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Abstract—Ever-increasing amounts of data and requirements
to process them in real time lead to more and more analytics
platforms and software systems being designed according to the
concept of stream processing. A common area of application is the
processing of continuous data streams from sensors, for example,
IoT devices or performance monitoring tools. In addition to
analyzing pure sensor data, analyses of data for groups of sensors
often need to be performed as well. Therefore, data streams of
the individual sensors have to be continuously aggregated to a
data stream for a group.

Motivated by a real-world application scenario, we propose
that such a stream aggregation approach has to allow for
aggregating sensors in hierarchical groups, support multiple
such hierarchies in parallel, provide reconfiguration at runtime,
and preserve the scalability and reliability qualities induced by
applying stream processing techniques. We propose a stream
processing architecture fulfilling these requirements, which can
be integrated into existing big data architectures. We present
a pilot implementation of such an extended architecture and
show how it is used in industry. Furthermore, in experimental
evaluations we show that our solution scales linearly with the
amount of sensors and provides adequate reliability in the case
of faults.

I. INTRODUCTION

Stream processing [1], [2] has evolved as a paradigm to
process and analyze continuous streams of data, for example,
coming from IoT sensors. The rapid development of stream
processing engines [3] over the last years has paved the
way for applications that process data exclusively online, i.e.,
as soon as it is recorded. Whereas a couple of years ago
Lambda architectures were the de-facto standard for analytics
platforms, currently more and more platforms follow the
Kappa architecture pattern, where data is exclusively processed
online [4]. Further, entire software system architectures follow
patterns such as asynchronously communicating microservices
[5] and event sourcing [6], which require data to be available as
continuous streams instead of actively polled from databases.

When considering continuous streams of measurement data,
for example, from physical IoT sensors or software perfor-
mance metrics, often an aggregation of multiple such streams
is required. Whereas in the traditional approach of first writing
all measurements to a (relational) database and then querying
this database, this is a well-known task, performing such an
aggregation on continuous data streams poses difficulties. This
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is in particular true when requirements for scalability and
reliability have to be considered.

In this paper, we contribute to the seminal work on stream
processing by presenting and evaluating an approach to ag-
gregate data of multiple streams in real time. The remaining
paper is structured as follows: Section II motivates the demand
for our aggregation approach by an example for IoT sensor
data streams. Section III derives essential requirements for an
aggregation approach. Section IV presents our Titan stream
processing architecture for aggregating data streams. Section V
shows how we implement this architecture in an industry-
applied IoT monitoring platform. Section VI evaluates our
proposed architecture in terms of scalability and reliability.
Section VII discusses limitations of our approach and possible
extensions to overcome them. Finally, Section VIII discusses
related work and Section IX concludes this paper.

II. MOTIVATING EXAMPLE

Operators of industrial production environments have high
interest in getting detailed insights into the resource usage of
machines and production processes. Those insights may reveal
optimization potential, provide reporting for stakeholders, and
can be used for predictive maintenance. Today’s industrial pro-
duction environments operate a variety of network-compatible
measuring instruments. Such instruments (sensors) continu-
ously measure, inter alia, the resource usage of individual
machines, for example, their electrical power consumption.
They may publish these metrics via a messaging system,
allowing real-time analytics systems to collect, process, store,
and visualize those data.

In particular, but not exclusively in the case of electrical
power consumption, it is not only producing machinery that
uses resources but also other company areas such as IT
infrastructure, employee offices, or building technology. This
leads to the situation that the amount of resource consuming
devices is often immense, which makes it difficult to assess.
Therefore, metrics for groups of machines in addition to
consumption metrics of the individual machines are often
required. Consequently, the data streams of the individual sen-
sors have to be continuously aggregated. Referring to Fig. 1,
which exemplary shows a production environment comprising
various machines and devices, operators may require to answer
questions such as: What is the resource usage of a certain
machine type (e.g., the total power consumption of all turning
shops)? What is the resource usage by business unit (e.g., the
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Fig. 1. Schematic illustration of a manufacturing company operating two
buildings and a wide range of power-consuming machinery and infrastructure.
Operators may be, for instance, interested in the total power consumption of
all turning shops (red), directly required for production processes (blue), of a
certain building (green), or of the entire company (yellow).

total power consumption of producing machinery)? What is
resource usage by physically collocated machines (e.g., the
total power consumption per building or shop floor)? What
is the overall company-wide resource usage? Further, for
machines featuring multiple independent power supplies (e.g.,
for redundancy), already obtaining consumption data for single
machines requires to aggregate data streams of their individual
power supplies.

