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Abstract

We consider the problem of detecting a noisy induced multiplex template network
in a larger multiplex background network. Our approach, which extends the framework
of [41] to the multiplex setting, leverages a multiplex analogue of the classical graph
matching problem to use the template as a matched filter for efficiently searching
the background for candidate template matches. The effectiveness of our approach is
demonstrated both theoretically and empirically, with particular attention paid to the
potential benefits of considering multiple channels.
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1 Introduction and Background

Multilayer and multiplex networks have proven to be useful models for capturing complex relational
data where multiple types of relations are potentially present between vertices in the network [7, 24].
For example, in connectomes (i.e., brain graphs) different edge modalities can represent different
synapse types between neurons [45]; in social networks different edge modalities can capture rela-
tionships in different social network platforms [21]; in scholarly networks different edge modalities
can capture co-authorship across multiple classification categories [36]. Moreover, in many applica-
tions leveraging the signal across the different layers of the network can lead to better, more robust
performance than working within any single network modality [35, 24, 8].

The inference task we consider here is the problem of detecting (possibly multiple copies of) a
noisy induced subgraph in a multiplex background network (see Definition 1.1 for the definition of
multiplex networks we consider herein). Succinctly, given a multiplex template A with m vertices,
we seek to find the “best fitting” subgraph(s) in a larger multiplex background network B (see
Section 2 for detail) with n � m vertices. This problem is a generalization of the NP-complete
[40] multiplex subgraph isomorphism problem (see [25] for a definition of multiplex isomorphism),
accounting for the reality that relatively large, complex subgraph templates may only errorfully
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occur in the larger background network. These errors may be due to missing edges/vertices in the
template or background, and arise in a variety of real data settings [39]. The subgraph isomorphism
problem—given a template A, determine if an isomorphic copy of A exists in a larger network B
and find the isomorphic copy (or copies) if it exists—has been the subject of voluminous research
in the monoplex (i.e., single layer) setting, with approaches based on efficient tree search [44],
color coding [3, 2], graph homomorphisms [20], rule-based/filter-based matchings [10, 33], among
others; for a survey of the literature circa 2012, see [27]. In contrast, the problem of multilayer
homomorphic/isomorphic subgraph detection is still in its relative infancy, with comparatively
fewer existing methods in the literature; see, for example, [47, 42, 33].

Notation: The following notation will be used throughout. For an integer n > 0, we will define
[n] := {1, 2, . . . , n}, Jn to be the n× n hollow matrix with all off-diagonal entries identically set to
1, 0n to be the n× n matrix with all entries identically set to 0.

1.1 (Multiplex) graph matching

The above noisy induced subgraph detection problem depends greatly on the definition of “best fit-
ting” employed. Our approach, generalizing [41] to the multiplex setting, will employ the multiplex
template H to search the multiplex background graph G for possible matches, with goodness of fit
measured via a multiplex formulation of the classical graph matching problem (see [9, 19, 16, 46]
for excellent reviews of the voluminous graph matching literature). In the monoplex setting, the
simplest formulation of the graph matching problem (GMP) can be stated as follows: Given two
n-vertex, undirected graphs with respective (weighted) adjacency matrices A and B, find a permu-
tation matrix P ∈ Πn = {n× n permutation matrices} in

arg min
P∈Πn

‖AP − PB‖F = arg max
P∈Πn

trace(APBTP T ).

Before lifting the graph matching problem to the multiplex setting, we first need to define precisely
what we mean by a multiplex graph.

1.1.1 Multiplex networks

The above formulation of both the GMP requires both graphs to identically have n vertices, though
there are myriad ways of adapting the GMP to graphs of different orders (see, for example, Appendix
F of [6]). In the multiplex subgraph matching problem at the core of this paper, we view the
template A as being equal or lower order than the background B. Moreover, our definition of
multiplex networks, ideally, would allow for differing graph orders across the multiplex layers within
a single graph. To allow for these expected data nuances in the multiplex setting, we consider the
following multiplex graph model; see [24] for a thorough overview of this and other multiplex
network formulations.

Definition 1.1. The c-tuple G = (G1, G2, . . . , Gc) is an n-vertex multiplex network if for each i =
1, 2, . . . , c, we have that Gi ∈ Gni = {ni-vertex labeled graphs}, and the vertex sets (Vi = V (Gi))

c
i=1

further satisfy the following:

i. For each i ∈ [c], we have that V (Gi) ⊆ [n];

ii.
c⋂
i=1

V (Gi) 6= ∅ and
c⋃
i=1

V (Gi) = [n];

2



iii. The layers are a priori node aligned; i.e., vertices sharing the same label across layers corre-
spond to the same entity in the network.

Note that each vertex v ∈ [n] need not appear in each channel i ∈ [c], however, we do require
that at least one vertex appears simultaneously in all channels. We will denote the set of c-layer,
n-vertex multiplex networks via Mc

n.

1.1.2 Multiplex GMP

To lift the monoplex GMP to the general multiplex definition presented above, we consider the
following padded formulations of our general multiplex networks (adapted here from [18, 41]).
Letting H ∈Mc

m and G ∈Mc
n with m ≤ n, we consider the following two schemes for ameliorating

the differing graph orders.

i. (Naive Padding) For each i ∈ [c], define the weighted adjacency matrices Ãi ∈ Rm×m and
B̃i ∈ Rn×n via

Ãi(u, v) =


1 if u,v ∈ V (Hi), and {u,v} ∈ E(Hi);

0 if u,v ∈ V (Hi), and {u,v} /∈ E(Hi);

0 if u or v ∈ [m] \ V (Hi);

B̃i(u, v) =


1 if u,v ∈ V (Gi), and {u,v} ∈ E(Gi);

0 if u,v ∈ V (Gi), and {u,v} /∈ E(Gi);

0 if u or v ∈ [n] \ V (Gi);

Denote Ã = (Ã1, Ã2, · · · , Ãc) and B̃ = (B̃1, B̃2, · · · , B̃c).

ii. (Centered Padding) For each i ∈ [c], define the weighted adjacency matrices Âi ∈ Rm×m and
B̂i ∈ Rn×n via

Âi(u, v) =


1 if u,v ∈ V (Hi), and {u,v} ∈ E(Hi);

−1 if u,v ∈ V (Hi), and {u,v} /∈ E(Hi);

0 if u or v ∈ [m] \ V (Hi);

(1)

B̂i(u, v) =


1 if u,v ∈ V (Gi), and {u,v} ∈ E(Gi);

−1 if u,v ∈ V (Gi), and {u,v} /∈ E(Gi);

0 if u or v ∈ [n] \ V (Gi);

Denote Â = (Â1, Â2, · · · , Âc) and B̂ = (B̂1, B̂2, · · · , B̂c).

