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Abstract—Today, scientific experiments and simulations pro-
duce massive amounts of heterogeneous data that need to be 
stored and analyzed. Given that these large datasets are stored 
in many files, formats and locations, how can scientists find 
relevant data, duplicates or similarities? In this context, we 
concentrate on developing algorithms to compare similarity of 
time series for the purpose of search, classification and clustering. 
For example, generating accurate patterns from climate related 
time series is important not only for building models for weather 
forecasting and climate prediction, but also for modeling and 
predicting the cycle of carbon, water, and energy. We developed 
the methodology and ran an exploratory analysis of climatic 
and ecosystem variables from the FLUXNET2015 dataset. The 
proposed combination of similarity metrics, nonlinear dimension 
reduction, clustering methods and validity measures for time 
series data has never been applied to unlabeled datasets before, 
and provides a process that can be easily extended to other 
scientific time series data. The dimensionality reduction step 
provides a good way to identify the optimum number of clusters, 
detect outliers and assign initial labels to the time series data. 
We evaluated multiple similarity metrics, in terms of the internal 
cluster validity for driver as well as response variables. While the 
best metric often depends on a number of factor, the Euclidean 
distance seems to perform well for most variables and also in 
terms of computational expense.

Index Terms—dimensionality reduction, clustering, similarity 
measure

I. INTRODUCTION

Currently, there are 2.5 quintillion bytes of electronic data 
[1] created every day and this pace is not going to decrease 
in the near future. Scientific data collected from scientific 
observations, experiments, and large-scale simulations with 
provenance in different scientific domains, such as earth 
and space science, astronomy, genomics, environment, and 
physics, follow the same trend [2]. The size of these datasets 
today typically ranges from hundreds of gigabytes to tens of 
petabytes. For example, in 2017, the data collected from the 
Large Hadron Collider (LHC) has passed 200 petabytes [3]. 
A number of Department of Energy's (DOE) applied science 
offices generate extensive experimental and observational sci-
entific data that require computational, networking and storage 
resources for processing, transfer and analysis. This data is 
prone to frequent changes and updates due to changes in 
instrument configurations, software updates or data cleaning.
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However, scientists often do not have enough information 
about these data changes to track them efficiently and to make 
decisions about their impact on the actual data processing and 
analysis [4]. Currently, there is no systematic and organized 
way to collect and track information about the types of changes 
and the amount of data change [5]. Researchers often need to 
re-run entire data processing pipelines when updated datasets 
are released. As a part of the Deduce project1 at Lawrence 
Berkeley National Laboratory (LBNL), a team of computer 
scientists are investigating an end-to-end methodology in ad-
dition to building software tools [6] for identifying, capturing 
and tracking data changes in large scientific data collections.

The first step in building robust methods for tracking data 
changes is to reformulate the problem as a similarity search. 
In general, this depends on the type of data, but for time series 
data, similarity search is defined as the query operation that 
finds the set of data series closest to a given series. The results 
returned by this query are ranked according to some definition 
of distance or similarity. A data series similarity metric is a 
function that measures the (dis)similarity of two data series 
and it is instrumental in measuring change. Many similarity 
metrics have been proposed in the literature [7], especially 
for classification, however the Euclidean distance remains one 
of the simplest and the most widely used, as well as one of 
the most effective for large data series collections in terms of 
computation cost.

In this paper, we evaluate and compare similarity mea-
sures for time series for the purpose of similarity search 
and clustering. For example, to understand climate models 
and especially land surface models, we need to first analyze 
the temporal and spatial similarity or variability for driver 
variables and certain atmospheric conditions (such as exchange 
of heat, moisture and various carbon fluxes, etc.). Well-known 
algorithms, including dimensionality reduction and clustering, 
might be effective for these tasks, however, a number of 
challenges in this type of data make it difficult to even 
perform the basic comparison operations. One core challenge 
is that the time series data is high dimensional and there is 
no perfect solution in terms of the metric used to compute

1 http://deduce.lbl.gov
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similarity. Moreover, to compare data collected l^om two sites, 
we have to compare a number of different types of attributes. 
Additionally, the time series frequently contain missing values, 
unknown values or corrupted values, which presents other 
challenges. Our aim is to investigate how different time series 
similarity measures affect state-of-art dimensionality reduction 
and clustering techniques.

