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ABSTRACT
Cellular network configuration plays a critical role in network

performance. In current practice, network configuration depends

heavily on field experience of engineers and often remains static for

a long period of time. This practice is far from optimal. To address

this limitation, online-learning-based approaches have great poten-

tials to automate and optimize network configuration. Learning-

based approaches face the challenges of learning a highly com-

plex function for each base station and balancing the fundamental

exploration-exploitation tradeoff while minimizing the exploration

cost. Fortunately, in cellular networks, base stations (BSs) often

have similarities even though they are not identical. To leverage

such similarities, we propose kernel-based multi-BS contextual ban-

dit algorithm based on multi-task learning. In the algorithm, we

leverage the similarity among different BSs defined by conditional

kernel embedding. We present theoretical analysis of the proposed

algorithm in terms of regret and multi-task-learning efficiency. We

evaluate the effectiveness of our algorithm based on a simulator

built by real traces.

KEYWORDS
multi-task learning, contextual bandits, network configuration, cel-

lular, conditional kernel embedding, kernel, online learning

1 INTRODUCTION
With the development of mobile Internet and the rising number

of smart phones, recent years have witnessed a significant growth

in mobile data traffic [13]. To satisfy the increasing traffic demand,

cellular providers are facing increasing pressure to further optimize

their networks. Along this line, one critical aspect is cellular base

station (BS) configuration. In cellular networks, a BS is a piece of

network equipment that provides service to mobile users in its

geographical coverage area (similar to a WiFi access point, but

much more complex), as shown in Figure 1. Each BS has a large

number of parameters to configure, such as spectrum band, power

configuration, antenna setting, and user hand-off threshold. These

parameters have a significant impact on the overall cellular network

performance, such as user throughput or delay. For instance, the

transmit power of a BS determines its coverage and affects the

throughput of all users it serves.

In current practice, cellular configuration needs manual adjust-

ment and is mostly decided based on the field experience of engi-

neers . Network configuration parameters typically remain static

for a long period of time, even years, unless severe performance

problems arise. This is clearly not optimal in terms of network

performance: different base stations have different deployment en-

vironments (e.g., geographical areas), and the conditions of each

BS (e.g., the number of users) also change over time. Therefore,

as shown in Figure 1, setting appropriate parameters for each de-

ployed BS based on its specific conditions could significantly help

the industry to optimize its networks. A natural way of achieving

this goal is to apply online-learning-based algorithms in order to

automate and optimize network configuration.

Figure 1: Cellular network

Online-learning-based cellular BS configuration faces multiple

challenges. First, the mapping between network configuration and

performance is highly complex. Since different BSs have different

deployment environments, they have different mappings between

network configuration and performance, given a BS condition. Fur-

thermore, for a given BS, its condition also changes over time due

to network dynamics, leading to different optimal configurations

at different points in time. In addition, for a given BS and given

condition, the impact of network configuration on performance

is too complicated to model using white-box analysis due to the

complexity and dynamics of network environment, user diversity,

traffic demand, mobility, etc. Second, to learn this mapping and to

optimize the network performance over a period of time, opera-

tors face a fundamental exploitation-exploration tradeoff: in this
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case, exploitation means to use the best known configuration that

benefits immediate performance but may overlook better configu-

rations that are unknown; and exploration means to experiment

with unknown or uncertain configurations which may have a bet-

ter performance in the long run, at the risk of a potentially lower

immediate performance. Furthermore, running experiments in cel-

lular networks is disruptive - users suffer poor performance under

poor configurations. Thus, providers are often conservative when

running experiments and would prefer to reduce the number of

explorations needed in each BS. Fortunately, in a cellular network,

BSs usually have similarities, even though they are not identical.

Therefore, it would be desirable to effectively leverage data from

different BSs by exploiting such similarities.

Figure 2: Multi-task online learning

To address these challenges, we consider multiple BSs jointly and

formulate the corresponding configuration problem as a multi-task

on-line learning framework as shown in Figure 2. The key idea is

to leverage information from multiple BSs to jointly learn a model

that maps the network state and its configuration to performance.

The model is then customized to each BS based on its character-

istics. Furthermore, the model also allows the BSs to balance the

tradeoff between the exploration and exploitation of the different

configuration. Specifically, we propose a kernel-based multi-BS

contextual bandits algorithm that can leverage similarity among

BSs to automate and optimize cellular network configuration of

multiple BSs simultaneously. Our contributions are multi-fold:

• We develop a kernel-based multi-task contextual bandits

algorithm to optimize cellular network configuration. The

key idea is to explore similarities among BSs to make intelli-

gent decisions about networks configurations in a sequential

manner.

• We propose a method to estimate the similarity among the

BSs based on the conditional kernel embedding.

• We present theoretical guarantees for the proposed algo-

rithm in terms of regret and multi-task-learning efficiency.

• We evaluate our algorithm both in synthetic data and real

traces data and outperforms bandits algorithms not using

multi-task learning by respectively up to 70.8% and 64.8% .

The rest of the paper is organized as follows. The related work is

in Sec. 2. We introduce the system model and problem formulation

in Sec. 3. We present a kernel-based multi-BS contextual bandit

algorithm in Sec. 4. The theoretical analysis of the algorithm is in

Sec.5. We demonstrate the numerical results in Sec. 6, and conclude

in Sec. 7.

2 RELATEDWORK
Cellular Network Configuration Various aspects of network pa-

rameter configuration have been studied in the literature, such as

pilot power configuration, spectrum, handoff threshold, etc. Tradi-

tional approaches derive analytical relationship between network

configuration and its performance based on communication the-

ory, such as [1, 9, 11, 21]. Such approaches are often prohibitively

complex, involve various approximations, and require a significant

amount of input information (such as the number of users, the

location of each user, etc.).

Recently, learning-based methods are proposed [7, 12, 18, 19]. In

[18], the authors propose a tailored form of reinforcement learn-

ing to adaptively select the optimal antenna configuration in a

time-varying environment. In [7], the authors use Q-learning with

compact state representation for traffic offloading. In [19], the au-

thors design a generalized global bandit algorithm to control the

transmit power in the cellular coverage optimization problem. In

all these papers, BS similarities are not considered, and thus re-

quire more exploration. In [12], the authors study the pilot power

configuration problem and design a Gibbs-sampling-based online

learning algorithm so as to maximize the throughput of users. In

comparison, they make the assumption that all BSs are equal while

we allow different BSs to learn different mappings.