The Naive Multiplex Graph Matching Problem (nMGMP) is then defined as finding an element
P ∈ Πn in

arg min
P∈Πn

c∑
i=1

‖(Ãi ⊕ 0n−m)P − PB̃i‖2F = arg min
P∈Πn

c∑
i=1

−tr((Ãi ⊕ 0n−m)PB̃iP
T ), (2)

where 0n−m is the n−m× n−m matrix of all 0’s. The formulation in Eq. (2) effectively seeks to
maximize the number of common edges between the multiplex template and multiplex background,
where all edges across all channels are weighted equally (see [18, 6] for the monoplex analogue). The
Centered Multiplex Graph Matching Problem (cMGMP) is defined as finding an element P ∈ Πn in

arg min
P∈Πn

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F = arg min
P∈Πn

c∑
i=1

−tr((Âi ⊕ 0n−m)PB̂iP
T ). (3)
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If for each i, we have that V (Gi) = [n] > [mi] = V (Hi), then the formulation in Eq. (3) effectively
seeks to minimize the number of disagreements (edge mapped to non-edge and vice versa) induced
between the background and the matched subgraphs in the template, where all disagreements across
all channels are weighted equally. Given this interpretation, the appropriate padding schemes to
deploy in practice depends on the underlying problem assumptions and setting.

Remark 1. Our formulation of the Multiplex GMP is (assuming channels of equal order across
A and B)

arg min
P∈Πn

c∑
i=1

‖AiP − PBi‖2F .

rather than a formulation weighting the matching in each channel via

arg min
P∈Πn

c∑
i=1

λi‖AiP − PBi‖2F ,

for λi > 0. In our subgraph detection setting, we have found that λi = 1 works suitably well;
moreover, this weights each edge in each template channel equally, which may be desirable. In
the case that one or more channels is more informative or of higher import than the others, then
choosing appropriate λ’s to overweight the matching in those channels may be desirable.

2 Multiplex Graph Matching Matched Filters

Given A, a multiplex graph matching algorithm designed to approximately solve Eqs. (2–3), our
multiplex graph matching matched filter (M-GMMF), generalizing the monoplex filtering setting
of [41], proceeds as in Algorithm 1. Note that in our experiments (and in the pseudocode below),
we make use of A = MFAQ (see Algorithm 2 in Appendix A.1), but we stress that our approach can
utilize any suitable A equally well.

Algorithm 1 M-GMMF

Input: Multiplex graphs H ∈ Mc
m and G ∈ Mc

n with m < n; padding regime; tolerance
ε ∈ R > 0; restarts N

1. Pad H and G accordingly; in the naive (resp., centered) padding regime, the padded

H is denoted via Ã (resp., Â), and the padded G via B̃ (resp., B̂);
for k = 1, 2, · · · , N , do
2. P (0) ← αJn/n+ (1− α)P where P ∼ Unif(Πn) and α ∼Unif[0,1];

3. In the naive (resp., centered) padding regime, P ∗k ← MFAQ(Ã, B̃, P (0), ε)) (resp.,

P ∗k ← MFAQ(Â, B̂, P (0), ε));
end for
4. Rank the matchings {P ∗1 , P ∗2 , · · · , P ∗N} by increasing value of the multiplex graph match-
ing objective function, Eq. 2 or 3, depending on the padding regime selected;
Output: Ranked list (P ∗(1), P

∗
(2), · · · , P ∗(N)) of matchings, aligning multiplex template H to

background G.

Effectively, the M-GMMF algorithm uses the multiplex template (and algorithm A) to search
Πn for suitable solutions aligning H to G. The multiple restarts in Step 2. of the procedure are
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needed in the case of A = M-FAQ, as in that setting the objective function is relaxed to an indefinite
quadratic program with myriad local minima in the feasible region; these restarts aim to precisely
counteract the presence of these local minima by broadly searching the feasible region for a global
minimum. For approximate combinatorial A, the restarts may be appropriate as well, while for
continuous, convex relaxation algorithms (see, for example, [6]), this step may not be necessary.

Note that code implementing the above M-GMMF and M-FAQ procedures can be downloaded
as part of our R package, iGraphMatch, which is available on CRAN or can be downloaded at
https://github.com/dpmcsuss/iGraphMatch.

2.1 Multiplex Matchability

In [41], the authors considered an error model wherein the template H is an errorful induced
subgraph of the background G in the monoplex setting. The aim of the Monoplex-GMMF approach
then was to recover the vertices in G corresponding to H. Can we recover the analogous results
in the multiplex setting? To frame and attack this problem statistically, we consider the following
error model which we will use to generate a multiplex background graph G ∈Mc

n and a multiplex
template H ∈Mc

m with m < n.

Definition 2.1 (See [4]). Consider a graph G with V (G) ⊂ [n]. Let the centered, padded adjacency
matrix (as in Eq. (1)) of G be denoted Â ∈ Rn×n. Let E ∈ [0, 1]n×n be a symmetric, hollow matrix.
The graph-valued random variable E(G) with vertex set equal to V (G) and random centered, padded
adjacency matrix ÂG,E, which models passing G through an errorful channel E, is defined as follows.

For each {i, j} ∈
(

[n]
2

)
,

ÂG,E(i, j) = Â(i, j) · (1− 2X(i, j)),

where X(i, j)
ind.∼ Bern(E(i, j)).