The rest of the paper is organized as follows. We present 
related work in section II. We describe the machine learning 
methods in section III and the data in section IV. We present 
our results in section V and conclusions in section VI.

II. Re l a t e d  Wo r k

At the heart of this research lies problems relating to time 
series similarity, correlation, clustering and prediction. These 
problems are by no means new and can be seen throughout 
many different applications in several areas of study.

A. Time Series Similarity

Time series similarity measures provide a quantitative com-
parison that can be applied to time series to capture amplitude 
timing and noise effects. One such study by Wang et al. 
[8] looked into nine different similarity metrics applied to a 
variety of time series datasets. The study concluded that not all 
similarity metrics are equal in terms of efficiency and accuracy 
and that different similarity metrics w ill preform better on 
different datasets based on a multitude of different properties 
within the dataset.

Another similar study by Serr et al. [9] looked at seven of 
the most prominent similarity metrics in depth and applied 
them to several time series datasets with different properties. 
The conclusion was that there are several similarity metrics 
that are benifical for a variety of applications within time 
series data and several that fell short despite being promising 
candidates.

These studies can be further applied to many different prob-
lems, including detecting changes and similarities in ecosys-
tems [10] and climate environments. The FLUXNET2015 
dataset [11]is often used for meteorological and environmental 
research studies to answer questions about temporal variability 
or to prove correlation and causality between variables. The 
majority of these studies are done at a small scale and usually 
use only statistical methods for analysis.

B. Statistical Approaches

Recently, Baldocchi et al. [12] analyzed data from 59 sites 
over five or more years using the classical standard deviation 
to compute the inter-annual variability in net ecosystem carbon 
exchange to show carbon fluxes changes over the years.

Chu et al. [13] focused on the temporal representatives 
of FLUXNET sites to determine i f  the set of measurements 
collected at any given site can capture the natural variability 
of climatological driver conditions and extrapolate or predict 
unknown and/or future measurements. They found that the 
temporal similarity of driver variables provides good results 
for the response variables' extrapolation.

To predict site behavior across the network, data from 
155 sites were used for the analysis presented in [14]. They 
quantify predictability of the key fluxes in terms of site 
uniqueness. The analysis is based on clustering combined with 
multiple linear regression models that fit functions between the 
driver and the response variables. By doing this, they were 
able to conclude that the drier the site, the more unique it is. 
However, based on their definition of uniqueness, data length, 
quality vegetation type had little impact on the uniqueness of 
the site.

Cui et al. [15] summarized the energy balance closure 
(EBC) data from site residing in nine different vegetation 
zones and five climate. They also explored the correlation 
between the driver variables and EBC. Their results showed 
that EBC is closely related with air temperature, precipitation, 
friction velocity, vapor pressure deficit (VPD) and enhanced 
vegetation index.

C. Machine Learning Approaches

Machine learning has been an important tool for understand-
ing carbon fluxes. For example, Murphy et al. [16] applied 
multiple machine learning algorithms on FLUXNET data to 
predict the carbon flux. They evaluate the performance of 
four classes of machine learning: artificial neural networks, 
Gaussian process regressions, random forests, and recurrent 
neural networks implemented using long short-term memory. 
They also identified input variables that contribute most to the 
carbon flux predictions.

However, Reichstein et al. [17] claimed that current ap-
proaches may not be optimal when system behavior is domi-
nated by spatial or temporal context. They claim that using 
deep learning on these contextual cues would be better to 
further the understanding of Earth system science problems.

Our approach is similar to some of the previous studies 
that research temporal and spatial variability in the FLUXNET 
data. We use dimensionality reduction combined with cluster-
ing to evaluate several similarity measures. The clustering is 
performed on data aggregated by day. The approach has been 
applied to the combination of driver variables and also to each 
response variable individually.

III. M e t h o d s

Under the assumption that these FLUXNET sites fall into 
a few categories despite the wide geographic and ecosystem 
differences they have, we executed a clustering method to 
extract patterns from the multivariable time series data. We 
want to not only identify such groups, but also find trends 
within one or more variables [18].