Contextual Bandits Contextual bandit [15] is an extension of

classic multi-armed bandit (MAB) problem [3]. One type of algo-

rithm is the UCB-type such as Lin-UCB [16], Kernel-UCB [22], in

which they assume the reward is a function of the context and

trade off between the exploitation and exploration based on upper

confident bound of the estimation [2]. The contextual bandit is

also widely used in many application areas, such as news article

recommendation [16], clinical trials [23].

Multi-task Learning Multi-task learning has been extensively

studied in many machine learning lectures[10]. A common way is

using a kernel function to define the similarity among tasks, e.g., in

[4, 5, 8]. In [8], the authors design an algorithm that can transfer
information among arms in the contextual bandit. Compared

with [8], in our problem, we define an individual contextual bandit

problem for each BS and consider themulti-task learning among
different contextual bandit problems.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, firstly, we describe the detail of the multi-BS config-

uration problem. Then we formulate the problem as a multi-task

contextual bandits model.

3.1 Multi-BS Configuration
We focus on the multi-BS network configuration problem. Specifi-

cally, we consider a set of BSsM := {1, · · · ,M} in a network. The

time of the system is discretized, over a time horizon of T slots. At

time slot t ,∀t ∈ T := {1, · · · ,T }, for each BSm ∈ M, its state is rep-

resented by a vector s
(m)
t ∈ Rd . The state may include the number

of users in a BS, user mobility, traffic demand, and neighboring BS
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configuration. At the beginning of each time slot t , the BS observes

its state s
(m)
t , and chooses its configuration c

(m)
t ∈ Caction ⊂ R

using a network configuration algorithm, where Caction is a finite

set. c
(m)
t , Caction are also respectively refer to as action and action

space for consistency with reinforcement learning literature. At

the end of time slot t , the BS receives a resulting reward r
(m)
ct ,t ∈ R,

which is a measure of network performance. We note that c
(m)
t can

depend on all historical information of all BSs and the current state

s
(m)
t .

In practice, the configuration parameters can include pilot power,

antenna direction, handoff threshold, etc. The reward can bemetrics

of network performance, such as uplink throughput, downlink

throughput, and quality-of-service scores. Time granularity of the

system is decided by network operators. In the current practice,

configurations can be updated daily during midnight maintenance

hours. To further improve network performance, network operators

are moving towards more frequent network configuration updates,

e.g., on an hourly basis, based on network states.

The goal of the problem is to find the configuration c
(m)
t , for all

t andm that maximizes the total cumulative reward over time, i.e.,

max

c (m)t ∈Cact ion,∀t

M∑
m=1

T∑
t=1

r
(m)
ct ,t (1)

In this problem, for a given BS and a given state, we do not have

a prior knowledge of the reward of its action. We need to learn

such a mapping during the time horizon. In other words, when

choosing c
(m)
t , one should consider the historical information of

all BSs and current state, i.e., s
(m)
τ , c

(m)
τ , r

(m)
cτ ,τ ,∀τ < t ,∀m and s

(m)
t .

The choice of c
(m)
t and the corresponding reward also affect fu-

ture actions. Therefore, there exists a fundamental exploitation-

exploration tradeoff: exploitation is to use the best learned configu-

ration that benefits the immediate reward but may overlook better

configurations that are unknown; and exploration is to experiment

unknown or uncertain configurations which may have a better

reward in the long run, at the risk of a potentially lower immediate

reward.

Furthermore, we note that the action of one BS can be affected

by the information of other BSs. Therefore, the information from

multiple BSs should be leveraged jointly to optimize the problem in

(1). Also, note that the BSs are similar but not identical. Therefore,

the similarity of BSs need to be explored and leveraged to optimize

the network configuration.

In summary, the goal of multi-BS configuration problem is to

choose appropriate actions for all time slot and all BSs to maximize

the the problem defined in Eq. (1).

3.2 Multi-Task Contextual Bandit
Multi-armed bandit (MAB) [3] is a powerful tool in a sequential

decision making scenario where at each time step, a learning task

pulls one of the arms and observes an instantaneous reward that

is independently and identically (i.i.d.) drawn from a fixed but

unknown distribution. The task’s objective is to maximize its cu-

mulative reward by balancing the exploitation of those arms that

have yielded high rewards in the past and the exploration of new

arms that have not been tried. The contextual bandit model [15]

is an extension of the MAB in which each arm is associated with

side information, called the context. The distribution of rewards for

each arm is related to the associated context. The task is to learn

the arm selection strategy by leveraging the contexts to predict the

expected reward of each arm. Specifically, in the contextual bandit,

over a time horizon of T slots, at each time t , environment reveals

context xat ,t ∈ X from set X of contexts for each arm a ∈ A from

arms set A := {1, 2, · · · ,N }, the leaner required to select one arm

at and then receives a reward rat ,t from environment. At the end

of the time slot t , learner improves arm selection strategy based on

new observation {xat ,t , rat ,t }. At time t , the best arm is defined as

a∗t = argmaxa∈A E(rat ,t |xat ,t ) and the corresponding reward is

ra∗t ,t
. The regret at timeT is defined as the sum of the gap between

the real reward and the optimal reward through the T time slots

in Eq. (2). The goal of maximization of the accumulative reward∑T
t=1 rat ,t is equivalent to minimizing the regret

1
.

R(T ) =
T∑
t=1
(ra∗t ,t − rat ,t ) (2)

Based on the classical contextual bandit problem, we propose a

multi-task contextual bandit model. Consider a set of tasksM :=

{1, · · · ,M} , each taskm ∈ M can be seen as a standard contextual

bandit problem. More specifically, in taskm, at each time t , for each

arm a ∈ A, there is an associated context vector x
(m)
a,t ∈ Rp . If the

arm a
(m)
t is pulled as time t for taskm, it receives a reward r

(m)
at ,t .

The detail is shown in Problem 1.