The two generative models we then consider are defined via:

i. (Single Channel Source, Error Multiplex, abbreviated ME ) There is a single non-random
background source graph W ∈ Gn and non-random source template T = W [m] ∈ Gm, and

two multi-channel errorful filters E(1) = (E
(1)
1 , . . . , E

(1)
c ), with each E

(1)
i acting on W , and

E(2) = (E
(2)
1 , . . . , E

(2)
c ), with each E

(2)
i acting on T . We observe G = (E(1)

1 (W ), . . . , E(1)
c (W ))

as the multiplex background and H = (E(2)
1 (T ), . . . , E(2)

c (T )) as the multiplex template. By
assumption, the errorful filters act independently across channels within G and H, and
independently across G and H. In this model, by construction each |V (Hi)|= [m] and each
|V (Gi)|= [n].

ii. (Single Channel Errors, Source Multiplex, abbreviated MS ) The non-random background
and non-random template source graphs are multiplex. To wit, let T ∈ Mc

m and W ∈
Mc

n satisfy the following: For each i ∈ [c], let Ĉ and D̂ be the centered paddings of T
and W respectively. We assume then that Ĉi = D̂i[m] (i.e., Ĉi—the padded adjacency
matrix of Ti—is the m × m principal submatrix of D̂i—the padded adjacency matrix of

Wi). There are two multi-channel errorful filters: E(1) = (E
(1)
1 , . . . , E

(1)
c ) and E(2) =

(E
(2)
1 , . . . , E

(2)
c ). For each i ∈ [c], E

(1)
i ∈ Rn×n acts on Wi, and E

(2)
i ∈ Rm×m acts on

Ti. We observe G = (E(1)
1 (W1), E(1)

2 (W2) . . . , E(1)
c (Wc)) as the multiplex background and

H = (E(2)
1 (T1), E(2)

2 (T2), . . . , E(2)
c (Tc)) as the multiplex template. As above, the errorful filters

act independently across channels within G and H, and independently across G and H. Note
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that if the template (resp., background) channels have non-identical vertex sets, then this
will be preserved in the errorful template (resp., background).

It may be convenient to view T and W (resp., T and W) as realizations from graph-valued random
variables in the ME (resp., MS) model. In this case, we will assume the actions of the errorful
filters on T and W (resp., T and W) are also independent of the random T and W (resp., T and
W).

Considering the models above, in order for our M-GMMF approach to possibly recover the
true errorful induced subgraph of G corresponding to H, we need for the global minimum of the
Multiplex GMP to be in Pm,n := {Im ⊕ P : P ∈ Πn−m}. This is the multiplex analogue of graph
matchability, i.e., uncovering conditions under which oracle graph matching will recover a latent
vertex alignment. Here, that alignment is represented by H being an errorful version of G[m]; see,
for example, [14, 22, 38, 37, 30, 23, 12, 11, 5, 13] for a litany of graph matchability results in the
monoplex setting.

2.2 MS model matchability

In this section, we will explore the benefit of considering multiplex versus monoplex networks when
considering template matchability in the MS model. We note here that while the formal theory
underlying the matchability results in the multiplex setting differs only slightly from the monoplex
setting of [41], we stress that the end results demonstrate the utility of considering multiple channels.

In the MS model, let T ∈ Mc
m and W ∈ Mc

n be the respective template and background
source graphs, with respective centered, padded adjacency matrices given respectively by Ĉ and D̂

satisfying Ĉi = D̂i[m] for all i ∈ [c]. Assume that the errorful filters satisfy for each i ∈ [c], E
(1)
i =

qiJn and E
(2)
i = siJm (where si = si(n) and qi = qi(n) are allowed to vary with n). If c = 1, and

s1 = q1 = 1/2, then the observed background and template are effectively independent ER(n, 1/2)
and ER(m, 1/2) networks, respectively. It is immediate then that the optimal permutation aligning
the background to the template will almost surely not be in Pm,n.

Consider now c > 1. Let B = {i ∈ [c] s.t. si or qi = 1/2}; these “bad” channels act to obfuscate
the latent alignment between Ĉ and D̂ by effectively whitening the signal present in the alignment
within the channels. Suppose that there exist constants α ≤ 1, β > 0, and n0 ∈ Z > 0 such that
for all n > n0, m = m(n) satisfies mα > β log n. For each m, denote the set of permutations that
permute exactly k labels of [m] by Πn,m,k, and for each P ∈ Πn (with associated permutation σp),
define

∆P =

{
{i, j} ∈

(
[m]

2

)
s.t. {i, j} 6= {σp(i), σp(j)}

}
, (4)

and for each i ∈ [c], define

∆
(i,1)
P = { {j, `} ∈ ∆P s.t. 0 6= Ĉi(j, `) 6= D̂i(σp(j), σp(`)) 6= 0};

∆
(i,2)
P = { {j, `} ∈ ∆P s.t. 0 6= Ĉi(j, `) 6= D̂i(σp(j), σp(`)) = 0}.

Suppose that there exists an n1 > 0 such that for all n > n1, we have that for all k ∈ [m = m(n)]
and all P ∈ Πn,m,k,

∑
i∈[c] \B

(
2|∆(i,1)

P |+|∆(i,2)
P |

)
(1− 2si)(1− 2qi) ≥ k

√
672m1+αc

β
. (5)
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Letting Â and B̂ be the padded, centered adjacency matrices of H and G respectively (the errorful
T and W), for n > n = max(n0, n1) we have that

P

(
arg min
P∈Πn

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F 6⊂ Pm,n

)
≤ 2n−2, (6)

(see Appendix A.2 for proof of this bound).
Exploring Eq. (5) in the ER setting further, we consider the following setup. If c = c(n) ≤ n,

and for each i ∈ [c], Wi ∼ ER(n, pi) with pi = pi(n) ≤ 1/2, then for each P ∈ Πn,m,k, a simple
application of McDiarmid’s inequality (see Appendix 1) yields that

|∆(i,1)
P |∈ ( |∆P |pi(1− pi), 3|∆P |pi(1− pi) ),

with probability at least

1− 2exp

{
−2|∆P |p2

i (1− pi)2

8

}
. (7)

Note that if m > 6, then mk/3 ≤ |∆P |≤ mk, so that with probability at least Eq. (7),

|∆(i,1)
P |∈ (1/3, 3) ·mkpi(1− pi).