III. REQUIREMENTS FOR STREAM AGGREGATION

Even though we motivated the need for real-time aggrega-
tion of data streams by resource data recorded by IoT devices,
similar kinds of data aggregations are required by several
other types of continuous sensor data streams. Continuing our
motivating example, we derive the following requirements for
a data stream aggregation architecture:

1) Multi-Layer Aggregation: Measurements of sensors are
aggregated to groups of sensors. These groups can again be
aggregated to larger groups and so forth. In the previous
example, these could first be groups of individual machines
of the same type, then groups of machines fulfilling the same
function, then all machines used by the same production step
and, further, all machines in the entire production environment.

2) Multi-Hierarchy Aggregation: In addition to a single
hierarchy as described above, it is likely that there is a demand
for supporting multiple such hierarchies. Referring to the
previous example, besides a hierarchy based on the purpose
of machines, one may also need a hierarchy which represents
the physical location. For example, in a first step machines in
the same shop floor are grouped and then all shop floors in a
certain building are grouped.

3) Hierarchy Reconfiguration at Runtime: Stream process-
ing applications are often characterized by demands for high
availability. Therefore, we search for an approach that allows
to modify or extend the previously described hierarchies at
runtime to prevent reconfigurations causing downtimes.

4) Preserving Scalability and Reliability: Stream process-
ing is usually used for large volume of data where the load
has to be handled by multiple CPU cores or even multiple

computing nodes. Therefore, an approach that performs ag-
gregations on these streams has to preserve scalability and
reliability properties to not become the overall architecture’s
bottleneck.

IV. OUR TITAN APPROACH

In this section, we present a generic approach to hierarchi-
cally aggregate streams of data. We start by a brief summary
of the dual streaming model, which provides the foundation
of our approach. Based on this model, we then introduce the
actual approach in terms of a topology architecture.

A. The Dual Streaming Model

The dual streaming model [7] is a model to define the
semantics of a stream processing architecture. It adopts the
notion of data streams and streaming operators from other
established stream processing models [8], [9], [10].

A data stream is an append-only sequence of immutable
records, where records are key-value pairs augmented by a
timestamp. Key-value pairs allow for data parallelization as
records with different keys can be processed in parallel. This
is the fundamental idea of building highly scalable stream
processing applications.

Streaming operators are functions applied to each record
of an input stream, whose results are appended to an output
stream. The number of output records may be zero, one, or
more than one depending on the type of operator. Usually,
operators are distinguished between being stateless or stateful.
Stateless operators produce an output solely based on the
currently processed input record, whereas stateful operators
may also take previous input records and computations into
account. Successively connecting operator output streams with
other operators allows to define complex stream processing
topology architectures, for example, to build big data analytics
applications.

The dual streaming model extends these models by consid-
ering the result of streaming operators as successive updates
to a table. These updates may be materialized into a versioned
table or represented as a stream of insert, update, and delete
events, inducing a duality of streams and tables.

Sax et al. [7] present a reference implementation of the dual
streaming model called Kafka Streams, a stream processing
framework build on top of the distributed messaging system
Apache Kafka [11]. As in some cases the dual streaming
model abstracts too many details to comprehensibly explain
our topology, we use some architectural elements which are
only present in their reference implementation, but not in the
model.

B. Topology Architecture

We apply the dual streaming model to model the topology
of consecutive operations on the streaming data, which are
required for aggregating sensor data. This model forces an
unidirectional and side-effect-free description of the data flow
and, thus, allows the scalability and reliability facilitated by the
model to be exploited. The architecture described in this way
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Fig. 2. Topology of our proposed stream processing architecture. Vertical cylinders represent tables whereas horizontal cyclinders represent data streams.
Streaming operators are represented by rectangular boxes, which are connected to other operators, tables, or streams by directed arrows. Annotations at
connections, tables, and streams indicate the corresponding type of contained or transmitted data, where key and value type are separated by a colon. sensor
represents a unique identifier for a sensor and group such an identifier for a sensor group, group[] represents a set of group identifiers, meas represent a
measurement, and aggr represent an aggregation result. Everything located inside the gray box corresponds to the part of our approach, which can be deployed
as an individual microservice. The tables and streams placed outside can be considered as interfaces to other components.

can be implemented as an encapsulated component, e.g., as a
microservice, which can be integrated into existing software
systems. Fig. 2 visualizes our proposed topology architecture.
The individual processing steps are described in the following.