Problem 1 Multi-Task Contextual Bandit

1: for t = 1 to T do
2: Environment reveals context x

(m)
a,t ∈ X for each arm a ∈ A

and each taskm ∈ M
3: for ∀m ∈ M do
4: Selects and pulls an arm a

(m)
t ∈ A

5: Environment reveals a reward r
(m)
at ,t ∈ [0, 1]

6: end for
7: Improves arm selection based on new observations

{(x (m)at ,t , r
(m)
at ,t )|m ∈ M}

8: end for

Wealso define the best arm asa
(m)∗
t = argmaxa∈A E(r (m)at ,t |x

(m)
at ,t )

and the corresponding reward is r
(m)
a∗t ,t

. The regret over time horizon

T is defined as the sum of the gap between the real reward and the

optimal reward through the T time slot among all M tasks in Eq.

(3). The goal of the problem is to minimize the regret.

R(T ) =
M∑

m=1

T∑
t=1

(
r
(m)
a∗t ,t
− r (m)at ,t

)
(3)

We can formulate the multi-BSs configuration problem as multi-

task contextual bandit.We regard the configuration optimiza-
tion problem for one BS as one task. Specifically, for each BS

m, at time t , the context space X can be represented by a product

1
This is pseudo regret [6].
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of state space S and action space Caction . And we index the finite

set Caction by arms set A, i.e., use ca,t to represent each possible

configuration in time t . Then we define context associated with
arm a is the combination of the state and the configuration,
i.e., x (m)a,t = (s

(m)
t , c

(m)
a,t ), where s(m)t ∈ S and c(m)a,t ∈ Caction . Then

the goal of finding the best arms which can maximize the total ac-

cumulative reward in Eq. (1) is equivalent to minimizing the regret

defined in Eq. (3).

4 METHODOLOGY
Most existing work on the contextual bandit problems, such as

LinUCB [16], KernelUCB [22] assume the reward is a function of the

context, i.e., rat ,t = f (xat ,t ). At each time slot t , these algorithms

use the estimated function
ˆf (·) to predict the reward of each arm

according to the context at time t , i.e.,{xat ,t }a∈A . Based on the

value and uncertainty of the prediction, they calculate the upper

confident bound (UCB) of each arm. Then they select the armat that
has the maximum UCB value and then obtains a reward rat ,t . Last,

they update the estimated function
ˆf (·) by the new observation

(xat , rat ,t ).
In our multi-BS configuration problem defined in Eq. (1), if we

model every BS as an independent classical contextual bandit prob-

lem and use the existing algorithm to make its own decision, it

would lose information across BSs and thus is not efficient. Specif-

ically, in the training process, it would learn a group of function

{ f (m) |m ∈ M} independently and ignore the similarity among

them. In practice, the BSs that are configured simultaneously have

lots of similar characteristics, such as geographical location, leading

to similar reward functions. Furthermore, in the real case, since

the configuration parameters have a large impact on the network

performance, the cost of experience is expensive. We need an ap-

proach to use the data effectively. So, motivated by this observation,

we design the kernel-based multi-BS contextual bandits that can

leverage the similarity information and share experiences among

BSs, i.e., tasks.

In this section, we propose a framework to solve the problem

in Eq. (3). We start with the regression model. Then we describe

how to incorporate it with multi-task learning. Next, we propose

kernel-based multi-BS contextual bandits algorithm in Sec.4.3. In

the last, we discuss the details of task similarity for real data in Sec.

4.4.

4.1 Kernel Ridge Regression
For the network configure problem, we need to learn a model from

historical data that can predict the reward rat ,t from the context

xat ,t . There are two challenges. First, the learned model should

capture the non-linear relation between the configuration param-

eters, state (context) and the network utility (reward) in complex

scenarios. Second, since the learned model is used in the contextual

bandit model, it needs to not only offer the mean estimate value

of the prediction but also a confidence interval of the estimation

that can describe the uncertainty of the prediction. This important

feature is used later to trade off exploration and exploration in the

bandit model.

To address these two challenges, we use kernel ridge regression

to learn the prediction model that can capture non-linear relation

and provide an explicit form of the uncertainty of the prediction.

Furthermore, intuitively, the kernel function can be regarded as a

measure of similarity among data points. which makes it suitable

for the multi-task learning into it in Sec. 4.2. Let us briefly describe

the kernel regression model.

Kernel ridge regression is a powerful tool in supervised learn-

ing to characterize the non-linear relation between the target and

feature. For a training data set {(xi ,yi )}ni=1, kernel method as-

sumes that there exists a feature mapping ϕ(x) : X → H which

can map data into a feature space in which a linear relationship

y = ϕ(x)T θ between ϕ(x) and y can be observed, where θ is the

parameter need to be trained. The kernel function is defined as the

inner product of two data vectors in the feature space. k(x ,x ′) =
ϕ(x)Tϕ(x ′),∀x ,x ′ ∈ X.

The feature spaceH is a Hilbert space of functions f : X → R
with inner product k < ·, · >. It can be called as the associated

reproducing kernel Hilbert space (RKHS) of k , notated byHk . The

goal of kernel ridge regression is to find a function f in the RKHS

H that can minimize the mean squared error of all training data,

as shown in Eq. (4).

ˆf = arg min

f ∈Hk

n∑
i=1
(f (xi ) − yi )2 + λ | | f | |2Hk

(4)

where λ is the regularization parameter. Applying the representer

theorem, the optimal f can be represented as a linear combination

of the data points in the feature space, f (·) = ∑n
i=1 αik(xi , ·). Then

we can get the solution of Eq. (4)

f (x) = kTX :x (K + λI )
−1y (5)

where y = (y1, · · · ,yn ), K is the Gram matrix, i.e., Ki j = k(xi ,x j ),
kX :x = (k(x1,x), · · · ,k(xn ,x)) is the vector of the kernel value

between all historical data X and the new data, x .
This provides basis for our bandit algorithms. The uncertainty

of prediction of the kernel ridge regression is discussed in Sec.4.3.

4.2 Multi-Task Learning
We next introduce how to integrate kernel ridge regression into

multi-task learning which allows us to use similarities information

among BSs.