Suppose that α < 1, and that there exists an n2 > 0 such that for all n > n2, we have that for all
i ∈ [c], mp2

i ≥ 384 log n, and

∑
i∈[c] \B

pi(1− 2si)(1− 2qi) ≥

√
6048mα−1c

β
. (8)

For n > max(n2, n0), we then have

P
(

arg min
P∈Πn

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F 6⊂ Pm,n︸ ︷︷ ︸
:=An

)
≤ 4n−2. (9)

For proof of Eq. (9), see Appendix A.4.
We have thus proven the following theorem:

Theorem 1. With setup as above, suppose that α < 1, and pi = p is a fixed constant that does
not vary with n. Further suppose that si = s < 1/2, and for c1 channels qi = q < 1/2, and for
c2 = c − c1 − |B| channels qi = 1 − q > 1/2 (where c1 = c1(n), c2 = c2(n), s = s(n) and q = q(n)
are allowed to vary with n). Then there exist constants γ, ξ > 0, and n2 ∈ Z > 0 such that if for
all n > n2,

mp2
i ≥ ξ log n for all i ∈ [c],

(1/2− s)(1/2− q)(c1 − c2) > γ
√
mα−1c, (10)

then for n > max(n0, n2), P(An) ≤ 4n−2. If s, q, c, c1 and c2 are fixed constants that do not vary
with n, we need only require c1 > c2 rather than Condition (10).
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Figure 1: Considering n = m = 100, we let G,H ∈Mc
100 (for c ranging over {1, 2, · · · , 10}).

For i ∈ [c], we have that (Gi, Hi) ∼ ER(100, 0.5, ρ). Utilizing s = 10 seeded vertices, we
match G and H using MFAQ (Algorithm 2). In red (resp., olive, green, blue, purple) we
plot the results for ρ = 0.1 (resp., ρ = 0.2, ρ = 0.3, ρ = 0.4, ρ = 0.5). The partially
transparent points visualize the accuracy distribution and correspond to individual Monte
Carlo replicates.

2.2.1 Strength in numbers

Consider c2 = |B|= 0 in Theorem 1. Condition (10) then reduces to

(1/2− s)(1/2− q)
√
c > γ

√
mα−1, (11)

and large values (i.e., close to 1/2) of s and q can be mitigated by choosing an appropriately large
c; effectively, multiple channels can amplify the weak signal present in each individual channel.

We explore this further in the following experiment. We will look at two different cases specif-
ically, when m = n and when m < n. First, considering n = m = 100 (to mitigate possible effects
of template order on matching accuracy), we let G,H ∈ Mc

100 for c ranging over {1, 2, · · · , 10}.
For each i ∈ [c], we have that (Gi, Hi) ∼ ER(100, 0.5, ρ) (so that Gi and Hi are marginally
ER(100,0.5) and edges across graphs are independent except that for each {j, k} ∈

(
[100]

2

)
, we have

that corr(1{{j, k} ∈ E(Gi)},1{{j, k} ∈ E(Hi)}) = ρ). Within this model, the channels are en-
dowed with a natural vertex correspondence across Gi and Hi, namely the identity mapping. Note
that in the Wi ∼ER(n, pi) MS model setting, we have that Cov(1{{j, k} ∈ E(Gi)},1{{j, k} ∈
E(Hi)}) = pi(1 − pi)(1 − 2si)(1 − 2qi), so that the correlation between edges in Gi and Hi

can be made positive or negative with judiciously chosen si and qi. Considering ρ varying over
{0.1, 0.2, 0.3, 0.4, 0.5}, we match G and H using M-FAQ (Algorithm 2 using s = 10 seeded vertices
[18]). Results are plotted in Figure 1. In Figure 1, we plot the mean matching accuracy (i.e.,
the fraction of vertices whose latent alignment is recovered correctly) of M-FAQ versus c, averaged
over 2000 Monte Carlo replicates. For each choice of parameters, we also plot (via the partially
transparent points) the accuracy distribution corresponding to the MC replicates. In red (resp.,
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olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., ρ = 0.2, ρ = 0.3, ρ = 0.4, ρ = 0.5).
From Figure 1, we see the expected relationship: in low correlation settings where M-FAQ is unable
to align the monoplex graphs, this can often be overcome by considering c > 1. Indeed, in all cases,
save ρ = 0.1, perfect matching is achieved using c ≥ 8 channels.

Next, we look at the case when m < n. In addition to examining the effect of multiple channels
when weak signal is present across channels, we wish to compare the effect of different padding
schemes (Naive vs Centered) in terms of the matching accuracy. We analyze the padding scheme’s
effectiveness first, by varying the values of the correlation ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} while keeping
n,m constant (see Figure 2) and second, by varying the background size n ∈ {100, 500, 1000, 2000}
while the template size m and the correlation ρ remain constant (see Figure 3). Using the Naive
(resp. Centered) padding scheme, we let (G̃, H̃) ∈ Mc

n (resp. (Ĝ, Ĥ) ∈ Mc
n) for c ranging over

{1, 2, · · · , 10}. Utilizing s = 10 seeds, we match G̃ and H̃ (resp. Ĝ and Ĥ) using M-FAQ (Algorithm
2). Results are plotted in Figures 2 and 3. As in Figure 1, we plot the mean matching accuracy (i.e.,
the fraction of vertices whose latent alignment is recovered correctly) of M-FAQ versus c, averaged
over 100 MC replicates. For each choice of parameters, we also plot (via the partially transparent
points) the accuracy distribution corresponding to the MC replicates. In Figure 2, in red (resp.,
olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., ρ = 0.2, ρ = 0.3, ρ = 0.4, ρ = 0.5).
In Figure 3, in red (resp., green, blue, purple) we plot the results for n = 100 (resp., n = 500,
n = 1000, n = 2000).

All figures demonstrate that even though the M-FAQ algorithm is unable to align the monoplex
graphs when c = 1, this can often be overcome by considering c > 1. Moreover, Figures 2 and
3, show that the Centered Padding scheme achieves better matching accuracy between channels
than the Naive Padding scheme. Akin to Figure 1, Figure 2 illustrates that the matching accuracy
increases as the correlation increases. Finally, in Figure 3, we observe that the matching accuracy
decreases as the ratio between the template size and the background size decreases.