1) Data Sources: Our proposed topology requires two data
sources. The first one is an input stream of measurements,
keyed by a sensor identifier. This is the sensor data stream
as it comes, for example, from IoT devices or performance
monitoring tools. The second one is a table, mapping sensors
or sensor groups to the sensor groups containing them. A table
entry consists of a key, which is the identifier of a sensor or
group and a value, which is a set of all groups, this sensor
(group) is part of. This table can, for example, be created
from a stream, which captures changes in the hierarchy. It
is not important which hierarchy a group belongs to, the
only requirement is that identifiers are unique among multiple
hierarchies.

2) Merging Measurement Streams: The first operator
merges the input stream with a stream of already calculated ag-
gregation results (see step 7). Note that the aggregated stream
may require an additional converting step. In the following,
we make no distinction between sensor measurements and
aggregation results and call these values simply measurements.

3) Joining Measurement Stream and Group Table: The
measurement stream and the groups table are joined using
an inner join operation. This leads to a new update of the
resulting table whenever either a measurement arrives or the
groups a sensor belongs to changes. The result of this join
operation is a tuple consisting of the measurement and the set
of all groups this measurement has effect on.

4) Duplicating Join Results: In the next step, the mea-
surements are duplicated in a way that for each group a
new record is forwarded. This record has the following form:

The key is a pair of sensor identifier and the corresponding
group this record is created for. The value is the measurement.
This operation is stateful as it always stores the last set of
sensor groups and compares them with the new one. If a
sensor was part of a group in a previous record but not in
the currently processed one, a special record is forwarded
with a “tombstone” value. This value serves for informing the
following topology operators that the corresponding sensor is
not longer part of the corresponding group.

5) Immediate Result: Last Value Table: The duplicated
records are materialized to a table, which lists the last mea-
sured value per sensor and group. An arriving tombstone
record for a sensor-group-pair deletes the corresponding entry
in the table. This table of last values is the entry point for the
following aggregation.

6) Grouping and Aggregating: Similar to an SQL group-
by operation, table entries are grouped by their group name
(second part of the key). The result is a grouped table
containing one entry per group identifier. This table is then
aggregated using appropriate adding and subtracting functions
resulting in one aggregation result per group identifier. As
defined by the dual streaming model, whenever an entry in
the last values table is updated, a corresponding update record
updates the grouped table and triggers the computation of a
new aggregation result. This is done by first calling the subtract
function for the previous record (e.g., subtracting the sensors
previous measurement from the total group’s value), followed
by calling the add function for the new value (e.g., adding the
sensors new measurement to the total group’s value). Deleting
an entry in the last value table (via a tombstone record) solely
causes calling the subtract function.

7) Output: Aggregation Results: As a last step, the aggre-
gated values per sensor group are published to a data stream.
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Fig. 3. Screenshot of the Titan Control Center’s comparison view. It shows the overall power consumption of the Kieler Nachrichten Druckzentrum in
comparison to the main subconsumers. The overall consumption was continuously computed by aggregating the measurements of all subconsumers.

On the one hand, this stream serves as an interface so that
other applications or services can use these data as they were
real measurements. On the other hand, the stream is fed back
to the beginning of the topology, where it can be used to
compute aggregated values for sensor groups containing this

group.
V. INDUSTRIAL CASE STUDY: IOT SENSOR DATA

In this section, we return to our motivating example from
Section II and show in a pilot implementation with our partner
Kieler Nachrichten how our proposed architecture can be used
to aggregate IoT sensor data. The Titan Control Center [12]
is a microservice-based application for analyzing the energy
consumption in manufacturing enterprises. It integrates energy
consumption data of different data sources (e.g., machine-level
data, building technology, or external software systems) and
aggregates, analyzes, and visualizes them in near real time.

We extended the Control Center’s architecture by an addi-
tional microservice, which implements the topology described
above and replaces a former, less scalable and reliable data
aggregation. This microservice subscribes to a stream provid-
ing energy consumption data of individual machines and to a
stream forwarding changes to the sensor hierarchy (published
by the Configuration microservice of the Control Center). It
aggregates the data of all sensors in a group by summing them
up and publishes every result to a dedicated topic allowing
other services to subscribe to this aggregated data. Other
microservices use these data, for example, to calculate power
consumption statistics, to produce forecasts, or to visualize it.