Our process uses a multi-step approach. First, similarities 
containing a quantification of closeness is determined for each 
pair in the dataset. This is done using multiple similarity 
measures. Next, a combination of clustering algorithms and 
different numbers of clusters are evaluated by multiple clus-
tering validity measures. Lastly, the effects of the different 
similarity measures on the clustering solutions are examined 
both quantitatively and qualitatively.
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A. Dimensionality Reduction

For dimensionality reduction and visualization, we employ 
the newly developed Uniform Manifold Approximation and 
Projection (UMAP) [19] algorithm. Unlike Principal Compo-
nent Analysis (PCA) that captures linear trends in the data, 
UMAP is a dimensionality reduction method that works well 
for embedding nonlinear data into a low dimensional space 
for visualization. UMAP framework is based in a Riemannian 
geometry and algebraic geometry. This algorithm is based on 
the following assumptions:

• the data is uniformly distributed on a Riemannian mani-
fold

• the Riemannian metric is locally constant
• the manifold is locally connected
The resulting manifold is then modeled with a fuzzy topo-

logical structure. Finally, the low dimensional embeddings are 
found by a similarity search for a projection of the data on 
the fuzzy topological structure.

The proposed methodology can be done without performing 
the dimensionality reduction step, however especially for high 
dimension, multivariate data this step provides a 2-dimensional 
representation of the data. This representation can be used to 
visualize the underlying structures may exist in the data and 
also may improve the clustering results.

B. Similarity Metrics

Since similarity measures such as the Euclidean distance, 
may not be ideal for computing similarities between large 
time series datasets, alternative similarity metrics need to be 
explored [7]. Such measures are generally used for machine 
learning algorithms such as classification and clustering [20],
[21] . Four similarity metrics are considered for the purpose of 
this study: Euclidean Distance, Fourier Coefficients, Simple 
Correlation, and Dynamic Time Warping (DTW).

1) Euclidean Distance: The Euclidean distance metric is 
the most common method for determining the similarity in 
terms of the distance between any two objects or data points
[22] . The Euclidean distance metric uses the Pythagorean 
Theorem to calculate the distance between two given points. 
As one might expect, the smaller the output of the distance, 
the more similar the two points are. This algorithm works with 
multi-dimensional data, making it a good candidate for this 
high dimensional meteorological data. However, the Euclidean 
distance focuses solely on linear distance, meaning any treads 
throughout time series will be ignored. For massive datasets, 
Euclidean distance can be computed very fast giving this 
method a definite advantage over other methods that are quite 
computationally expensive.

2) Fourier Coefficients: Another common similarity metric 
is called Fourier coefficients. This approach transforms the 
incoming time series into Fourier space and then measuring 
their Euclidean distance in Fourier space. Because the Fourier 
transforms requires time to compute, this similarity metric 
typically requires more time to compute than computing the 
Euclidean distance. It is possible that the Fourier transforms

are available, then the computational cost of this approach 
could be actually lower, especially when only some of the 
lower frequency components are used for the similarity cal-
culation. Of course, if  only the lower frequency components 
are used, this similarity metric might not capture the high- 
frequency patterns in the initial data.

3) Simple Correlation: An outside the box approach that 
we consider is Simple correlation. Simple correlation treats the 
data as separate vectors and computes the statistical correlation 
between the vectors [23]. This approach is more of a measure 
of dependence rather than a traditional distance, but it works 
for our purposes. The result of this measure is somewhere 
between 0 and 1, where 0 is completely independent with 
no relation between the vectors at all and 1 is complete 
dependence, meaning the vectors are exactly the same.

4) Dynamic Time Warping: Another method to determine 
the similarity between two time series is Dynamic Time 
Warping (DTW). This method take into account the time shift 
between the two time series, as shown in Figure 1. This is 
an improvement over other methods because DTW can cluster 
through time as well as space [24]. It creates an optimal match 
between two sequences regardless of any time differences. One 
trade off of this flexibility in computing the similarity is that 
for n terms, the algorithm has to make n2 calculations, making 
this method computationally expensive for large datasets.