2.2.2 The good outweighs the bad

In this section, we explore the ability of the signal in “good” channels to overcome the obfuscating
effect of “bad” channels. To wit, consider Condition (10) with c2 > 0. We see that if there are
enough channels (i.e., c1 is sufficiently large) with positive correlation (si, qi < 1/2), then the
template and background remain matchable even in the presence of (potentially) multiple anti-
correlated channels.

We explore this further in the following experiment. As in the previous subsection 2.2.1, we
study this “obfuscating” effect for both m = n and m < n cases. Again consider n = m = 100, and
let G,H ∈ M10

100 (i.e., c = 10), where for i ∈ [10] we have that (Gi, Hi) ∼ ER(100, 0.5, ρ). Under
the same setting, we let n = 500 and we apply Naive Padding in (G,H) ∈ (M10

500,M10
100), so that

(G̃i, H̃i) ∼ ER(500, 0.5, ρ) for all i ∈ [10].
Considering ρ to be either ρ = r (for cg channels) or ρ = −r (for cb = c − cg channels),

where r varies in {0.1, 0.2, 0.3, 0.4, 0.5}, we plot the matching accuracy (averaged over 2000 (left
panel) and 100 (right panel) Monte Carlo replicates) obtained by M-FAQ (with 10 seeds) versus
cb in Figure 4. For each choice of parameters, we also plot (via the partially transparent points)
the accuracy achieved by each MC replicate. In red (resp., olive, green, blue, purple) we plot the
results for r = 0.1 (resp., r = 0.2, r = 0.3, r = 0.4, r = 0.5). From the figure, we see the expected
relationship: matching at higher levels of ρ yields better accuracy, and more robustness to channels
with negative correlation. Further, we notice that the matching accuracy in the right panel (i.e.,
m < n) is not as good as in the left panel (i.e., m = n). We make this phenomenon more clear in
Figure 6.
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(a) Naive padding; (G̃i, H̃i) ∼ ER(500, 0.5, ρ),
where ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, i ∈ [10].

(b) Centered padding; (Ĝi, Ĥi) ∼ ER(500, 0.5, ρ),
where ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, i ∈ [10].

Figure 2: Under the same MS model setting as in Figure 1, we fix n = 500, m = 100
and we apply naive padding (left panel) and centered padding (right panel) in (G,H) ∈
(M10

500,M10
100). We plot the matching accuracy (averaged over 100 Monte Carlo replicates)

obtained by M-FAQ (with s = 10 seeded vertices) versus the number of channels c. In red
(resp., olive, green, blue, purple) we plot the results for ρ = 0.1 (resp., ρ = 0.2, ρ = 0.3,
ρ = 0.4, ρ = 0.5). The partially transparent points visualize the accuracy distribution and
correspond to individual Monte Carlo replicates.

In addition, we study the effect of different padding schemes (Naive vs Centered) in terms of
the matching accuracy. We analyze the padding scheme’s effectiveness first, by varying the values
of the correlation r ∈ {0.3, 0.4, 0.5, 0.6, 0.7} while keeping n,m constant (see Figure 5) and second,
by varying the number of the background vertices n ∈ {100, 500, 1000, 2000} while the template
size m remains the same (see Figure 6). Using the Naive (resp. Centered) padding scheme, we let
(G̃, H̃) ∈ Mc

n (resp. (Ĝ, Ĥ) ∈ Mc
n) for c ranging over {1, 2, · · · , 10}. Utilizing s = 10 seeds, we

match G̃ and H̃ (resp. Ĝ and Ĥ) using M-FAQ (Algorithm 2). Results are plotted in Figures 5 and
6. As in Figure 4, we plot the mean matching accuracy (i.e., the fraction of vertices whose latent
alignment is recovered correctly) of M-FAQ versus cb, averaged over 100 MC replicates. For each
choice of parameters, we also plot (via the partially transparent points) the accuracy distribution
corresponding to the MC replicates. In Figure 5, in red (resp., olive, green, blue, purple) we plot
the results for r = 0.3 (resp., r = 0.4, r = 0.5, r = 0.6, r = 0.7). In Figure 6, in red (resp., green,
blue, purple) we plot the results for n = 100 (resp., n = 500, n = 1000, n = 2000).

From Figures 4 and 5, we observe that matching at higher levels of ρ yields better accuracy,
and more robustness to channels with negative correlation. Moreover, Figures 5 and 6 show that
the Centered Padding scheme achieves better performance in terms of matching accuracy than the
Naive Padding scheme.

2.3 ME model matchability

To derive analogous results to those in Section 2.2 in the ME model, we consider the following
setting. Letting W ∈ Gn and T = W [m] be the respective background and template source graphs,
we again assume that there exist constants α ≤ 1, β > 0, and n0 ∈ Z > 0 such that for all n > n0,
m = m(n) satisfies mα ≥ β log n. Further assume that for each i ∈ [c = c(n)] the errorful filters
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(a) Naive padding; (G̃i, H̃i) ∼ ER(n, 0.5, 0.5),
where n ∈ {100, 500, 1000, 2000}, i ∈ [10].

(b) Centered Padding; (Ĝi, Ĥi) ∼ ER(n, 0.5, 0.5),
where n ∈ {100, 500, 1000, 2000}, i ∈ [10].

Figure 3: Under the same MS model setting as in Figure 1, we fix m = 100 and we consider
n ranging over {100, 500, 1000, 2000}. We fix ρ = 0.5 and we apply naive padding (left panel)

and centered padding (right panel) in (G,H) ∈ (M10
n ,M10

100). We match both pairs G̃, H̃

and Ĝ, Ĥ using MFAQ (with s = 10 seeds). In red (resp., green, blue, purple) we plot the
results for n = 100 (resp., n = 500, n = 1000, n = 2000). The partially transparent points
visualize the accuracy distribution and correspond to individual Monte Carlo replicates.

satisfy,

E
(1)
i (j, `) =

{
si = si(n) if T (j, `) = 1

qi = qi(n) if T (j, `) = 0

E
(2)
i (j, `) =

{
ri = ri(n) if W (j, `) = 1

ti = ti(n) if W (j, `) = 0.

