
WiSer: A Highly Available HTAP DBMS for IoT Applications

Ronald Barber1, Christian Garcia-Arellano2, Ronen Grosman2, Guy Lohman1,
C. Mohan1, Rene Muller4, Hamid Pirahesh1, Vijayshankar Raman1,

Richard Sidle1, Adam Storm2, Yuanyuan Tian1, Pinar Tozun3, Yingjun Wu1

1IBM Almaden Research Center 2IBM Analytics
3IT University of Copenhagen 4Bern University of Applied Sciences BFH

ABSTRACT
In a classic transactional distributed database management system
(DBMS), write transactions invariably synchronize with a coor-
dinator before final commitment. While enforcing serializability,
this model has long been criticized for not satisfying the applica-
tions’ availability requirements. When entering the era of Internet of
Things (IoT), this problem has become more severe, as an increasing
number of applications call for the capability of hybrid transactional
and analytical processing (HTAP), where aggregation constraints
need to be enforced as part of transactions. Current systems work
around this by creating escrows, allowing occasional overshoots of
constraints, which are handled via compensating application logic.

The WiSer DBMS targets consistency with availability, by split-
ting the database commit into two steps. First, a PROMISE step that
corresponds to what humans are used to as commitment, and runs
without talking to a coordinator. Second, a SERIALIZE step, that
fixes transactions’ positions in the serializable order, via a consensus
procedure. We achieve this split via a novel data representation that
embeds read-sets into transaction deltas, and serialization sequence
numbers into table rows. WiSer does no sharding (all nodes can
run transactions that modify the entire database), and yet enforces
aggregation constraints. Both read-write conflicts and aggregation
constraint violations are resolved lazily in the serialized data. WiSer
also covers node joins and departures as database tables, thus sim-
plifying correctness and failure handling. We present the design of
WiSer as well as experiments suggesting this approach has promise.

1. INTRODUCTION
For decades, database management systems (DBMSs) have sepa-

rated on-line transaction processing (OLTP) from on-line analytics
processing (OLAP) in distinct systems. This has been more an
engineering compromise than a desirable feature: OLTP systems
typically modified small portions of the database and demanded
low latency, whereas OLAP systems typically queried large swaths
of the database in read-only mode and demanded high through-
put. But the promise of classical DBMS transaction theory and
its serializability concepts is that all transactions – even with arbi-
trarily complex queries embedded within them – can be handled

correctly (i.e., serializably) by a single DBMS, so that applications
can program against a single-system image, even while running in a
distributed system with high concurrency.

Increasingly over the last few years, the Internet-of-Things (IoT)
applications are gaining their popularity. They have begun to de-
mand this ideal of doing analytics on the same system as transaction
processing, and even doing analytics within the transactions them-
selves [26, 24]. This is known as hybrid transaction and analytical
processing (HTAP). However, even with significant advances in
the speed and capacity of the underlying hardware, true HTAP in a
distributed environment is extremely challenging. If a transaction,
running on any node, can query the entire database state up to that
point in time (in serializable order) and subsequently make a modi-
fication that might touch the entire database, then that transaction
will effectively need to lock the entire database while it runs. Not
only can such transactions run for a long time, but their locking be-
havior excludes other transactions, killing concurrency and slowing
performance to a crawl.

Database sharding across distributed nodes somewhat eases the
problem by partitioning the database into shards and similarly parti-
tioning the transaction workload, so that most transactions are local
to a single shard. But often aggregation constraints spanning mul-
tiple nodes need to be enforced, and this usually forces escrowing
transactions while aggregating across shards.

Let us consider an online shopping application that is at the core
of the TPC-C and TPC-E transactional benchmarks and captures the
full HTAP challenge. It has two tables:
• Products(productId, unitPrice): containing real goods

(as in TPC-C), securities (as in TPC-E), or services (e.g., a slot on a
delivery truck).
• Orders(orderId, productId, qty, price): containing

orders for a given quantity of a given product, at a given price. Cus-
tomer orders express quantity as a negative number, while restocking
orders have positive values for quantity.

Now consider we want to run the following two transactions on
these tables:
• NewOrder: Look up current prices for a few products, and insert

rows into Orders table with a certain order ID.
• UpdatePrice: Change the unit price for some products in the

Products table.
Note that, unlike TPC-C, we do not have an “Inventory” table

holding a materialized running overall quantity of product; instead,
the transactions need to check an aggregation constraint ensuring
that the sum of all quantities cannot be negative for any product. The
lack of “Inventory” table is common in modern IoT applications. As
NewOrder can come from edge devices (e.g., mobile phones) from
across the world, maintaining such an “Inventory” table could easily
lead to centralized contention, caused by both 2-phase locking (2PL)

ar
X

iv
:1

90
8.

01
90

8v
1

 [
cs

.D
B

]
 6

 A
ug

 2
01

9

and 2-phase commit (2PC). In such an application, it is impossible
to escrow the aggregation constraints; In addition, it is also not
realistic to shard the database, as these aggregation constraints are
not “shardable”.

Instead of maintaining aggregation views in the DBMS, these
constraints are invariably delegated to application logic. This brings
us to the limitations expressed by the well-known CAP theorem
by Brewer, which states that it is impossible for a distributed data
store to simultaneously provide more than two out of the following
three guarantees: Consistency (C), Availability (A), and tolerance
to Partitions of the network connecting nodes (P).

1.1 CAP Theorem within DBMS
Brewer observes that applications always prioritize availability,

even applications that modify complex distributed state with many
concurrent actors [8, 7]. A transaction cannot always wait to access
the full global state, and cannot synchronously modify this state in a
way that is immediately reflected globally. Instead, there is complex
compensatory logic in the application to handle constraint violations
due to concurrent activity.

A transaction is a contract between two parties, e.g., between
a customer and a retailer. When the customer clicks the “submit”
button, they are committing, not just in the DBMS sense but also
in the legal contract sense, to buy these products at these prices;
conversely, the retailer is committing to supply.

But, the serializable order of these transactions is established
after commit. In a retail application, this could be the sequence
in which orders are filled by consuming inventory or space on a
delivery truck. Constraints can and do get violated all the time, and
are resolved by compensation, e.g., via an apologetic email about a
“back-ordered” item and perhaps a coupon.