Specifying the proposed architecture with the dual stream-
ing model allows for a straightforward implementation in
Kafka Streams. Nevertheless, as the dual streaming model
is more abstract than the Kafka Streams API, we had to
introduce some additions: In some places, streams had to be
explicitly converted into tables via reduce operations. The data
type of aggregated records does not match the data type for
sensor measurements, thus, an additional map operation before

merging with the sensor data stream was necessary. To avoid
emitting subtract events from the table of aggregations, these
have to be explicitly filtered out. The operator duplicating
records for each parent had to be implemented as a custom
flatTransform operator, as Kafka Streams currently does not
support flatMap operations on tables. Using Kafka Streams
promises a high degree of scalability and reliability, as de-
ploying multiple instances of this microservice causes Kafka
Streams to balance the load among all instance based on the
topology and the number of configured Kafka topic partitions.
Our implementation is used in production with two manu-
facturing enterprises to apply Industrial DevOps [13]. In these
enterprises, the aggregation results are used, for example, to
gain insights into how much energy is used by certain types
of machines (e.g., the overall air conditioning), how big the
difference is between measured company-wide energy con-
sumption and the sum of all known consumers, or how much
an individual machine contributes to the overall consumption
of all machines of that type. Fig. 3 shows a screenshot of
the Titan Control Center’s comparison view. It visualizes
the total electrical power consumption of our partner Kieler
Nachrichten Druckzentrum, a newspaper printing company, in
comparison to the consumption of its major consumers.

VI. EXPERIMENTAL EVALUATION

We experimentally evaluate the scalability and the reliability
of the proposed stream processing architecture. For these
evaluations, we simulate different numbers of power metering
sensors and aggregate their data streams to pre-defined groups
using the Titan Control Center (see above). Each simulated
sensor emits one measurement per second. We record both the
number of sensor measurements per sensor and the number
of computed aggregation results per second as well as the
average latency per second between sensor record generation
and obtaining the result of an aggregation. The experimental
setup is deployed in a Kubernetes cluster of 4 nodes each
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Fig. 4. Number of required instances for aggregation in relation to the number
of generated records per second. The size of points indicates the frequency
of the respective observation. The black line connects the median numbers of
required instances per workload.

equipped with 384 GB RAM and 2 x 16 CPU cores providing
64 threads (overall 256 parallel threads).

1) Evaluation of Scalability: In order to assess the scalabil-
ity of our proposed approach, we evaluate how an increasing
amount of input data can be handled by an increasing number
of aggregation instances. For this purpose, we determine the
number of instances required to aggregate the data streams of a
given workload. We group 8 simulated sensors into one group
and group 8 of such groups again into one larger group. We
evaluate 4 workloads, where we simulate 2, 3, 4, or 5 nested
groups, resulting in a total amount of sensors of 82, 83, 84,
and 8° and a corresponding number of records per second.
For each scenario, we deploy different numbers of instances
ranging from 1 to 128.

We consider a deployment (i.e., a certain set of deployed
instances) as being sufficient to handle the given workload if
all simulated data can be processed such that no data records
are piling up between their generation and the aggregation.
To obtain this information, we measure the latency between
generation and aggregation. If this latency remains reasonably
constant, we conclude that records are aggregated at approxi-
mately the same speed as they are generated. We apply linear
regression to compute a trend line and consider the processing
to be reasonably constant if the trend line’s slope is less
than 100 ms.! For each evaluated workload, we determine the
minimum number of instances, which is required to handle
that workload, i.e., shows a latency trend line with a slope of
less than 100 ms. This evaluation is repeated 10 times.

Fig. 4 shows the median over all repetitions of the required
number of instances per workload. We notice that the required
number of instances scales linearly with the amount of data
to be aggregated.

2) Evaluation of Reliability: In order to assess the reliabil-
ity of our proposed approach, we evaluate how the architecture

'Due to Kafka Streams’ task model, the throughput is subject to large
fluctuations. The calculated trend line can therefore be inaccurate, suggesting
a more conservative threshold for the slope of 100 ms. Lower threshold return
similar median results, but produces more outliers.
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Fig. 5. Number of processed records per second over a moving average of
60 seconds in the course of time. The two dashed vertical lines indicate the
point in time at which the simulated failure starts or ends.

behaves when components fail. We generate the workload
described in the scalability evaluation, which simulates 4
nested groups of sensors, and aggregate the data with 24
instances of the aggregation component. After 10 minutes of
processing, we inject a failure during operation by shutting
down 18 instances and starting them again after 5 more min-
utes. We measure both the number of generated messages and
the amount of aggregation results during the entire evaluation.
Since both values fluctuate strongly, we additionally calculate
a moving average over a 60 seconds window.