For each P ∈ Π(n), define

∆
(1)
P := {{j, `} ∈ ∆P s.t. T (j, `) = 1;W (σp(j), σp(`)) = 0};

∆
(2)
P := {{j, `} ∈ ∆P s.t. T (j, `) = 0;W (σp(j), σp(`)) = 1},

where ∆P is defined as in Eq. (4). Suppose that there exists an n1 > 0 such that for all n > n1,
we have that for all k ∈ [m = m(n)] and all P ∈ Πn,m,k

|∆(1)
P |
∑
i

2(1− 2si)(1− ri − ti) + |∆(2)
P |
∑
i

2(1− 2qi)(1− ri − ti) ≥ k

√
672m1+αc

β
, (12)

then

P

(
arg min
P∈Πn

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F 6⊂ Pm,n

)
= 2n−2; (13)
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(a) (Gi, Hi) ∼ ER(100, 0.5, ρ),
where r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, i ∈ [10].

(b) Naive padding; (G̃i, H̃i) ∼ ER(500, 0.5, ρ),
where r ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, i ∈ [10].

Figure 4: We consider m = 100, and we let G,H ∈M10
100 (i.e., c = 10) (left panel). We also

implement the Naive Padding scheme, and we let G̃, H̃ ∈ M10
500 (right panel). Considering

ρ to take two possible values: ρ = r for cg channels, or ρ = −r for cb = c − cg channels,
where r varies in {0.1, 0.2, 0.3, 0.4, 0.5}. We plot the matching accuracy (averaged over 2000
(left panel) and 100 (right panel) Monte Carlo replicates) obtained by M-FAQ (with 10 seeds)
versus cb. In red (resp., olive, green, blue, purple) we plot the results for r = 0.1 (resp.,
r = 0.2, r = 0.3, r = 0.4, r = 0.5). The partially transparent points visualize the accuracy
distribution and correspond to individual Monte Carlo replicates.

(a) Naive Padding; (G̃i, H̃i) ∼ ER(500, 0.5, ρ) for
all i ∈ [10] with r ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

(b) Centered Padding; (Ĝi, Ĥi) ∼ ER(500, 0.5, ρ)
for all i ∈ [10] with r ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

Figure 5: Under the MS model setting as in Figure 4, we fix n = 500, m = 100, and we apply
Naive Padding (left panel) and Centered Padding (right panel) in (G,H) ∈ (M10

500,M10
100).

We consider ρ to take two possible values: ρ = r for cg channels, or ρ = −r for cb =
c− cg channels. We plot the matching accuracy (averaged over 100 Monte Carlo replicates)
obtained by M-FAQ (with 10 seeds) versus cb. In red (resp., olive, green, blue, purple) we plot
the results for r = 0.3 (resp., r = 0.4, r = 0.5, r = 0.6, r = 0.7).
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(a) Naive Padding; (G̃i, H̃i) ∼ ER(n, 0.5, ρ)
for all i ∈ [10] with n ∈ {100, 500, 1000, 2000}
and r = 0.5.

(b) Centered Padding; (Ĝi, Ĥi) ∼ ER(n, 0.5, ρ)
for all i ∈ [10] with n ∈ {100, 500, 1000, 2000}
and r = 0.5.

Figure 6: Under the MS model setting as in Figure 4, we fix m = 100 and we apply Naive
Padding (left panel) and Centered Padding (right panel) in (G,H) ∈ (M10

n ,M10
100) where

n varies. We consider ρ to take two possible values: ρ = 0.5 for cg channels, or ρ = −0.5
for cb = c − cg channels. We plot the matching accuracy (averaged over 100 Monte Carlo
replicates) obtained by M-FAQ (with 10 seeds) versus cb. In red (resp., green, blue, purple)
we plot the results for n = 100 (resp., n = 500, n = 1000, n = 2000).

where the bound in Eq. (13) uses Appendix A.5 and then follows mutatis mutandis from the proof
in Appendix A.2.

Exploring this further in the ER setting, consider W ∼ ER(n, p = p(n)) with p ≤ 1/2. As in
Eq. (7), for each j = 1, 2, we then have that

|∆(j)
P |∈

(
1

2
|∆P |p(1− p),

3

2
|∆P |p(1− p)

)
,

with probability at least

1− 2exp

{
−2|∆P |p2(1− p)2

32

}
. (14)

Note that if m > 6, then mk/3 ≤ |∆P |≤ mk, so that with probability at least Eq. (14),

|∆(j)
P |∈ (1/6, 3/2) ·mkp(1− p).

Suppose that α < 1, and that there exists an n2 > 0 such that for all n > n2, we have mp2 ≥
1344 log n, and

p
c∑
i=1

(1− si − qi)(1− ri − ti) ≥

√
6048mα−1c

β
. (15)

Then for n > max(n0, n2), P(An) ≤ 6n−2. We have the following theorem (whose proof follows
mutatis mutandis to that of Theorem 1 and so is omitted):
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Theorem 2. With setup as above, suppose that α < 1. For

c1 = c1(n) channels, suppose that si + qi = 1 + e1 > 1 and ri + ti = 1− e2 < 1;

c2 = c2(n) channels, suppose that si + qi = 1− e1 < 1 and ri + ti = 1 + e2 > 1;

c3 = c3(n) channels, suppose that si + qi = 1 + e1 > 1 and ri + ti = 1 + e2 > 1;

c4 = c4(n) channels, suppose that si + qi = 1− e1 < 1 and ri + ti = 1− e2 < 1,

where e1 = e1(n) and e2 = e2(n) can vary in n and c = c1 + c2 + c3 + c4. Then there exist constants
γ, ξ > 0, and n2 ∈ Z > 0 such that if for all n > n2

mp2 ≥ ξ log n,

pe1e2 [c3 + c4 − c1 − c2] > γ
√
mα−1c, (16)

then for n > max(n0, n2), P(An) ≤ 6n−2. If e1, e2, and c are fixed in n, we need only require
c1 + c2 < c3 + c4 for P(An) ≤ 6n−2 to hold for sufficiently large n.