Thus, commit always has “asterisks” (contingencies): the parties
agree that the contract is contingent on the global state (reflecting all
concurrent transactions, in serializable order) not differing too much
from the state seen at commit. Banks usually state this asterisk ex-
plicitly, e.g., by listing their algorithm for processing overdrafts. The
problem with this application logic is that it complicates reasoning
about database atomicity or durability.

1.2 HA and HTAP within DBMS
The Wildfire-Serializable (WiSer) project seeks to provide both

high availability (HA) and HTAP within the same distributed DBMS
without sharding, thus extending atomicity and durability to the
handling of consistency contingencies. WiSer is a follow-on project
to the Wildfire research project, which developed high-throughput
HTAP at snapshot isolation and has been commercialized as the
IBM DB2 Event Store [5, 4]. Now we first give an overview of the
novel way in which WiSer commits a transaction to achieve this
significant improvement.

1.2.1 Symbolic and Resolved Commit
A transaction in WiSer can run on any node, even on poorly

connected nodes. Commit is split into two stages:
• PROMISE stage, after which the deltas (i.e., state changes) of

a transaction X are persisted durably and the transaction is “sym-
bolically committed”. There are three “symbolic” entities in the
delta that are resolved lazily: (1) the position of X’s delta in the
serializable order; (2) X’s conflict status – whether the queries in the
transaction saw the latest state (per the serializable order); and (3)
X’s constraint status – whether the database state up to X satisfies
aggregation constraints. These symbols capture the contingency
semantics: if X confronts access conflicts or violates constraints, X

will roll back and the application can specify one or more compen-
satory actions.
• SERIALIZE stage, to pick the position of the X’s delta in the

serializable order, which is done via consensus. This stage inherits
the HA and liveness properties of that consensus protocol.

WiSer has further asynchronous stages, to resolve X’s conflict
violation, to resolve X’s constraint violation, and to “publish” X’s
delta in a query-efficient form. But X’s status is deterministic after
the SERIALIZE stage. Thus, an application running on a poorly
connected node, as long as it can get to serialize, can always run a
query to find the transaction status.

1.2.2 HA HTAP via Consensus
Conceptually, doing HTAP with HA is just a consensus problem.

Imagine a database that is just a huge Raft [23] log. Transactions
append deltas to this log. In addition to these changes to user tables,
each delta must also capture additional metadata and cluster state in
this log:
• Transaction snapshot and read-sets: the queries in a transaction

X are run as of a snapshot, which is a prefix of this log. To resolve
X’s conflicts, we need to know this snapshot and the nature of X’s
queries to compute whether the query result would have changed
due to deltas between the snapshot that X sees and the position of
X’s delta. Often this “read-set” information is stored in custom
data structures and lock tables, making it harder to reason about
correctness in failure cases.
• Node departures and (re-)joins: say a node N “hangs” for a

while, and so its peers evict it. How do they do that, while atomically
stopping that node from adding deltas to the log? We need to add
the “node departure” event to the log as well.

Database State
(in log format, i.e. as composition of deltas)

Deltas @ Node A Deltas @ Node B Deltas @ Node C Cluster Configuration
(nodes, replicas, etc.)

Database Schema
(tables, indexes, etc.)

System State
(in log format, i.e. as composition of deltas)

RAFT

Figure 1: If all state changes (database and system) are in a durable, consis-
tent, HA consensus log, we have a serializable system.

Figure 1 illustrates this data model. If we had such a consensus
log, then in theory we have HTAP and HA – transactions will run
serializably just by querying the log, and they will make progress
even in poorly connected situations, following the HA behavior of
the consensus protocol. Of course, such a grand consensus log would
be too slow, both in throughput and latency. This in turn would cause
too many rollbacks, because longer-running transactions are more
likely to have read-write conflicts.

WiSer instead picks the other extreme. As Figure 2 shows, WiSer
has a consensus log that tracks only the history of the state changes.
All the other state is in database tables, and our challenge is to get
consensus on changes to this other state using only the change log.

1.2.3 High Throughput Scale-out
WiSer’s design of resolving conflicts and constraints after serial-

ize also gives a significant throughput benefit.
PROMISE is a local operation, with replication for durability alone,

and does no locking, so it scales out quite readily; SERIALIZE is a

R
A

FT

Delta History

Database and System States
(in table format)

Figure 2: WiSer puts only the history of state changes in a Raft log, and
stores all other information in database tables.

consensus operation, whose cost is independent of the transaction
load. We have an elected SERIALIZER (or leader), who appends
the log-sequence number (LSN) ranges to a broadcasted file every
N time intervals, where N is chosen based on the desired latency.
Each serialization picks the serial order for all the new transactions,
across all nodes, that are available to SERIALIZE at that time.

Thus, the key scalability challenge is in the conflict resolution
step performed after SERIALIZE, to resolve the symbolic fields. Like
Calvin [29], WiSer’s database state is deterministic upon SERIALIZE.
So constraints and conflicts are resolved on a non-changing database
state. This allows conflict resolution to be done at high throughput,
and to be trivially scalable.

1.2.4 Efficiency of Aggregation Constraints
In the previous online shopping application, suppose NewOrder

transaction had to compute the inventory (via an aggregation query)
and verify that it will remain positive after this order. The query
will take so long to run that the resulting transaction will surely
conflict with some UpdatePrice transaction that snuck through in
the meantime. This is why TPC-C uses materialized aggregation
views, but of course they involve sharding.

WiSer instead uses lazy CONSTRAINTRESOLVERS to resolve
constraints. They run the aggregation as a query each time, so
that NewOrder transaction is not burdened with having to update
inventories and can scale easily. The CONSTRAINTRESOLVERS
keep up with the transaction rate because they run as streaming
queries, continually streaming the serialized, conflict-resolved deltas
through streaming queries to verify aggregation constraints.

1.3 Paper outline
Section 2 describes the design of WiSer, focusing just on getting

to the serial order. Section 3 and Section 4 discuss how WiSer
handles conflict and constraint resolution. We describe the system
status and experiment results in Section 5. Section 6 reviews related
work and Section 7 concludes the paper.