Fig. 1: Example of DTW vs Euclidean, where the two black 
lines are datatsets and the colored lines are the comparisons 
made by each method.

To extend this idea to multi-channel or multivariate time 
series or sequences, the new similarity metrics have to include 
the contribution of each given variable in the final compu-
tation. To accomplish this, the distances for each individual 
variable are first computed using one of the regular distance 
measures. Then, the multivariate similarity is calculated by 
averaging the values for the results from the previous step.

C. K-Means Clustering

Once a similarity matrix for all pairs of data points has 
been computed, a clustering approach can be used to group 
data points based on their similarity. K-Means [25] is a well- 
known unsupervised clustering method that works both well 
and quickly. The algorithm partitions the data points into k 
groups. At the initialization step, the algorithm will randomly 
chooses k data points as the clusters’ centers. The data points 
are then distributed to the clusters based on their distances
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to the clusters5 centers. The algorithm updates and refines 
the clusters by calculating the distances of each data point to 
the clusters’ centers. The data points are then placed into the 
cluster with the smallest distance. The centers of the clusters 
are recalculated at each iteration until the algorithm converges 
to the solution and the refinement process no longer makes any 
changes. The algorithm usually only requires a few iterations 
to converge.

D. Internal Cluster Validity Measures

To evaluate clustering methods on datasets such as the 
FLUXNET2015 time series data, for which there is no 
••ground truth••�accuracy and error do not work. Alternative 
approaches for evaluation of the clustering algorithms must 
be implemented and used. Several internal clustering validity 
measures [26], [27] have been proposed to provide a statistical 
quality measure for the generated partitions. These internal 
measures include the Calinski and Harabasz score (CHS), 
the Davies-Bouldin score (DBS), and the Average Silhouette 
Width (ASW).

The CHS measure is defined as the average between the 
within-cluster sum of squares and the between-cluster sum of 
squares. The DBS measure is the ratio between the average 
distances within of one cluster and the in between cluster 
distances. This results in a better score for clusters which are 
farther apart and less dispersed. The ASW is calculated for 
each data point as the average distance to the other points 
in its cluster and compared with the average distance to the 
points in the next closest cluster.

These measures establish a way to choose the optimal num-
ber of clusters without relying on the ground truth. The results 
of these measures are represented in a tabular or in a plot, 
allowing for visual interpretation. Once the best clustering 
method and the optimal number of clusters have been selected, 
these parameters are used to generate the clustering groups. 
The best way to identify general cluster characteristics for sets 
of sequences is by plotting the mean, min, and max of the time 
series that belong to the same cluster.

IV. Da t a s e t s

To determine the effectiveness of these methods, this re-
search uses the FLUXNET2015 dataset [11], which includes 
measurements of the exchange of carbon, water, and energy 
between terrestrial ecosystems and the atmosphere using eddy 
covariance method, which is the largest of its kind [13]. 
The dataset includes 212 sites from all continents except 
Antarctica, with over 1500 site-years of data collected at 30 
or 60 minute resolution and distributed at multiple aggregated 
resolutions (hourly, daily, monthly, etc.) The dataset is col-
lected by multiple regional networks globally and distributed 
using the Fluxdata.org2 platform hosted by the Lawrence 
Berkeley National Laboratory. A selection of FLUXNET sites 
is shown in Figure 2.

The data is run through quality control to ensure accuracy 
and remove faulty data. However, many of the variables

2https://fluxnet.fluxdata.org/

Fig. 2: Location of clusters when looking at air temperature, 
shortwave radiation, precipitation, VPD and wind speed where 
the diamonds correspond to the green cluster, the triangles 
correspond to the black cluster, the squares correspond to the 
yellow cluster, and the circles correspond to the blue cluster.

contain missing data, mostly due to power issues or faulty 
instruments giving inaccurate readings [28]. To retrieve these 
meteorological variables outdoor instuments are used, and as 
such, are exposed to the varying weather patterns and natural 
disasters that may occur in an area.

