P. Triantafillou. Query-driven learning for
predictive analytics of data subspace cardinality. ACM Transactions
on Knowledge Discovery from Data (TKDD), 11(4):47, 2017.

[7] L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks
of the trade, pages 421–436. Springer, 2012.

[8] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pages 785–794. ACM, 2016.

[9] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in non-
stationary environments: A survey. IEEE Computational Intelligence
Magazine, 10(4):12–25, 2015.

[10] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics New York, NY, USA:,
2001.

[11] A. Gepperth and B. Hammer. Incremental learning algorithms and
applications. In European Symposium on Artificial Neural Networks
(ESANN), 2016.

[12] O. A. Grigg, V. Farewell, and D. Spiegelhalter. Use of risk-adjusted
cusum and rsprtcharts for monitoring in medical contexts. Statistical
methods in medical research, 12(2):147–170, 2003.

[13] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of data
exploration techniques. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 277–281.
ACM, 2015.

[14] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaud-
huri, and B. Ding. Quickr: Lazily approximating complex adhoc queries
in bigdata clusters. In Proceedings of the 2016 International Conference
on Management of Data, pages 631–646. ACM, 2016.

[15] Z. Liu and J. Heer. The effects of interactive latency on exploratory
visual analysis. IEEE Transactions on Visualization & Computer
Graphics, (1):1–1.

[16] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.
Gordon. Query-based workload forecasting for self-driving database
management systems. In Proceedings of the 2018 International Confer-
ence on Management of Data, pages 631–645. ACM, 2018.

[17] S. Marsland, J. Shapiro, and U. Nehmzow. A self-organising network
that grows when required. Neural networks, 15(8-9):1041–1058, 2002.

[18] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: universalizing
approximate query processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 1461–1476. ACM, 2018.

[19] F. Savva, C. Anagnostopoulos, and P. Triantafillou. Adaptive learn-
ing of aggregate analytics under dynamic workloads. arXiv preprint
arXiv:1908.04772, 2019.

[20] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):1626–
1629, 2009.

[21] A. Tsymbal. The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin, 106(2), 2004.

[22] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database
management system tuning through large-scale machine learning. In
Proceedings of the 2017 ACM International Conference on Management
of Data, pages 1009–1024. ACM, 2017.

[23] A. Wasay, X. Wei, N. Dayan, and S. Idreos. Data canopy: Accelerating
exploratory statistical analysis. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 557–572.
ACM, 2017.