2. DESIGN
We model a database as a logical chain of state modifications,

called deltas. The chain is in time order, that is, smaller prefixes
of the chain correspond to earlier states of the database. These
state modifications are made by programs called transactions that
logically read the current database state (the chain prefix up to that
modification), and accordingly apply transaction logic to do the
modification*. Each transaction runs local to a node, but may query
* Application programs further need that transactions must be se-
rialized in an order that respects the user time at which they were
executed. We defer this problem until Section 2.1.1.

the database state across nodes. We call the deltas produced at each
node as a subchain and the database chain is an interleaving of these
subchains. WiSer performs background replication and hardening
of each subchain, as described later.

Deltas @ Node A Deltas @ Node B Deltas @ Node C

𝑨𝟏

𝑨𝟑

𝑨𝟐

𝑩𝟏

𝑩𝟐

𝑩𝟑

𝑪𝟏

T
im

e

𝑩𝟑’s snapshot

𝑪𝟏’s snapshot

Figure 3: Transactions run at three nodes. A transaction only see deltas
made before their snapshot.

Figure 3 shows an example with three nodes, A, B, C, and trans-
actions’ deltas produced at these nodes: A1, A2, ..., B1, ..., C1,
The database state is the composition of deltas that come in time
order: A1 → B1 → B2 → A2 → B3 → C1 → A3....

Content of a Delta. WiSer allows only one kind of state modifi-
cation: an upsert of a row to a table. An update-by-key is treated
as a query to get the prior row content, followed by an upsert of
the modified contents. Deletes are updates that set an isDeleted
field. A transaction X can run many queries, and do many (or zero)
upserts. The delta encapsulates not just these upserts, but also the
read-set of X – the read queries the transaction X ran. Logically,
the queries in X should read the database chain up to X; that is,
X shall see any updates that happen before it. But in practice, the
queries in X read a prefix of this chain, called X’s snapshot: as
shown in Figure 3, B3 can observe the delta made by A1, but does
not see that made by A2, which happens after the snapshot. If these
query results can change due to intervening deltas (between X’s
snapshot and X), X must roll back. Therefore we add the read-set
and the snapshot, as a serialization sequence number, to the delta.

WiSer represents transaction deltas in log format, as a Parquet [1]
row-group per modified table, all concatenated together into a byte-
string. Read-sets are represented as upserts against a ReadWriteSet
table, whose format we explain in Section 3.

Consensus for Serial Order of Writes. WiSer uses Raft [23]
for achieving consensus on this serial order. But we do not directly
put these deltas, or even the metadata, such as the range of log
sequence numbers (LSNs) they span, onto a Raft log. Instead, our
Raft log only contains one entry each time a new SERIALIZER (or
leader) is elected. This log holds a Serializers table, with schema
(SerializerNodeID, SerializerSeqNum, StartingBatch), which
is initialized to a single row (0, 0, 0) at database creation (e.g.,
node A is the first leader). Nodes are assumed to have unique IDs.
SerializerSeqNum is an increasing number 0, 1, 2, ... which is in-
creased when a new SERIALIZER is elected, and StartingBatch is
an offset into a separate SerializeFrontiers table.
SerializeFrontiers holds the serial order of deltas. Each row

corresponds to a serialization batch, and contains the node ID orig-
inating a batch, and the LSN range (only the upper bound) of the
deltas in that batch. Nodes repeatedly run batches of transactions,
harden their deltas, and send the LSN range to the current SERI-
ALIZER. The SERIALIZER picks the serial order and records it

by appending to SerializeFrontiers table. By inspecting the
tail of SerializeFrontiers table, a query can determine what is
serialized across the whole database.

SerializeFrontiers table is implemented as a list of files: a
SERIALIZER with node ID N and sequence number S writes to file
named SerFront.N.S (this file is lazily replicated to all nodes).
Upon a failure and/or a network partition, multiple nodes can think
they are the SERIALIZER, but the Raft log Serializers picks the
winner – the row with maximum SerializerSeqNum, with ties
broken by picking the earliest entry.

Visibility and Conflict Rollbacks. Of course, transactions do
not just do blind writes. They run queries (including both reads
and writes) as well. As explained in Figure 3, all queries within a
transaction see a common prior state, called its snapshot. This raises
two challenges:
• Visibility: the transaction snapshot needs to be recent enough

(not too stale), highly available (when individual nodes are down),
and often needs auxiliary structures (indexes) to perform acceptably.
• Read-write conflicts: after determining the serializable order

(via consensus), WiSer need to roll back all transactions whose
reads have been changed in value between the seen snapshot and the
serialization point. As discussed above, WiSer append the read-set
of each transaction to its delta. This allows precise determination of
read-write conflicts.

Section 3 describes how we address both these challenges. Note
that we do not call out write-write conflicts (concurrent transactions
updating rows with the same key) separately. In WiSer, a write of a
row into a table with a defined primary key automatically performs
a read of that row (i.e., all writes are upserts), thus handling all
conflicts as read-write.

Constraint Rollbacks. State modifications must also respect
aggregation constraints, such as the rule in the online shopping
application that inventory for each product must stay positive. We
require aggregation constraints to be algebraic (that is, involving
sums, counts, and averages, but not medians), so as to allow parallel
as well as incremental computation.

Even with algebraic aggregates, constraint resolution is challeng-
ing because aggregates are generally not monotonic. For example,
a batch of transactions may start with some orders that exceed the
available inventory, and then a restocking, and then some more or-
ders. Section 4 describes how we tackle this challenge, and presents
a parallel algorithm for incremental constraint resolution.

2.1 Lazy Transaction Resolution
The design presented above involves a bunch of background tasks

that happen in parallel with transaction execution: replicating deltas,
serializing them, resolving conflicts, and resolving constraints. As
these background tasks progress, they take a transaction through
various stages, which we now detail.

Stage 1: PROMISE. A transaction submitted by a client is first
assigned to a subchain, and accordingly sent to a node. Clients can
give a hint as to where to run a transaction, that is, based on what
rows the transaction is inserting, to get a partitioning that queries
can exploit. But this is just a hint: every transaction can modify the
entire database.