In multi-task learning, the main question is how to efficiently use

data from one task to another task. Borrowing the idea from [8, 10],

we define the regression functions in the followings:

f : X̃ → Y (6)

where
˜X = Z × X, X is the original context space, Z is the task

similarity space, Y is the reward space. For each context x
(m)
at ,t of

BSm, we can associate it with the task/BS descriptor zm ∈ Z, and

define x̃
(m)
at ,t = (zm ,x

(m)
at ,t ) to be the augmented context. We define

the following kernel function
˜k in (7) to capture the relation among

tasks.

˜k((z,x), (z′,x ′)) = kZ(z, z′)kX(x ,x ′) (7)

where kX is the kernel defined in original context, and kZ is

the kernel defined in tasks that measures the similarity among

tasks/BSs. Then we define the task/BS similarity matrix KZ as

(KZ )i j = kZ(zi , zj ). We discuss the training of this similarity ker-

nel and similarity matrix in Sec.4.4.
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In the multi-tasks contextual bandit model, at time t , we need
to train an arm selection strategy based on the history data we

experienced, i.e.,{(x (m)τ , r
(m)
aτ ,τ )|m ∈ M,τ < t}. We formulate a

regression problem in Eq. (8)

ˆft = arg min

f ∈H ˜k

M∑
m=1

t−1∑
τ=1
(f (x̃ (m)aτ ,τ ) − r

(m)
a,τ )2 + λ | | f | |2H ˜k

(8)

where x̃
(m)
aτ ,τ is the augmented context of the arm aτ for task m,

which is defined as the combination of the task descriptor zm and

origianl context x
(m)
at ,t , i.e., x̃

(m)
at ,t = (zm ,x

(m)
at ,t ).

Then we can get a similar result as Eq. (5) in Eq. (9) . The only

difference is that we use the augmented context x̃ and new kernel

˜k instead of the x and k .

ˆft (x̃) = ˜k
T
t−1(x̃)(K̃t−1 + λI )−1yt−1 (9)

where K̃t−1 is Gram matrix of [x̃ (m)aτ ,τ ]τ <t,m∈M ,

˜kt−1(x̃) = [ ˜k(x̃ , x̃ (m)aτ ,τ )]τ <t,m∈M , and yt−1 = [r
(m)
aτ ,τ ]τ <t,m∈M .

For the hyper parameter of kernel kX and the regularization param-

eter λ, we can use maximum likelihood method to train them. Then

we can use Eq.(9) to predict the network utility (reward) based on

the configured parameter and network state (augmented context).

4.3 Kernel-based Multi-BS Contextual Bandits
Next, we introduce how to measure the uncertainty of the predic-

tion in Eq. (9). At time T , for a specific task, i.e., BS,m ∈ M, for

a given augmented context x̃
(m)
aT ,T

of an arm, in order to estimate

the uncertainty of the prediction
ˆfT (x̃ (m)aT ,T

), we need to make an

assumption that the reward at timeT , i.e., r
(m)
aT ,T

and all historical re-

ward data, i.e., {r (m)aτ ,τ )|m ∈ M,τ < T } are all independent random
variables. Then we can use McDiarmid’s inequality to get an upper

confident bound of the predicted value. Since the mathematical

derivation of this step is the same as Lemma 1 in [8], we only make

a minor modification to obtain Theorem 1.

Theorem 1. For task ∀m ∈ M, suppose the rewards r (m)aT ,T
at time

T and the history reward {r (m)aτ ,τ )|m ∈ M,τ < T } are independent
random variables with means E[r (m)aτ ,τ |x̃

(m)
aτ ,τ ] = f ∗(x̃ (m)aτ ,τ ), where

f ∗ ∈ H
˜k and | | f ∗ | |H ˜k

≤ c . Let α =
√

log(2((T−1)MN+1)/δ )
2

and

δ > 0. With probability at least 1 − δ
T , we have that ∀a ∈ A

| ˆft (x̃ (m)a,t ) − f ∗(x̃ (m)a,t )| ≤ (α + c
√
λ)σ (m)a,t (10)

where the width is

σ
(m)
a,t =

√
˜k(x̃ (m)a,t , x̃

(m)
a,t )− ˜k

T
t−1(x̃

(m)
a,t )(K̃t−1 + λI )−1 ˜kt−1(x̃

(m)
a,t ) (11)

Based on Theorem 1, we define the upper confident bound UCB

for each arm for each task in Eq. (12), where
ˆft is obtained from Eq.

(9), and β is a hyper parameter.

UCB
(m)
a,t =

ˆft (x̃ (m)a,t ) + βσ
(m)
a,t (12)

Then we propose Algorithm 1 to solve the multi-BS configuration

problem.

Algorithm 1 Kernel-based multi-BS configuration

1: for t = 1 to T do
2: Update the Gram matrix K̃t−1
3: for all BSm ∈ M do
4: Observe system state at time t for BSm: s

(m)
t and deter-

mine the context feature x
(m)
a,t for each a ∈ A

5: Determine the task/BS descriptor zm and get the aug-

mented context x̃
(m)
a,t

6: for all arm a in A at time t do
7: ucb

(m)
a,t =

ˆf (x (m)a,t ) + βσ
(m)
a,t

8: end for
9: For BSm, choose arm a

(m)
t = argmaxucb

(m)
a,t

10: Observe reward r
(m)
at ,t

11: end for
12: Update yt by {r (m)at ,t |m ∈ M}
13: end for

In Algorithm 1, at each time t , it updates the prediction model
ˆft .

Then for each taskm ∈ M, it uses the model to obtain the UCB of

each arm a ∈ A. Next it selects the arm that has the maximum UCB.

Algorithm 1 can trade off between the exploitation and exploration

in the multi-BS configuration problem. The intuition behind it is as

following: if one configuration is only tried for few times or even

yet tried, its corresponding arm’s width defined in Eq.(11) is larger,

which makes its UCB value larger, then this configuration will be

tried in following time with high probability.

Independent Assumption Note that the independent assump-

tion of Theorem 1 is not true in Algorithm 1, because the previous

rewards influence the arm selection strategy (prediction function),

then influence the following reward. To address it, we select a subset

of them to make this assumption hold true in Sec. 5.