The average number of processed records per second over
time is presented in Fig. 5. It can be seen that the amount of
performed aggregations decreases sharply during the simulated
failure. This is reasonable as there are not enough resources
available anymore to process all data. However, if the stopped
instances are replaced by new instances, the amount of pro-
cessed data increases again. Furthermore, as we set the number
of processing instances twice the number actually necessary
(cf. scalability evaluation), the piled up data is also processed.

VII. LIMITATIONS AND POSSIBLE EXTENSIONS

Our proposed architecture has two limitations: First, it yields
incomplete results for the first records until every sensor
generated at least one measurement. This could be fixed by
adding additional logic in the flat transform step or for many
use cases simply be ignored as after a short warm-up the
approach would work as expected.

The second limitation concerns out-of-order records. Ac-
cording to the dual streaming model, a late arriving record
would cause a recomputation of all consecutive steps. While
this is in principle desired, the corresponding lookup in the last
values table only yields the most recent value causing wrong
results. A simple, yet in many cases sufficient solution is to
simply reject late arriving records. A more complex, but also
correct solution is to introduce windowing operations, which
compute aggregation results for time windows of, e.g., one
minute. In effect, this approach would maintain not only one
last values table but instead one last values table per time
window.



VIII. RELATED WORK

Joins in stream processing (analogous to those in SQL) [14]
allow to connect different or identical streams. As the join
operation is a bivariate function and thus aggregating multiple
streams would require a chain of join operations, a respective
pipeline can only statically be created and not dynamically
adjusted at runtime. This contrasts our approach, which allows
reconfigurations at runtime by changing the sensor groups
table or an underlying stream.

Another type of aggregating data in streams is along the
dimension of time. In this case, records within the same
time window having the same key are aggregated to a new
record. Depending on the actual requirements, records can be
aggregated within fixed windows, sliding windows, or session-
based windows [10]. In addition to research on the efficient
computation of window aggregations [15], [16], there are also
publications proposing software architectures for a temporal
aggregation platform, for example by Twitter [17]. Temporal
aggregations are compatible with our approach, which means
that temporal aggregated streams of sensor data can be further
aggregated to groups and streams for sensor groups can be
further aggregated over time.

As most approaches applying stream processing, our pre-
sented approach is primarily based on data parallelism, mean-
ing that (sub)topologies exist in multiple instances, each pro-
cessing a portion of the data. Pipe-and-Filter frameworks such
as TeeTime [18] employ task parallelism, where the individual
filters (operators) are executed in parallel. Since in this way all
data pass each filter, the identified requirements can be realized
in a single filter. In contrast to the solution we presented,
however, scalability would be significantly compromised.

IX. CONCLUSIONS

Software systems, which analyze or react on sensor data
streams, often have to process not only raw measurements
but also aggregated data for groups of sensors. In this paper,
we presented our Titan approach for continuously aggregat-
ing sensor data. It supports the aggregation of hierarchical
groups, multiple such groups in parallel, and reconfigurations
at runtime. For this purpose, we designed a stream processing
architecture, which can be integrated (e.g., as a microservice)
into existing big data architectures. It consists of a topology of
stream processing operators, requires two input data streams,
which provide sensor group hierarchies as well as the sensor
data stream, and provides an output stream of aggregated
data. We provide an implementation of this architecture for
power consumption data and show how our implementation
can be integrated into an analytics platform used in industry.
Furthermore, in an experimental evaluation, we show that
our proposed architecture scales linearly with the amount of
sensors and tolerates faults during operation. A replication
package and experimental results provided as supplemental
material allow to repeat and extend our work [19].

For future work, we plan to add optional support for out-of-
order records by aggregating measurements in time windows
as described in Section VII. Furthermore, future work may

explore how our architecture can be implemented with other
stream processing engines, for example, by considering recent
trends towards uniform stream query languages [20]. As we
were not able to discover any scalability limitations in our
conducted experimental evaluation, we also plan to conduct
experiments with even larger amounts of sensors.
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