The transaction delta is appended to a node-local log, which is
implemented as a a lock-free list of blocks. WiSer asynchronously
and automatically replicates this log to replica nodes. Promise
completes when a quorum of replicas has received and hardened
the log, which is tracked via heartbeats. PROMISE needs no global
cluster communication; AP applications stop at this stage.

Stage 2: SERIALIZE. Nodes continually inform an elected SE-
RIALIZER of their log growth in the form of LSN ranges. The

SERIALIZER repeatedly picks a node and publishes its recent delta
to the global serial order, as discussed earlier. Other serial orders are
also acceptable, such as ordering by the local commit timestamps.
This policy serializes entire batches of changes from each node in a
deterministic manner, similar to Calvin [29].

The database state up to the serialization frontier is deterministic.
Each delta has two symbolic fields:
• Conflict status: Transactions may roll back, due to read-write

conflicts. But since the read-set is embedded in the delta, this reso-
lution is deterministic. We use a table called Rollbacks (appended
to by the CONFLICTRESOLVER), to cache this resolution.
• Constraint status: The CONSTRAINTRESOLVER lazily checks

aggregation constraints and appends to a ConstraintFailures ta-
ble. Queries use these two tables, which are essentially materialized
views, to efficiently view the latest serialized database state.

Applications requiring strict serializability can stop at SERIALIZE
stage. WiSer does wait for publish and constraint resolution so that
it can give a transaction status to the client, but this can time-out.
The semantics upon such a time-out is identical to that of time-out
at commit in a classical DBMS.

Stage 3: CONFLICT RESOLVE. A background CONFLICTRE-
SOLVER uses the read-sets embedded in transaction deltas (across all
nodes) to check if the value of any of these reads has changed by the
time the transaction was serialized. In our current implementation,
the SERIALIZER performs the role of CONFLICTRESOLVER as well.

Stage 4: PUBLISHED. A background PUBLISHER runs at each
node to make the serialized data efficiently accessible to point
queries.

Stage 5: CONSTRAINT RESOLVE. A background CONSTRAIN-
TRESOLVER continually reads the conflict-resolved deltas, across
all nodes, to verify aggregation constraints. It is at this point that the
transaction status can be returned to a client.

Stage 6: GROOM TO CLOUD. Publisher writes out very small
blocks, because we need low latency. This is too expensive for
OLAP, so we perform another round of data reorganization to con-
solidate blocks and to migrate them to (less expensive) cloud storage.

2.1.1 Strict Serializability
Applications may expect more than serializability: if a transaction

T1 returns to the application at 10 am, a transaction T2 issued at
10.01 am to a different node must see T1’s writes. This is called strict
serializability. This stricter guarantee is readily available in WiSer,
provided the application waits until its original transaction reaches
SERIALIZE stage. By definition, any successful transaction (and
query) submitted after that point must see all serialized changes, so
will see the original transaction. Of course, if the original transaction
ran on a poorly connected node and the application timed-out before
SERIALIZE, it has to keep polling to check if its transaction did get
serialized successfully.

2.2 Visibility and Efficient Publish
Once a transaction has been serialized, it needs to be visible to any

subsequent query. Technically, the query can read SerializeFrontiers
table, accordingly contact individual nodes for segments of their
local log, and thus scan the entire history of database deltas. This,
with lookups (antijoins) into Rollbacks and ConstraintFailures
tables, gives full visibility to the serialized state.

But OLTP applications have very strict latency requirements,
and timeouts are perceived as failures. Scanning the entire log is
prohibitively slow. This is why every node runs a PUBLISHER that
scans the recent appends to the log at that node and converts them
to a query-efficient form. This involves three pieces:

• Organizing data by tables: PUBLISHER separates the deltas by
table (recall that every modification is an upsert), and appends them
to per-table blocks, still in Parquet format. Every row is timestamped
with a serializer sequence number (SSN)), which is an identifier
for each transaction in the serial order. The SSN is used by queries
to antijoin with ConstraintFailures table to remove entries from
transactions that failed aggregation constraints (checking constraints
happens after publish).
• Removing deltas from conflict rollbacks: PUBLISHER also

performs an antijoin with Rollbacks table to remove all rows from
transactions that hit read-write conflicts.
• Updating indexes: OLTP queries often do highly selective

(“point”) lookups that need indexes to be efficient, so PUBLISHER
has to update these as well. WiSer partitions the primary key index
the same way as the data, so that update is also a local operation.
We use an LSM-based indexing structure [22] so that incremental
inserts are efficient and incur low latency even on large tables. Main-
taining secondary indexes in WiSer is a more expensive, shuffle-like
data movement, so we expect to maintain only a limited number of
secondary indexes at PUBLISH stage. WiSer implements the HER-
MIT technique [32, 33] to reduce the storage consumption caused
by secondary indexes.

Experimentally we find PUBLISH stage to be the throughput bot-
tleneck for WiSer, and so PUBLISH is done in parallel, across all
nodes. This means publication into tables can happen out of serial
order. So we maintain a PublishFrontiers table, whose schema
is identical to SerializeFrontiers. Each row of this table con-
tains a node ID and an LSN up to which log entries from that node
have been published. Queries access published tables (and primary
indexes) to access all content up to the minimum publication frontier
(across all nodes). Beyond that (until the serialization frontier),
queries need to scan logs. Most transactions avoid this scan by
waiting until the publication frontier catches up to their snapshot,
which they picked up by reading SerializeFrontiers at transac-
tion start. In this way, they only need to scan logs if they have very
tight latency requirements.

One thing that PUBLISH does not do is table repartitioning: all
the data ingested at one node stays at that node. Clients can carefully
route transactions to respect any desired clustering properties. For
example, they may send a transaction that inserts a fact row to a
node based upon the hash of the primary key or based on geography.
PUBLISH simply converts logs to table format, local to each node.

2.3 Node Departures and Re-Joins
WiSer has a Nodes table that contains the list of nodes. Thus node

join events get serialized just like other database modifications.
Node departures from the network are not supported directly. If

a node becomes unresponsive, its peers cannot directly evict that
node, because all the transactions that reached Promise on that node
must still be serialized. This is handled by the node replicas. When
the node re-joins the cluster, it gets a new node ID.