Data can also be missing for years based on when the 
tower began or stopped collecting data. Though this study 
is focused specifically on the FLUXNET2015 dataset, it 
hopes to develop general methods that would work on any 
datasets. The variables considered for this project are the 
driver variables -  temperature, shortwave radiation, vapor 
pressure deficit (VPD), wind speed, and precipitation. Where 
shortwave radiation is the incoming radiation from the sun and 
vapor pressure deficit is the difference between the amount 
of moisture in the air and the amount of moisture that the 
air can hold a full saturation. A ll these variables impact the 
evaluated response variables: sensible heat, latent heat, and 
two different processed net ecosystem exchange values. The 
sensible heat is a measure the heat absorbed and released 
into the air with changing temperatures, while the sensible 
heat is a measure of the heat absorbed an released into the 
atmosphere when the air is subject to a phase change, such as 
precipitation or condensation. The Net Ecosystem Exchange 
is a measure of the total carbon transfered between the earth 
and the atmosphere. These driver and response variables were 
chosen for their completeness -  they are gap-filled as part of 
the processing done for the FLUXNET2015 dataset.

V. Ex p e r im e n t s  a n d  Re s u l t s

The proposed methodology can approximately identify near-
duplicate datasets from massive collections of datasets by 
computing small representations for each dataset and com-
paring only these reduced sets and not the entire datasets, 
for fast performance and without loss of quality. Looking at 
the response variables individually, the best similarity metrics 
varied. For latent heat and sensible heat, the correlation 
distance performed better. However for temperature and both
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TABLE I: Internal Clustering Validity Measures for Driver 
Variable

ASW CHS DBS
Correlation 0.54297 16248.8 0.56670

DTW 0.60120 15763.4 0.42803
Euclidean 0.67947 9262.15 0.32295
Fourier 0.67098 9958.30 0.33138

variations of the net ecosystem exchange, DTW provided the 
best performance. These results Table I used cluster validity 
measures and analyzed the values that these measures gave. 
Although with the driver variables, when the variables were 
considered simultaneously, the cluster validity gave different 
results, showing the Euclidean distance was best as shown in 
Table I.

TABLE II: Internal Clustering Validity Measures for Response 
Variable

Euclidean Fourier Correlation DTW
Sensible Heat

ASW 0.525077 0.449927 0.675231 0.463661
CHS 3241.57 2103.77 5456.11 2123.26
DBS 0.852836 0.887615 0.699878 0.894706

Net Ecosystem Exchange (VUT•• REF)
ASW 0.530670 0.499239 0.479826 0.566473
CHS 2629.77 2572.49 2343.05 3166.83
DBS 0.892706 0.942261 0.966203 0.868652

Latent Heat
ASW 0.488126 0.465864 0.636779 0.602823
CHS 2459.43 2038.08 6726.95 3759.65
DBS 1.05667 1.06461 0.659145 0.845184

Net Ecosystem Exchange (CUT•• USTAR50)
ASW 0.518020 0.516414 0.475644 0.558803
CHS 2819.97 2725.23 28358.25 3038.71
DBS 0.929540 0.964514 0.919367 0.890048

A. Driver Variables Clustering

When considering the combination of driver variables (air 
temperature, precipitation, shortwave radiation, VPD and wind 
speed) we found that the Euclidean distance algorithm was the 
best (Table I. Thus, we used that algorithm and clustered the 
data using K-means for multiple clusters ranging from two 
to ten. Next, cluster validity metrics, including the Average 
Silhouette Width(ASW), the Calinski Harabasz Score(CHS), 
and the Davies Bouldin Score(DBS), were run for each number 
of clusters until the best number of clusters was found. The 
optimal number of clusters occurs when the Average Silhouette 
Width and the Calinski Harabasz Score have a peak and when 
the Davies Bouldin Score is at a local minimum. As seen in 
Fig. 4, the ideal number of clusters is four. The Silhouette 
plot in Fig. 5 proves the cluster solution is valid, since the 
silhouette coefficients of all the clusters are higher than the 
average value.

B. Driver Variables Cluster Interpretation

Checking the cluster distribution in terms of the latitude 
and longitude of the site (Figure 2 and the year the data was

recorded, we know specific information about every cluster. 
The yellow cluster contains only sites near the US-Mexico 
border, at about 30°N. The black cluster mainly consists of 
sites between 35°and 50°N. The green cluster consists of 
sites mainly above 50 °N, but also include some sites at high 
elevations. The main difference between the green and black 
cluster is that the peak air temperature is lower for the sites 
in the green cluster. The blue cluster contains sites mainly 
between 0°and 35°S, with the majority of the sites being in 
Australia.