3 Experiments

Our previous simulation explored the effect on multiple channels on multiplex matchability. We next
consider the performance of our multiplex matched filter approach in detecting a hidden template in
a multilayer social media network from [31]. The background network contains 3 aligned channels
representing user activity in FriendFeed, Twitter and Youtube (where the Youtube and Twitter
channels were generated via FriendFeed which aggregates user information across these platforms).
In total, there are 6, 407 unique vertices across the three channels, with the channel specific networks
satisfying:

channel vertices edges

FriendFeed 5,540 31,921
Twitter 5,702 42,327

YouTube 663 614

Given a 35 vertex multiplex template H created by Pacific Northwest National Laboratories for
the DARPA MAA program, we ran our M-GMMF algorithm (Algorithm 1) to attempt to recover the
template in G; results are summarized below.

In our first experiment, we first considered running “cold-start” M-GMMF; that is, no prior infor-
mation (in the form of seeds, hard or soft) is utilized in the algorithm. We consider padding the
graph via the Naive Padding and Centered Padding regimes of Section 1.1.2, and for each padding
regime, we ran M-GMMF with N = 100 random restarts. Numeric results are summarized in Table
1 (with the best recovered background signals also plotted in Figure 7). While the best recovered
signal in the Naive Padding regime captures all but two template edges, this is at the expense
of many extraneous background edges that do not appear in the template. On the other hand,
the Centered Padding regime recovers most of the template edges (across the three channels) with
minimal extra template edges in the recovered signal.

The M-FAQ algorithmic primitive (Algorithm 2) used in our implementation of M-GMMF is most
effective when it can leverage a priori available matching data in the form of seeded vertices. Seeds
can either come in the form of hard seeds (a priori known 1–to–1 matches; here that would translate
to template vertices whose exact match is known in the background) or soft seeds (where a soft
seeded vertex v in H has an a priori known distribution over possible matches in G; here this
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Padding regime % recovered in ch. 1 % recovered in ch. 2 % recovered in ch. 3
Centered 86.67 85.07 96.77

Naive 98.33 100 96.77

Table 1: For each padding regime, we provide the % of template edges present in the
recovered background signal in the best random restart. For example, the best recovered
background signal in the Centered Padding regime recovered 86.67% of the edges in template
channel 1, and 85.07% of the edges in template channel 2, and 96.77% of the edges in template
channel 3. Here, the best performer is the one that recovers the highest average % across
the three channels (averaging the % within each channel across channels).

Figure 7: Signal recovered by the best performing random restart in M-GMMF across different
Padding regimes. As in Table 1, the best performer is the one that recovers the highest
average % of the template edges across the three channels (averaging the % within each
channel across channels). In the left panel, we plot the Centered Padding regime and in
the right panel the Naive Padding regime. For each centering regime, we plot the signal
template across the three channels (in the left 3 panels) and the best recovered subgraphs
in the background (in the right 3 panels).

would translate into template vertices with a list of candidate matches in the background). While
hard seeds are costly and often unavailable in practice, there are many scalable procedures in the
literature for automatically generating soft seed matches. Here, we use as a soft-seeding the output
of [33, 34], a filtering approach for finding all subgraphs of the background network homomorphic
to the template.

For each node in the template, the output of [33, 34] produces a multiset of candidate matches
in the background, where each candidate match corresponds to a template copy contained in the
background as a subgraph (not necessarily as an induced subgraph). We convert the candidate
matches into probabilities by simply converting the multiset to a count vector and normalizing the
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count vector to sum to 1. We then consider the normalized count vectors as rows of a stochastic
matrix; this stochastic matrix provides M-FAQ with a soft-seeding which can be used to initialize
the algorithm.

Considering random restarts as perturbations (akin to Step 2 of Algorithm 1) of the soft-seeding
(conditioned on retaining nonnegative entries), we ran M-GMMF using a generalization of the Centered
Padding regime, which is defined as follows: For each i ∈ [c], define the weighted adjacency matrices
Ăi ∈ Rm×m and B̆i ∈ Rn×n via

Ăi(u, v) =


1 if u,v ∈ V (Hi), and {u,v} ∈ E(Hi);

−w if u,v ∈ V (Hi), and {u,v} /∈ E(Hi);

0 if u or v ∈ [m] \ V (Hi);

(17)

B̆i(u, v) =


1 if u,v ∈ V (Gi), and {u,v} ∈ E(Gi);

−1 if u,v ∈ V (Gi), and {u,v} /∈ E(Gi);

0 if u or v ∈ [n] \ V (Gi);

where we vary w from 0 to 1. Note that w = 0 yields Naive Padding, and w = 1 yields Centered
Padding. Optimal performance in the present experiment was achieved with w = 0.25, in which
case N = 4000 random restarts yielded an induced subgraph in the background that was isomorphic
to the template network.

3.1 M-GMMF on Semantic Property Graphs

For our second example, we consider the semantic property graph released by Pacific Northwest
National Laboratories as part of the MAA-AIDA Data Release V2.1.2 via the DARPA MAA pro-
gram [15]. In this dataset, the background network is a knowledge graph constructed from a variety
of documents (e.g., newspaper articles) by DARPA’s AIDA program. At a high level, the graph is
encoding the real-world relationships between a variety of entities (people, locations, major events,
etc.) that can be automatically extracted from a variety of data sources. Practically, the graph is a
richly featured network on the order of 100K nodes. Node properties include name; rdf:type (corre-
sponding to a structured ontology of types); textValue; linkTarget; start time; among others. Edge
properties include name/id, rdf:type, argument (values given to edges of a given rdf:type), among
others. Note that many nodes and edges do not have values for all properties. The templates here,
themselves richly featured knowledge graphs, are of the order of 10s of vertices (ranging in size from
33 nodes/40 edges to 11 nodes/11 edges); for each of three template types, there are 6 variants with
varying error levels, including one variant (version “A”) that is perfectly/isomorphically embedded
into the background.