3. CONFLICT RESOLUTION
Conflicts in WiSer are resolved after we have determined a serial

order. Thus the resolution problem is simple: the reads in a transac-
tion X saw a snapshot that is earlier than where its delta fits in the
serial order. X’s delta includes X’s read-set and X’s snapshot (seen
SSN). So the CONFLICTRESOLVER needs to traverse the database
chain of deltas, starting from the prior resolved point, and verify
for each delta whether its read-set could have changed in value due
to intervening deltas (between X’s snapshot and X). If it could
have changed, then X is added to Rollbacks table. X is stored as

a transaction ID in Rollbacks table: SSNs are assigned later, at
Publish, only for the successful transactions.

Note that this process can give false positives – excess rollbacks,
for two reasons. First, read-sets and write-sets are tracked approx-
imately as we describe below. Second, in our data structure it is
expensive to remove the writes of a rolled-back transaction, so a
transaction can roll back due to conflicts with another one, which
rolled-back for other reasons. This behavior is similar to the way
deadlocks are typically handled, and applications are used to retry-
ing transactions upon such roll-backs.

3.1 Representation of Read Sets
WiSer represents read-sets as entries in a ReadWriteSet table.

This “all state is in tables” principle means that a transaction’s delta
naturally incorporates its read-set as well. Queries are allowed to
selectively read data by specifying conjunctive equality predicates
on one or more columns, or range predicates (for table scan queries,
the read set is escalated to the full table). For the common case
of equality predicates, we compute a single 64-bit hash value over
the key, thus easily handling different data types and multi-column
predicates. For range predicates we store the boundaries of the
range.

Our current implementation of WiSer unifies the role of CONFLIC-
TRESOLVER and SERIALIZER. Thus each node running transactions
replicates ReadWriteSet to the SERIALIZER node, along with its
regular heartbeats (the one containing LSN ranges of recent addi-
tions to its log).

3.2 Representation of Writes
To resolve conflicts, the read-set of a transaction X needs to be

compared against all writes in the serialization order between X’s
snapshot and X . Recall that PUBLISH timestamps every row with
its SSN. Thus this comparison can be done by an index lookup when
available, and if not then via a table scan over recent data (WiSer
maintains a min-max synopsis on each block for each column, so
this is not terribly inefficient).

Still, to get greater efficiency in conflict resolution, the SERIAL-
IZER caches recent writes in memory directly. When a transaction
X is during execution, the read-set of X is placed in ReadWriteSet
as discussed earlier. In addition, the primary keys of rows written by
X are also placed in ReadWriteSet. Notice that the reads are repre-
sented logically (e.g., as key ranges), whereas writes are enumerated
row-by-row. As the SERIALIZER receives writes, it maintains a list
of hash tables. These hash tables map hash(key) onto the latest
SSN when that key was modified (using the same function to map
arbitrary composite key values onto a 64-bit hash as we did for the
reads).

The SERIALIZER streams all read-sets it receives, looking for
conflicts in the recent writes. A read conflicts with a write only if
(a) the key-range of the read spans the key of the write, and (b) the
SSN of the write is greater than the snapshot of X .

These writes are maintained as a linked list of hash tables to
facilitate eviction. Each hash table holds writes within a range of
SSNs. So periodically we drop hash tables for SSN ranges that are
older than most transactions.

3.3 Catching Phantoms from Range Predicates
Queries with range predicates are challenging to run serializably

because of phantoms. The read-set for such a query is a range of key
values, but the DBMS must guard against concurrent inserts of any
value in that range. Typically this is done by placing a “next-key”
lock on the index tree structure – i.e., a guard on the values just
beyond the two boundary values of that range [20]. The trouble with

this approach is that it is efficient only when the index is memory-
resident. The space taken to check for conflicts is proportional to
the database size.

WiSer handles conflicts due to range predicates very similarly
to the case of equality predicates. When there is a range index
defined on a column, recent writes are cached at the SERIALIZER
as a in-memory tree of column values (not hashes). This is also a
list of trees, organized by ranges of SSNs, much like the hash tables.
Conflict detection is done by probing read-sets into these trees, and
checking any matching writes for SSNs beyond the snapshot of the
read-set.

4. CONSTRAINT RESOLUTION
We have now built up enough machinery to discuss how aggre-

gation constraints are checked. These constraints are checked after
conflict resolution and after publish, who has stamped each row
with the SSN (its position in the serial order).

Logically, constraint resolution is a walk through the published
data in SSN order, from the prior resolved point all the way up to
the latest published point. The CONSTRAINTRESOLVER maintains
a running aggregate, and we only support incrementally computable,
algebraic aggregation constraints. The constraint is specified as a
predicate on the result of the aggregation. In the online shopping
application, the aggregation is to compute the sum of quantities
grouped by product IDs, and the predicate is to check whether the
aggregated result is larger than or equal to 0.

The CONSTRAINTRESOLVER can run queries repeatedly to up-
date the running aggregate, each time selecting data in the range
from the prior resolved SSN to a value t, where t is gradually in-
creased until it hits a constraint violation.

But every transaction creates a new SSN, so this approach is
far too slow. We want constraints to be evaluated on batches of
transactions, corresponding to the batches that were serialized from
each node. The challenge is that aggregates are generally not mono-
tonic: just because aggregation constraints are not violated after
incorporating an entire batch of transactions, we cannot assert that
the constraints were not violated at some intermediate point (for
example, a bunch of customer orders might have depleted inventory
to be negative, and then a restocking transaction might have been
serialized).

A second design goal is to do parallel constraint resolution, in
two different forms:
• Source parallelism: We want the bulk of aggregation to be

performed at the nodes running the OTLP transactions, that reduces
data movement and also gives significant parallelism.
• Resolver parallelism: The running aggregation state for con-

straint enforcement can be large: for example, it is the running
inventory of each product in a retail application. So we want indi-
vidual resolvers to focus on subsets of products.

4.1 Partial Constraint Evaluation
WiSer supports partial constraint evaluation to reduce computa-

tion complexity.
Let us consider a setting with three nodes, each with multi-

ple batches of transactions. The CONSTRAINTRESOLVER repeat-
edly picks up one batch from each node to resolve (recall that
SerializeFrontiers lists the batches). It first pushes down to
each node a partial aggregation query, which is derived from the
constraint (e.g., compute the sum of quantities grouped by product
IDs, in the online shopping application).