High Dimensionality In Algorithm 1, it updates K̃t−1 in line

2 and recalculates (K̃t−1 + λI )−1 in line 7 based on Eq. (9). Since

at time t , the dimension of K̃t−1 is M(t − 1) and the computation

complexity of inverse it is O(M3t3). It increases dramatically over

time. To address this issue, we use the Schur complement [24] as

following to simplify it.

Theorem 2. For a matrixM =
[
A U
V C

]
, define Schur complement

of block C as S := A −UC−1V . Then we can get

M−1 =
[
A U
V C

]−1
=

[
S−1 −S−1UC−1

−C−1VS−1 C−1VS−1UC−1 +C−1

]
(13)

Based on it, we can update (K̃t + λI )−1 by (K̃t−1 + λI )−1. It
decreases the computation complexity to O(Mt2).

For the issue of dealing with large dimension of Gram matrix

K has been much studied in Chapter 8 of [17]. Most of them are

designed for the supervise learning cases. In our problem, based on

thr feature of online learning, Schur complement method is more

suitable and efficiency.

4.4 Similarity
The kernelkZ(z, z′) that defines the similarities among the tasks/BSs

plays a significant role inAlgorithm 1.WhenkZ(z, z′) = 1(m =m′),
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where 1 is the characteristic function, Algorithm 1 is equivalent to

running the contextual bandit independently for each BS. In this

section, we discuss how to measure the similarity in real data if it

is not provided.

Suppose the ground truth function for task i (i.e., BS i) is y =
fi (x), we need to define the similarity among different BSs based on

the ground truth functions fi (x). From a Bayesian view, y = fi (x)
is equivalent to the conditional distribution P(Yi |Xi ). Therefore, we
can use the conditional kernel embedding to map the conditional

distributions to operators in a high-dimensional space, and then

define the similarity based on it. Let us start with the definition of

kernel embedding and conditional kernel embedding.

4.4.1 Conditional kernel embedding. Kernel embedding is a

method in which a probability is mapped to an element of a poten-

tially infinite dimensional feature spaces, i.e., a reproducing kernel

Hilbert space (RKHS) [20]. For a random variable in domainX with

distribution P(X ) , suppose k : X × X → R is the positive definite

kernels with corresponding RKHSHX , the kernel embedding of a

kernel k for X is defined as

νx = EX [k(·,x)] =
∫

k(·,x)dP(x) (14)

It is an element inHX .
For two random variable X and Y , suppose k : X × X → R and

l : Y ×Y → R are respectively the positive definite kernels with

corresponding RKHSHX andHY . The kernel embedding for the

marginal distribution P(Y |X = x) is:

νY |x = EY [l(·,y)|x] =
∫

l(·,y)dP(y |x) (15)

It is an element inHY . Then for the conditional probability P(Y |X ),
the kernel embedding is defined as a conditional operator OY |X :

HX →HY that satisfies Eq. (16)

νY |x = OY |Xk(x , ·) (16)

If we have a data set {xi ,yi }ni=1, which are i.i.d drawn from P(X ,Y ),
the conditional kernel embedding operator can be estimated by:

ÔY |X = Ψ(K + λI )−1Φ (17)

where Ψ = (l(y1, ·), · · · , l(yn , ·)) and Φ = (k(x1, ·), · · · ,k(xn , ·)) are
implicitly formed feature matrix, K is the Gram matrix of x , i.e.,
(K)i j = k(xi ,x j )

The definition of conditional kernel embedding provides a way

to measure probability P(Y |X ) as an operator between the spaces

HY andHX .

4.4.2 Similarity Calculation. In this section, we use the con-

ditional kernel embedding to define the similarity space Z and

augmented context kernel kZ in Eq. (7).

We define the task/BS similarity space asZ = PY |X , the set of all

conditional probability distributions of Y given X . Then for task/BS

m, given a context x
(m)
a,t for arm a at t , we define the augmented

context x̃
(m)
a,t as (PYm |Xm ,x

(m)
a,t ).

Then we use the Gaussian-form kernel based on the conditional

kernel embedding to define kZ :

kZ(PYm |Xm , PYm′ |Xm′ ) = exp(−||O(m)Y |X −O
(m′)
Y |X )| |

2/2σ 2

Z ) (18)

where | | · | | is Frobenius norm, OY |X is the conditional kernel

embedding defined in Eq. (16) and can be estimated by Eq. (17). The

hyper parameter σZ can be heuristically estimated by the median

of Frobenius norm of all dataset. In Eq. (17), it can only be used in

explicit kernels. Next, we use the kernel trick to derive a form that

does not include explicit features.

Given a group of data sets Dm = {(xi ,yi )}nmi=1, and k and l are
respectively two positive definite kernels with RKHSHX andHY ,
for data set Dm , we define Ψm = (l(y1, ·), · · · , l(ynm , ·)) and Φm =
(k(x1, ·), · · · ,k(xnm , ·)) are implicitly formed feature matrix of y

and x . Km = ΦTmΦm and Lm = ΨTmΨm are Gram matrix of all x and

y. and O(m)Y |X for conditional kernel embedding. According to Eq.

(17), we have

O(m)Y |X = Ψm (Km + λI )−1ΦTm

| |O(m)Y |X − O
(m′)
Y |X | |

2 =tr (O(m)TY |X O
(m)
Y |X ) − 2tr (O

(m)T
Y |X O

(m′)
Y |X )

+ tr (O(m
′)T

Y |X O
(m′)
Y |X )

(19)

DefinematrixKmm′ andLmm′ by (Kmm′)i j = k(xi ,x j ) and (L12)i j =
l(yi ,yj ), where (xi ,yi ) is the i-th data inDm and (x j ,yj ) is the j-th
data in Dm′ , so as Kmm′ and Lm′m . Then for the second term in

Eq. (19),

tr (O(m)TY |X O
(m′)
Y |X ) = tr (Ψm (Km + λI )−1ΦTmΦm′(Km′ + λI )−1ΨTm′)

= tr ((Km + λI )−1ΦTmΦm (Km′ + λI )−1ΨTm′Ψm )
= tr ((Km + λI )−1Kmm′(Km′ + λI )−1Lm′m )

After using the same trick for other terms, Eq. (19) can be written

as

| |O(m)Y |X − O
(m′)
Y |X | |

2 = tr ((Km + λI )−1Km (Km + λI )−1Lm )

− 2 ∗ tr ((Km + λI )−1Kmm′(Km′ + λI )−1Lm′m
+ tr ((Km′ + λI )−1Km′(Km′ + λI )−1Lm′)

(20)

Then we can use Eq. (20) in Eq. (18) to measure the similarity

between tasks. We denote the conditional kernel embedding metric

for measure similarity as CKE.