C. Driver Variables Cluster Shape Representation

Aggregates over the time series for each cluster and each of 
the driver variables are shown in Figure 3. For air temperature, 
shortwave radiation, and VPD, the yellow cluster has the high-
est peak overall and always has higher values than the green 
and black clusters, while the blue cluster follows the opposite 
patterns as the others due to the seasons being opposite in the 
southern hemisphere. Fig 2 shows the locations of all clusters 
where the colors match the cluster color. For precipitation, 
we see the the yellow and blue clusters get precipitation in 
waves while the black and green have consistent precipitation 
year round. For wind speed, all of the clusters follow about 
the same trend except the blue cluster, which has a unique 
trend. These variables are dependent on the season and latitude 
primarily, but are also dependent on the vegetation type and 
altitude to a lesser degree.

D. Analysis for the Response Variables

The use of cluster validity showed that sensible heat and 
both of the net ecosystem exchange variables were best split 
into five clusters (Figure 8), while the latent heat was placed 
into seven clusters (Figure 7). To look at how the sites were 
allocated to the clusters, the data was used to make shape 
profiles shown in Figure 6. The shape profiles were created 
based on the which distance algorithm best suited the variable, 
Table II shows the values of the cluster validity metrics for the 
different response variables that were analyzed. According to 
these values correlation best fits the heat fluxes while DTW 
provides the best measures for the different NEE values. These 
distance metrics were then used to create the corresponding 
shape profiles. For the heat variables, many of the sites were 
split based on the hemisphere that the sites were located in. 
Clusters that are concave up are composed of many sites in 
the southern hemisphere, while the concave down plots are 
sites located in the northern hemisphere. The shape profiles 
show the line of the average value calculated for each day in 
the year, while the shaded region shows the range of values 
that were observed on that day.

The clusters made from the net ecosystem exchange values 
do not appear to cluster based on geographical region. It is 
currently unknown how these sites are being clustered. How-
ever, initial analysis suggests that the sites are being clustered 
based on vegetation grown in the sites area,or possibly the 
altitude of the site has an affect on the NEE variables.
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Fig. 4: Result of cluster validity

The silhouette coefficient values Feature space for the 1st feature

Fig. 5: Silhouette plot for combined driver variables

VI. Co n c l u s i o n s

Using clustering and dimensionality reduction to analyze the 
results and performance of similarity metrics, we detected tem-
poral and spatial similarities in the FLUXNET2015 dataset. 
After testing multiple similarity algorithms using Euclidean 
distance, DTW, simple correlation and Fourier coefficients, 
we concluded that Euclidean distance gave the best combined 
values for the cluster validity metrics when run with the driver 
variables dataset. However, this did not hold true for the 
response variables. For the heat variables simple correlation 
offers the best results; however, Dynamic Time Warping works 
best with the net ecosystem exchange variables. With this 
information, we decided to continue mainly with the Euclidean

table shape profiles

distance since the minor additional benefits received from Dy-
namic Time Warping is not worth the additional computational 
time that is required in the acquisition of the marginally better 
measurements. The development of these similarity algorithms 
will help researchers be able to choose appropriate similarity 
metrics to get similarity results that best represent the data 
being considered.

V II. Fu t u r e  Wo r k

We plan to extend this research to include all the relevant 
variables in the dataset in the analysis. We would like to 
determine the most efficient similarity measure when using 
the all variables and potentially run a feature selection-type 
of analysis. This would be helpful in finding thoroughly 
evaluated similarity measures within the larger dataset. Many 
scientists are interested on the correlation between the driver 
and response variables, and the similarity measures used in this 
research can be help identify these relationships and bring to 
light new scientific knowledge still locked within these rich 
and complex types of datasets.
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Fig. 7: Silhouette plot for Latent Heat response variable

Fig. 8: Silhouette plot for Net Ecosystem Exchange response 
variable
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