Next, the CONSTRAINTRESOLVER uses the partial aggregation
results from each node to compute prefix sums (per the serial order)
for the value of the aggregate at the start of each batch. If the prefix

sum after any batch violates the constraint, the CONSTRAINTRE-
SOLVER reduces that batch’s contribution to be one that makes the
constraint just satisfied. For example, if the prefix sum before and
after a batch is 12 and -5, respectively, then the CONSTRAINTRE-
SOLVER artificially inflates the prefix sum after that batch to 0. This
is not to abort the whole batch; instead, it is only to avoid polluting
the prefix sums for other batches. In effect, the CONSTRAINTRE-
SOLVER is delegating to the nodes the responsibility of keeping
the constraint satisfied by rolling back any transactions that cause
violations.

After that, the CONSTRAINTRESOLVER communicates these
prefix sums to each node, and asks it to re-evaluate the aggregation
query, except this time with a modified aggregation function. This
new query runs the same group-by, but initializes its aggregation
hash table with the prefix sum from the CONSTRAINTRESOLVER.
The aggregation scans the input in SSN order (this does not involve
an extra sort, because the rows were published in that order). As
the query maintains the running aggregate it continually applies
the constraint (e.g., inventories should stay positive), and surgically
identifies and excludes individual transactions that cause constraint
violation.

As a side-effect of this query, each node now adds rows to the
ConstraintFailures table – these rows contain just the SSN of
the constraint-violating transactions.

Notice that excluding these transactions will cause the prefix
sums to change, but this is not communicated back to the CON-
STRAINTRESOLVER. After all, removing transactions that caused
constraints to be violated only moves the running aggregate in a
beneficial direction, so it is safe for other nodes (checking other
batches) to ignore this effect.

Constraint resolution is the last stage of transaction processing.
Queries do antijoins with ConstraintFailures to avoid seeing
changes from transactions that fail constraint resolution. Transac-
tions that reached PROMISE but failed conflict resolution or con-
straint resolution are aborted transactions.

5. PERFORMANCE EVALUATION
WiSer is the next version of the Wildfire research prototype [5]. It

is a HTAP DBMS that currently supports ingest, via Apache Spark
and via a custom API; queries, directly via a SQL dialect, as well
as ones pushed-down from Spark, and now multi-statement trans-
actions. The last feature is the focus of this section. Transactional
changes are replicated and hardened to a quorum of nodes. Tables
can optionally have a primary key index on one or more columns,
and this index supports a mix of equality and range predicates. All
tables and logs are organized as Apache Parquet blocks. We use the
parquet-cpp writer.

All experiments in this section are run in a Docker environment,
on a machine cluster with 28 nodes and 1.6 TB DRAMs in total.
Writes are hardened to PCI-e attached SSDs with fsync. We execute
one transaction thread in each node; the background operations
such as serialization, conflict resolution, and publication, are all
implemented on separate nodes from those running transactions.

5.1 Throughput with No Conflicts
Our first experiment investigates the basic transaction processing

throughput in WiSer, without considering conflicts or rollbacks.
Transactions are run up to SERIALIZE. CONFLICTRESOLVER does
nothing, because there are no conflicts. We do not run PUBLISH for
this experiment.

Our workload consists of just the NewOrder transaction from the
online shopping application discussed in Section 1, run repeatedly,

0

200

400

1 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

K
 tp

s)

Number of NewOrder Transaction Nodes

w/ serialization
w/o serialization

Figure 4: NewOrder transaction throughput as a function of nodes, with and
without serialization.

with no think-time, and no aggregation constraints. Products ta-
ble has 10,000 items, with an index on productId column. Each
transaction looks up the current price of 10 products and inserts an
order containing those 10 products into Orders table. The values in
OrderId column are generated as sequential numbers, and there are
no price updates, so in this experiment there are no conflicts.

Figure 4 shows the transaction throughput we obtain with this
simple workload, and the scaling. Notice that at 24 nodes we are
inserting 3.5 million rows/s into Orders table, and correspondingly
doing 3.5 million lookups/s into the index on Products table. In
this setting, the X-axis is the number of nodes running the NewOrder
transaction. We have a separate node running the SERIALIZER and
CONFLICTRESOLVER. Notice also that we scale well; our system
has pretty much no contention, except for the log writes (which is
implemented as a lock-free linked list of blocks). The same plot
also shows what happens if we turn off serialization: the effect is
negligible.

Note that each transaction implicitly also generates 10 reads and
10 writes, which are tracked and sent to the SERIALIZER. From
profiling we verify that most of the time goes into this tracking of
read-write sets.

5.2 Throughput with Conflicts
Next, we add conflicts, by introducing price updates for the prod-

ucts. We run a UpdatePrice transaction every 100 ms, and that
updates the price for a certain number of randomly chosen prod-
ucts. This introduces read-write conflicts because the price that a
NewOrder transaction looks up might become stale by the time it
goes to SERIALIZE stage.

Figure 5 and Figure 5 show the NewOrder transaction throughput,
for both issued and committed transactions, as a function of the
number of nodes executing NewOrder transactions. Recall that there
is a separate node for serialization and conflict resolution, and the
UpdatePrice transactions are issued in another thread. We plot this
at two price update volumes: where we update 10 prices in each
UpdatePrice transaction, and where we update 20 prices in each
UpdatePrice transaction.

Notice that the issued and committed throughputs are almost
identical. We measure about 1% rollback rate when we update 10
prices at a time, and 2% when we update 20 prices at a time.

There are 10,000 products, and each transaction is looking up 10
random products. Our SERIALIZER picks up batches of transactions
to serialize roughly every 100 ms. Thus, if the SERIALIZER keeps up
perfectly with the transaction rate, each NewOrder transaction will
overlap with about one UpdatePrice transaction (in the sense that

0

200

400

1 4 8 12 16 20 24

Th
ro

ug
hp

ut
 (

K
 tp

s)

Number of NewOrder Transaction Nodes

Issued transactions
Committed transactions

Figure 5: NewOrder transaction throughput as a function of nodes, with
UpdatePrice transaction size set to 10.