4.4.3 Other similarity metrics. In the above, the similarity is

defined based on P(Y |X ) among tasks through conditional kernel

embedding. In the practice, there are several ways to define simi-

larity.

The average R2 method: For example, for data setD1 andD2,

we can train a regression model on D1 and test it on D2, then

measure the similarity using the prediction accuracy. Specifically,

in the test set, we can measure prediction through the coefficient

of determination R2 as,

R2 = 1 − ηss
ηvarMsp

, (21)

where ηss is the sum of squared prediction errors, ηvar is the vari-
ance of the target, and Msp is the total number of samples. The

larger the value of R2, the better the model can capture the ob-

served outcomes. Switch the training and testing data, we obtain

another R2. Then we can define the similarity base on the average
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of these two R2.If the value is smaller than a negative threshold, we

can define the similarity as 0.

The hyper parameter method In work [5], it regards the sim-

ilarity as a covariance matrix among tasks, they train them with

other hyper parameter in the model based on maximum likelihood

metric. This method needs more computation resource.

In practice, using different similarity definitions may have dif-

ferent results. The selection of the method to define similarity is in

general heuristic. In this problem, we have conducted experiments

using different similarity definitions in the evaluation section Sec.6.

It turns out that conditional kernel embedding (CKE) has the best

performance in this kernel-based multi-BS configuration problem,

and thus described in detail in this section.

5 THEORETICAL ANALYSIS
In this section, we provide theoretical analysis of Algorithm 1 based

on the classical bandit analysis. The first part is about regret analysis

and the second part is about the multi-task-learning efficiency.

5.1 Regret Analysis
In Algorithm 1, at each time slot t , it uses the trained model to

make a decision for all BSs in parallel. This is not in the same form

of classical bandit model. In order to simply the analysis, we make

an sequential version in Algorithm 2, in which at each time t , it
receives the context (state and configuration) of one BS with its

BS ID, denoted by Vt , that is used to identify the BS indexm. Then

algorithm 2 obtains the augment context using Vt and then makes

a decision for the BS. In this manner, Algorithm 2 makes a decision

for all BSs sequentially. The performance of parallel and sequential

methods are similar when the number of BSs is moderate and all

BSs come in order, as in our case, since the difference of number of

updates for the model in the parallel and sequential cases is small.

It is also shown from the simulation that their performances are

similar.

Algorithm 2 Sequential multi-BS configuration

1: for t = 1 to T do
2: Update the Gram matrix K̃t−1
3: Observe the BS IDVt and the corresponding context features

at time t : xa,t for each a ∈ A
4: Determine the BS descriptor zm based on Vt and get the

augmented context x̃a,t
5: for all arm a in A at time t do
6: ucba,t = ˆf (x̃a,t ) + βσa,t
7: end for
8: Choose arm at = argmaxucba,t for BS Vt
9: Observe reward rat ,t
10: Update yt by rat ,t
11: end for

The regret of Algorithm 2 is defined by

R(T ) =
M∑

m=1

T∑
t=1
(r (m)a∗t ,t

− r (m)at ,t )1(Vt =m) (22)

In Algorithm 2, the estimated reward r̂at ,t at time t can be re-

garded as the sum of variables in history [raτ ,τ ]τ <t that are depen-
dent random variables. It does not meet the assumption in Theorem

1, thus we are unable to analysis the uncertainty of the prediction.

To address this issue, as in [2, 3], we design the base version

(Algorithm 3) and super version (Algorithm 4) of Algorithm 2 in

order to meet the requirement of Theorem 1. These algorithms

are only designed to help theoretical analysis. In Algorithm 4, it

constructs special, mutually exclusive subsets {Ψ(s)}S of ts the

elapsed time to guarantee the event {t ∈ Ψ(s)t+1} is independent of
the rewards observed at times in Ψ

(s)
t . On each of these sets, it uses

Algorithm 3 as subroutine to obtain the estimated reward and width

of the upper confident bound which is the same as Algorithm 2.

The construction of Algorithm 3 and Algorithm 4 follow similar

strategy of that in the proof of KernelUCB (see Theorem 1 in [22]

or Theorem 1 in [8]). Then we can get the following theorem 3.

Algorithm 3 Base sequential multi-BS configuration

1: Input: β,Ψ ⊂ {1, · · · , t − 1}
2: Calculate Gram matrix K̃Ψ and get yΨ = [raτ ,τ ]τ ∈Ψ
3: Observe the BS ID Vt and corresponding context features at

time t : xa,t for each a ∈ A
4: Determine the BS descriptor zm and get the augmented context

x̃a,t
5: for all arm a in A at time t do
6: σa,t =

√
˜k(x̃a,t , x̃a,t ) − ˜kTa,Ψ(K̃Ψ + λI ) ˜ka,Ψ

7: ucba,t = ˆf (xa,t ) + βσa,t
8: end for

Algorithm 4 Super sequential multi-BS configuration

1: Input: β,T ∈ N
2: Initialize S ← log⌈T ⌉ and Ψ

(s)
1
← ∅ for all s ∈ S

3: for t = 1 to T do
4: s ← 1 and

ˆA1 ← A
5: repeat
6: σa,t ,ucba,t for all a ∈ ˆA(s)← BaseAlg(Ψ

(s)
t , β)

7: ωa,t = βσa,t
8: if ωa,t ≤ 1√

T
for all a ∈ ˆA(s) then

9: Choose at = argmaxa∈ ˆA(s ) ucba,t

10: Φ
(s)
t+1 ← Φ

(s)
t for all s ∈ S

11: else if ωa,t ≤ 2
−s

for all a ∈ ˆA(s) then
12:

ˆAs+1 ← {a ∈ ˆAs |ucba,t ≥ maxa′∈ ˆAs
ucba′,t − 21−q }

13: s ← s + 1
14: else
15: Choose at ∈ ˆAs s.t. ωat ,t > 2

−q

16: Φ
(s)
t+1 ← Φ

(s)
t ∪ {t} and ∀s ′ , s,Φ(s)t+1 ← Φ

(s)
t

17: end if
18: until at is found
19: Observe reward rat ,t
20: end for



, , Xiaoxiao Wang, Xueying Guo, Jie Chuai, Zhitang Chen, and Xin Liu

Theorem 3. Assume that ra,t ∈ [0, 1],∀a ∈ A,T ≥ 1, | | f ∗ | |H ˜k
≤

c
˜k ,∀x̃ ∈ X̃ and tasks similarity matrixKZ is known.With probability

1 − δ , the regret of Algorithm 4 satisfies,

R(T ) ≤ 2

√
T + 10(

√
log(2TN (log(T ) + 1)/δ ))

2

+ c
√
λ)√

2d log(д([T ])
√
T ⌈log(T )⌉

= O(
√
T log(д([T ])))

(23)

where д([T ]) = det (K̃T+1+λI )
λT+1 and d =max(1, c ˜k

λ )

5.2 Multi-task-learning Efficiency
In this section, we discuss the benefits of multi-task learning from

the theoretical view point.

In the sequential setting, i.e., Algorithm 2 and Algorithm 4, be-

cause all BSs/tasks come in order, at time t , each task happens

n = t
M times. LetKXt be Gram matrix of [x (m)aτ ,τ ]τ ≤t,m∈M i.e., orig-

inal context, KZ be the similarity matrix. Then, following Theorem

2 in [8], the following results hold,

Theorem 4. Define the rank of matrix KXT+1 as rx and the rank
of matrix KZ as rz . Then

log(д([T ])) ≤ rzrx log

(
(T + 1)c

˜k + λ

λ

)
According to Eq. (23), if the rank of similarity matrix is lower,

which means all BSs/tasks have higher inter-task similarity, the

regret bound is tighter.

We make the further assumption that all distinct tasks are similar

to each other with task similarity equal to µ. Define дµ ([T ]) as the
corresponding value of д([T ]) when all task similarity equal to µ.
According to Theorem 3 in [8], we have

Theorem 5. If µ1 ≤ µ2, then дµ1 ([T ]) ≥ дµ2 ([T ])

This shows that given the assumption that all tasks comes in

order and number of tasks is fixed, when BSs/tasks are more similar,

the regret bound of Algorithm 2 is tighter. In our case, running

all task independently is equivalent to setting the similarity as an

identify matrix, i.e., µ = 0. So, based on the previous two theorems,

we show the benefits of our algorithm using the multi-task learning.

6 EVALUATION
In this section, we evaluate the performance of the proposed ap-

proach Algorithm 1. and Algorithm 2. in both synthetic data and

real network data.

6.1 Synthetic data evaluation
We use synthetic data to demonstrate the impact of similarity in

multi-task regression. Thereafter, we test our algorithm perfor-

mance based on synthetic data.

6.1.1 Similarity in regression. We generate the reward function

of tasks with pre-defined ground truth similarity based on Gauss-

ian process. Then we train the regression model using different

similarity and measure the performance of regression. In detail, we

generate 2-task data sets in the following manner: (1) Each data set

has 100 data points, D1 = {x1i ,y
1

i }
100

i=1 and D2 = {x2i ,y
2

i }
100

i=1, and

each xi is randomly sampled from [0, 1] × [0, 1] ⊂ R2 and y ∈ R.
(2) The ground truth similarity between two tasks is simд = 0.8.

i.e., the similarity matrix KZ is a symmetric 2 × 2 matrix with

1s in the main diagonal and 0.8s in the anti-diagonal. (3) The

kernel of x is the Gaussian kernel with lengthscale 0.5. (4) y =
[y1
1
,y1

2
, · · · ,y1

100
,y2

1
,y2

2
, · · · ,y2

100
]T is sampled from a multivariate

normal distribution with zero mean and whose covariance is the

Kronecker product of similarity matrix KZ and the Gram matrix

of x , KX added white noise, i.e., y ∼ N(0,KZ ⊗ KX + σ 2

noise I)
with σ 2

noise = 0.05. (5) We sampled Y for 100 times, and test the

regression for each sampled Y . (6) For each task, the size of train

set is 5, other 95 data points are test data.

In the training process, the hyper parameter of the kernel are the

same as the ones in the data generating process. For any similarity

value simtrain ∈ [0, 1] with granularity 0.01 between two tasks,

we use Eq. (9) to train the regression function. The performance is

measured by mean square error (MSE) for all test data. The results

is shown in Fig. 3. The MSE is the the average of 100 samples y. It
shows that the relation between MSE and similarity simtrain is a

convex form function. The case simtrain = 0 is to train two tasks

independently, that is, no information is shared between tasks; The

case simtrain = 1 is to train two tasks with the combination of the

two data sets, that is, the difference between tasks is neglected. The

best performance (minimum MSE) is achieved, when simtrain =

sumд = 0.8, that is, similarity used in training is equal to the ground

truth similarity. This is in accordance with our motivation to take

the similarity measurement into the multi-task learning.
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Figure 3: Similarity v.s MSE in 2-task regression

6.1.2 Multi-task contextual bandit in synthetic data. We use

synthetic data to test the performance of Algorithm 1 based on

different similarity metrics in Sec. 4.4, the CKE, the average R2

method and the hyper parameter method. Suppose that we have 5

tasks and 5 arms for each task, and define the context for each arm as

x
(m)
at ,t ∈ R

2
. To create the similar reward function for each task, we

assume that there exits a hidden parameter ut , which is randomly

sampled from [0, 1]×[0, 1] ⊂ R2, and the context for each arm x
(m)
at ,t

is a projection of ut , and the projection angle depends on the arm

and task. Specifically, we use ut [0] and ut [1] to denote vector ut ’s
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first and second dimension. For taskm, arm at ∈ A = {1, 2, 3, 4, 5},
the corresponding x

(m)
at ,t = [ut [0]cos(

π
2
(at
5
+ m

10
)),ut [1]sin( π

2

at
5
)]

and the reward is r
(m)
a,t = 1 − (ut [0] − at

5
+ 0.3 − m

10
)2. We conduct

the experiment in multi-task learning in parallel manner (same as

Problem 1). The simulation result is shown in Fig.4. We compare

the cumulative regret of Algorithm 1 with the performance of

conducting Kernel-UCB [22] on each task independently.
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Figure 4: Multi-task learning in synthetic data.