0

200

400

1 4 8 12 16 20 24
Th

ro
ug

hp
ut

 (
K

 tp
s)

Number of NewOrder Transaction Nodes

Issued transactions
Committed transactions

Figure 6: NewOrder transaction throughput as a function of nodes, with
UpdatePrice transaction size set to 20.

the snapshot that the NewOrder sees will be behind its serialization
point by about one UpdatePrice transaction).

This expected behavior matches the rollback rate well. When an
UpdatePrice updates 10 prices, a given product has a 10/10000 or
0.001 chance of getting updated. So the chance that a transaction
will commit is (1 − 0.001)10, or about 0.99. Likewise, when an
UpdatePrice updates 20 prices, the chance that a transaction will
commit is (1−0.002)10, or about 0.98, which matches our observed
rollback rates.

5.3 End-to-End Throughput
Our next experiment looks at the end-to-end transaction through-

put. We add the PUBLISHER, and hence what we measure is the
throughput of published transactions. We have one PUBLISHER per
(logical) node, so we need as many PUBLISHER nodes as NewOrder
nodes. Thus this experiment scales only up to 12 nodes. (12 nodes
for NewOrder, one for UpdatePrice, one for SERIALIZER and CON-
FLICTRESOLVER, 12 for PUBLISHER). Figure 7 shows the effect of
adding publish on the system throughput. There is about a 70% hit
on throughput, and our scaling is affected. PUBLISHER has to write
data to Parquet blocks, and we find this to be a bottleneck.

5.4 Latency Analysis
Our final experiment looks at transaction latency. We rerun the

full experiment, with NewOrder and UpdatePrice transactions, as
well as SERIALIZER and CONFLICTRESOLVER, and PUBLISHER.
This time we measure the average NewOrder transaction latency,
until PUBLISH and SERIALIZE stages. Figure 8 plots this latency as
a function of the number of NewOrder threads. Observe that latency
to serialize is in the tens of ms, and this is the minimum latency
until a query can access the transaction’s changes (by reading the

0

0.5

1

1 2 4 6 8 10 12

Th
ro

ug
hp

ut
 R

at
io

Number of NewOrder Transaction Nodes

w/ publish w/o publish

Figure 7: NewOrder transaction throughput ratio as a function of nodes,
with and without publish.

1

10

100

1000

10000

1 2 4 6 8 10 12

La
te

nc
y

(m
s)

Number of NewOrder Transaction Nodes

w/ publish w/o publish

Figure 8: NewOrder transaction latency as a function of nodes, with and
without publish.

log). Going to publish pushes the latency to about one second, this
is due to overheads in forming Parquet blocks.

6. RELATED WORK
WiSer builds on and borrows hugely from the large volume of

literature on transaction processing, where both shared-nothing and
shared-storage models have been heavily studied [9, 11].

After many efforts on NoSQL databases that downplayed the
importance of consistency, the last decade has seen a renewed in-
terest in systems that provide strongly-consistent transactions over
large-scale distributed systems, across partitions and replicas. One
type of distributed DBMS, represented by IBM’s Spinnaker [27]
and Google’s Spanner [10], adopts 2PC to coordinate distributed
transactions and exploits consensus protocols like Paxos [18] or
Raft [23] to synchronize replicas during transaction execution. In
Spanner, write transactions consult a lock server, resembling classi-
cal shared-nothing DBMSs.

Another approach, taken by systems like Calvin [29] and Fau-
naDB [14], is to use a deterministic execution model. These DBMSs
coordinate transactions within a pre-processing phase. In this phase,
the DBMS must extract the write-set from the to-be-executed trans-
action, and accordingly choose a serial order. WiSer, like Calvin,
tries to come up with a serial order, and then efficiently do post-
processing on the deterministic state. But unlike Calvin, WiSer does
not pre-process transactions and thus can support transactions that
are not pre-analyzable stored procedures.

Many modern DBMSs attempt to do analytics with transactions [24].
HyPer [17] is a modern main-memory DBMS that targets efficiently

supporting OLTP and OLAP workloads in the same memory space.
It leverages multi-version concurrency control (MVCC) and pre-
cision locks to achieve fully serializable transaction processing
without blocking on-the-fly analytical queries. Similar to HyPer,
Peloton [25] also leverages MVCC [30] to isolate on-line transac-
tions from analytical queries, but it also leverages hybrid storage
layout to better support different types of queries [3]. Focusing on
modern hardware, Appuswamy et al. [2] studied the case for devel-
oping HTAP DBMSs by exploiting the power of both CPUs and
GPUs. A number of commercial systems also claim HTAP features,
such as SAP HANA [13] and IBM DB2 Event Store. SQL Server in-
troduced their enhancements for hybrid workloads in 2016 [19]. By
improving support for column-store indexes, SQL Server can enable
real-time analytics concurrently with transactional processing.

DBMSs have long leveraged sharding techniques to store data
across multiple nodes. Sharding simplifies scaling, but does bring
in distributed transactions, which can significantly degrade system
scalability. Harding et al. [15] performed an experimental evalu-
ation of distributed concurrency control protocols. Some systems
use transaction chopping to serialize transactions [34, 21, 31]. H-
Store/VoltDB [16, 28] uses partition-level locks to reduce the over-
head of distributed operations. Other systems try to avoid data
partitioning. For example, Hyder [6] exploits SSDs to scale DBMSs
in a shared-flash setting, whereas FaRM [12] uses RDMA and non-
volatile DRAM to avoid user-level partitioning.

7. CONCLUSIONS AND FUTURE WORK
The distributed systems community has developed consensus

protocols mostly independently from the database community’s
struggles with distributed transactions. We have described one ap-
proach to exploiting consensus as the underlying mechanism for
transaction serialization, and shown it provides two key benefits:
higher availability during the application’s interaction with the run-
ning transaction (the promise step), and greater scaling and easier
enforcement of aggregation constraints after serialization.

WiSer comes at a time when demand for HTAP and real-time
analytics is exploding. Yet, OLTP systems are complex and well-
entrenched “mission-critical” pieces of applications. So we have
an uphill task to penetrate this market, requiring that we massage
our ’promise-serialize’ step to fit with existing applications, equal or
surpass the plethora of must-have OLTP features (meeting existing
isolation semantics, handling referential integrity, etc.), and demon-
strate value from pulling compensation logic out of applications.

WiSer’s design of putting all state into tables, and having a tiny
consensus piece, may also help in Byzantine settings. Blockchain
systems are to some extent bypassing and re-inventing many aspects
of classical OLTP. We want to explore whether casting OLTP as
a consensus problem will make it easier to provide higher secu-
rity, timestamping, and non-perturbation guarantees within existing
DBMSs.

8. REFERENCES
[1] Apache Paquet. https://parquet.apache.org/.
[2] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki. The

Case For Heterogeneous HTAP. In CIDR, 2017.
[3] J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago between

Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD,
2016.

[4] R. Barber, C. Garcia-Arellano, R. Grosman, R. Mueller, V. Raman,
R. Sidle, M. Spilchen, A. Storm, Y. Tian, P. Tozun, et al. Wildfire: Fast
HTAP on a Loosely-Coupled System. In HTPS, 2017.

[5] R. Barber, M. Huras, G. Lohman, C. Mohan, R. Mueller, F. Özcan,
H. Pirahesh, V. Raman, R. Sidle, O. Sidorkin, et al. Wildfire:
Concurrent Blazing Data Ingest and Analytics. In CIDR, 2016.

https://parquet.apache.org/

[6] P. A. Bernstein, C. W. Reid, and S. Das. Hyder-A Transactional
Record Manager for Shared Flash. In CIDR, 2011.

[7] E. Brewer. CAP 12 years Later: How the rules have changed. IEEE
Computer, 45, 2012.

[8] E. Brewer. NoSQL: Past, Present, and Future. In QCon SF, 2012.
[9] C. Mohan and B. Lindsay and R. Obermarck. Transaction

management in the R* distributed database management system. In
TODS, volume 11.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Google’s globally distributed database. TOCS, 31(3), 2013.

[11] David DeWitt and Jim Gray. Parallel Database Systems: The Future of
High Performance Database Systems. In CACM, volume 35.

[12] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann,
A. Shamis, A. Badam, and M. Castro. No Compromises: Distributed
Transactions with Consistency, Availability, and Performance. In
SOSP, 2015.

[13] F. Farber, N. May, W. Lehner, P. Grobe, I. Muller, H. Rauhe, and
J. Dees. The SAP HANA Database âĂŞ An Architecture Overview.

[14] M. Freels. FaunaDB: An Architectural Overview. 2018.
[15] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. An

Evaluation of Distributed Concurrency Control. PVLDB, 10(5), 2017.
[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,

E. P. Jones, S. Madden, M. Stonebraker, Y. Zhang, et al. H-Store: A
High-Performance, Distributed Main Memory Transaction Processing
System. PVLDB, 1(2), 2008.

[17] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots. In
ICDE, 2011.

[18] L. Lamport. The Part-Time Parliament. TOCS, 16(2), 1998.
[19] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz,

and V. Papadimos. Real-Time Analytical Processing with SQL Server.
PVLDB, 8(12), 2015.

[20] C. Mohan. ARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions Operating on B-Tree
Indexes. In VLDB, 1990.

[21] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting More
Concurrency from Distributed Transactions. In OSDI, 2014.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The Log-Structured
Merge-Tree (LSM-Tree). Acta Informatica, 33(4), 1996.

[23] D. Ongaro and J. K. Ousterhout. In Search of an Understandable
Consensus Algorithm. In USENIX ATC, 2014.

[24] F. Özcan, Y. Tian, and P. Tözün. Hybrid Transactional/Analytical
Processing: A Survey. In SIGMOD, 2017.

[25] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah, et al. Self-Driving Database Management
Systems. In CIDR, 2017.

[26] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid
Transaction/Analytical Processing Will Foster Opportunities for
Dramatic Business Innovation.
https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-
processing-foster-opportunities,
2014.

[27] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to Build a Scalable,
Consistent, and Highly Available Datastore. PVLDB, 4(4), 2011.

[28] M. Stonebraker and A. Weisberg. The VoltDB Main Memory DBMS.
IEEE Data Eng. Bull., 36(2), 2013.

[29] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.
Abadi. Calvin: Fast Distributed Transactions for Partitioned Database
Systems. In SIGMOD, 2012.

[30] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An Empirical
Evaluation of In-Memory Multi-Version Concurrency Control.
PVLDB, 10(7), 2017.

[31] Y. Wu, W. Guo, C.-Y. Chan, and K.-L. Tan. Fast failure recovery for
main-memory dbmss on multicores. In SIGMOD. ACM, 2017.

[32] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. Designing Succinct
Secondary Indexing Mechanism by Exploiting Column Correlations.
In SIGMOD, 2019.

[33] Y. Wu, J. Yu, Y. Tian, R. Sidle, and R. Barber. HERMIT in Action:
Succinct Secondary Indexing Mechanism via Correlation Exploration.
volume 12, 2019.

[34] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li.
Transaction Chains: Achieving Serializability with Low Latency in
Geo-Distributed Storage Systems. In SOSP, 2013.

	1 Introduction
	1.1 CAP Theorem within DBMS
	1.2 HA and HTAP within DBMS
	1.2.1 Symbolic and Resolved Commit
	1.2.2 HA HTAP via Consensus
	1.2.3 High Throughput Scale-out
	1.2.4 Efficiency of Aggregation Constraints

	1.3 Paper outline

	2 Design
	2.1 Lazy Transaction Resolution
	2.1.1 Strict Serializability

	2.2 Visibility and Efficient Publish
	2.3 Node Departures and Re-Joins

	3 Conflict Resolution
	3.1 Representation of Read Sets
	3.2 Representation of Writes
	3.3 Catching Phantoms from Range Predicates

	4 Constraint Resolution
	4.1 Partial Constraint Evaluation

	5 Performance Evaluation
	5.1 Throughput with No Conflicts
	5.2 Throughput with Conflicts
	5.3 End-to-End Throughput
	5.4 Latency Analysis

	6 Related Work
	7 Conclusions and Future Work
	8 References