Here, the cumulative regrets shown in Fig.4 are the sum of the

cumulative regrets of the five tasks. Further, each data point is

the average result of 10 individual simulations. It shows that the

regret of multi-learning grows slower than the one of the Kernel-

UCB. After 1000 time slots, the multi-task learning (Algorithm

1) using similarity base on CKE, the average R2 and the hyper

parameter method respectively decrease 70.8%, 64.2% and 36.7%

of the regret compared to Kernel-UCB. We also test the sequential

case (Algorithm 2) in this setting, the performances are similar.

6.2 Real data evaluation
We start with the data collection and simulator construction proce-

dure, and then discuss about the numerical results.

6.2.1 Data Collection and Simulator Construction. We build

a network simulator based on data collected in real networks to

provide interactive environment for bandit algorithms.

The data is collected in the real base station configuration ex-

periments conducted by a service provider in a metropolitan city.

We employ 105 BSs within the region to collect 56580 data samples,

each for the statistics of a BS observed from 2pm to 10pm in 5

days. An example is illustrated in Table 1. These statistics include

network measurements, and configured parameter. The network

measurements include user number, CQI, average packet size, etc,

as illustrated from Column 2 to 6, used as states in our experiment.

The configured parameter is handover threshold, as shown Column

7, employed as actions/configurations. To be specific, handover

is a procedure for a BS to guarantee the user experience in cellular

network. If one BS observes the signal strength of a user it serves

is lower than the threshold, it will handover the user to another BS

that has a better communication quality. The range of the config-

ured parameter values is from -112 dBm to -84 dBm, with 1 dBm

resolution. Each base station change its configured parameter ran-

domly several times per day. The reward is the ratio of users with

throughput no less than 5 Mbps, as shown in Column 8.

With the data, we build our simulator. The input is the state and

configured parameter (s, ca ), and the output is the corresponding

reward r . In detail, when the simulator receives the input (s, ca ), it
returns the average of the rewards of the top k nearest neighbors

of (s, ca ) in the data set, by Euclidean distance.

6.2.2 Evaluation Setup and Results. In this experiment, the

dimension of the state space is 5. The action space Caction is from
-112 dBm to -84 dBm with 1 dBm resolution, that is, the number

of arms in our model is 29. The reward space is [0, 1]. We test 3

methods tomeasure the similarity of 105 different BSs. In Fig. 5, each

subplot corresponds to the similarity matrixKZ trained by methods

in Sec. 4.4, the CKE, the averageR2 method and the hyper parameter

method. The value in Row i , Column j corresponds to the similarity

between BS i and BS j. We test the multi-task learning case for all
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Figure 5: Similarity matrix among 105 BSs

105 BSs in the sequential and the parallel cases based on different

similarity metrics. In Fig. 6 (a), the result for Algorithm 2 using

similarity matrix KZ in Fig. 5 is shown. We compare the cumulative

regret of Algorithm 2 with the performance of conducting GPC-

UCB [14] on each BS independently. To the best of our knowledge,

GPC-UCB is the best algorithm acting on clear definitions of states

and actions, therefore, we choose it as our baseline. The cumulative

regrets shown in Fig. 6(a) are the sum of the cumulative regrets of

the all BSs. Each data point is the average result of 10 individual

simulations. It can be seen that, when our algorithm is used, the

regret increases much slower than the baseline. In sequential case,

after 4000 time slots, Algorithm 2 using similarity base on the CKE,

the average R2 and the hyper parameter method decreases 64, 8%,

53.2% and 35.3% of the regret compared to the baseline. For the

parallel case, in Fig. 6 (b), the result for Algorithm 1 using same

similarity matrix KZ is shown. To make a fair comparison, we

rescale the time slots of the parallel case such that the size of the

training data is the same as the one in the sequential case. In the

parallel case, after 4000 time slots, Algorithm 1 using similarity

based on the CKE, the average R2 and the hyper parameter method

decreases 49.8%, 40.9% and 23.5% of the regret compared to the

baseline. These figures show that the algorithm in the sequential

case has better performance than the one in the parallel case. This

is because the learning algorithm in sequential case can improve

the model with the immediate feedback reward from each BS, while

in the parallel case the algorithm only improves the model when

all the feedback rewards from all BSs are collected.
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Table 1: Sample Data

BS ID # Active users % CQI %Small packet

SDUs

%Small packet

volume

# Users Threshold

handover

%Users

throughput≥5Mbps

3714 0.083643988 0.342990 61.37669801 47.70435832 5.20244 -93 90.78014184

3714 0.163259998 0.606118 35.45774141 29.14181596 7.89750 -94 82.55813953

1217 1.471931100 0.242817 30.86999337 31.98075091 85.12305 -98 84.06884082

1217 1.479040265 0.437417 29.61262810 21.28883741 100.42472 -101 62.58613608
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(a) Sequential case
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(b) Parallel case

Figure 6: Multi-task learning v.s. Independent learning in
real data

7 CONCLUSION
In this work, in order to address the multi-BS network configuration

problem, we propose a kernel-based multi-task contextual bandits

algorithm that leverages the similarity among BSs effectively. In the

algorithm, we also provide an approach to measure the similarity

among tasks based on conditional kernel embedding. Furthermore,

we present theoretical bounds for the proposed algorithm in terms

of regret and multi-task-learning efficiency. It shows that the bound

of regret is tighter if the learning tasks are more similar. We also

evaluate the effectiveness of our algorithm on the synthetic data and

the real problem based on a simulator built by real traces. Future

work includes possible experimental evaluations in real field tests

and further studies on the impact of different similarity metrics.
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