The principle challenge in applying our M-GMMF methodology on such richly featured data is
sensibly incorporating the rich, structured features into our multiplex network framework. Towards
this end, we adopted the following approach. We incorporated the vertex features/properties into a
penalty term in the objective function, encoding the features into a vertex–to–vertex similarity ma-
trix S (this is possible provided that similarities are easily computed within each vertex covariate,
which is the case here). Edge features were used to divide the knowledge graph into multiple over-
lapping channels in a multiplex network. One channel was assigned to each unique (E(rdf:type),
E(argument)) pair in the template, and we divided background edges amongst the channels via

i. A hard split based on E(argument): Within each (E(rdf:type), E(argument)) channel,
only edges with matching E(argument) are potentially present. If the E(argument) prop-
erty is missing in the background, we allow the edge to possibly exist in all (E(rdf:type),
E(argument)) channels.
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Figure 8: Graph edit distance score from [15] for the best recovered signal for the filter
algorithms of [43] (green) and [26] (gray); G-finder of [28] (blue; as implemented in [26]) and
M-GMMF (red; with 1000 random restarts) for each of the 18 templates.

ii. A soft split (weighted according to E(rdf:type) similarity; note that a rdf:type similarity
function was provided with the data) based on E(rdf:type): Within each (E(rdf:type),
E(argument)) channel, each background edge with matching (or missing) E(argument) is
present, and the edge is weighted according to a similarity measured between its E(rdf:type)
and that of the channel. Scalability gains can be achieved by thresholding the similarities to
improve sparsity.

Spatiotemporal constraints can be coded into separate channels in the multiplex graph, one channel
per spatiotemporal constraint in the template. Each constraint (e.g., action A must occur between
x and y days after action B) yields an edge filter, with only edges that could potentially satisfy
the constraint being added to that constraint channel. Lastly, numeric edge features are used to
further weight the edges in the background/template. The final objective function we used in our
M-GMMF approach was then of the form

arg max
P∈Πn

c∑
i=1

tr((Âi ⊕ 0n−m)PB̂iP
T ) + tr(SP T ). (18)

Performance of M-GMMF and various other approaches (as scored by the GED scoring metric of
[15]) are presented in Figure 8 (Note that the filtering approach of Tu et al., as presented in [43],
also present a method that uses the clean “A” template for training, and achieves essentially the
best score for all template versions; we did not include those scores for comparison in our figure).

Overall, 18 templates were present: 3 distinct template types, each with 6 variants encompassing
different amounts of template noise which give an indication of the knowledge graph structure
encoded into the multiplex graph; see Figure 9, for a pair of example templates and M-GMMF
recovered signals here. One template of each type was constructed to have a perfect isomorphic
match in the background, while the noisy templates were designed for inexact/fuzzy matching. All
approaches identified the isomorphic match in the background for all three template types version
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Figure 9: Example of template knowledge graph and recovered signal in the knowledge
graph. In each graph, different colored edges represent different E(rdf:types), with the
dotted versus solid edges representing different E(arguments).

“A”, while our approach achieved its best relative results on the larger, more complex template
(Template 1). For Template 1, we obtained the best (or nearly the best) score on 3/6 versions; see
Table 2 for detail. Templates 2 and 3 were essentially tree-like structures (nodes/edges is 13/15

Method T1A T1B T1C T1D T1E T1F

M-GMMF 0 0.24 6.28 4.35 5.17 3.12
G-Finder 0 7.38 18.81 0.76 2.25 14.96

Tu et al. [43] 0 0.347 8.783 15.47 19.194 13.596
Kopylov et al. [26] 0 1.17 3.47 2.58 3.85 2.94

Table 2: Performance on Template 1

and 11/11 respectively), and we suspect that the filtering-based approaches are more suitable to
this problem type. Indeed, M-GMMF is designed for larger/more complex templates, though our
performance (especially compared to the non-filtering G-Finder of [28]) is encouraging on these
instantiations, especially on version “B” of the templates.

Note also that our approach does not directly seek to optimize the GED of [15] and here does
not make use of the importance weights provided by the GED scoring metric (though these could
easily be encoded via edge weights and scaling the similarities in S); rather, we seek to optimize
the multiplex GM objective function of 18. Nonetheless, as shown in Figure 10, the rankings of the
random restart outputs for our GM objective function and for the GED are often highly correlated,
with recovered signals scoring well in one metric often scoring well in both. The interesting gap
appearing in the plot of Template 1E is evocative of the GM phase transitions appearing in the
literature (see, for example, [17]) and bears further study.

4 Discussion

In this paper, we presented a framework for finding noisy copies of a multiplex template in a
large multiplex background network. Our strategy, which extends [41] to the multiplex setting,
uses graph matching combined with multiple random restarts to search the background for locally
optimal matches to the template. To formalize this strategy, we provided a very natural extension
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Figure 10: For two of the templates, we plot the scores of the recovered signals (recovered
by M-GMMF across multiple random restarts), where scores are computed both using the
GED metric of [15] (y-axis) and the GM objective function (x-axis).

of the classical graph matching problem to the multiplex that is easily amended to matching graphs
of different orders (both across networks and channels). Further, the effectiveness of the resulting
algorithm, named M-GMMF, is demonstrated both theoretically and empirically.

There are a number of extensions and open questions that arose during the course of this work.
Natural theoretic extensions include lifting Theorems 1 and 2 to non-edge independent models
(note that certain localized dependencies amongst edges can easily be handled in the McDiarmind
proof framework, while globally dependent errors provide a more significant challenge); formulating
the analogues of Theorems 1 and 2 in the weighted, attributed graph settings; and considering the
theoretic properties of various continuous relaxations of the multiplex GM problem akin to [1, 29, 6].

A key methodological questions in multiplex graph matching was touched upon in Remark 1;
indeed, we expect the question of how to weight the matching across channels to be essential when
applying these methods to topologically diverse and weighted networks. If the order of magnitude
of edge weights vary across channel, then it is easy to see a GM algorithm aligning channels with
large edge weights at the expense of the alignment accuracy in other channels. Judiciously choosing
(λi) would allow for the signal in channels with smaller edge weights to be better leveraged towards
a better overall matching.

While the largest network we consider in this work has ≈ 100, 000 vertices, scaling this approach
to very large networks is essential. By utilizing efficient data structures for sparse, low-rank matrices
and a clever implementation of the LAP subroutine of M-FAQ (step iii. in Algorithm 2), we are
able to match O(10) vertex templates to 20K-vertex background graphs in < 10s per restart with
our base M-GMMF code (available in iGraphMatch) implemented in R on a standard laptop. Further
work to scale M-GMMF by leveraging both efficient data structures and scalable approximate LAP
solvers is currently underway.

List of abbreviations

GM(P) Graph Matching (Problem)

nMGMP Naive Multiplex Graph Matching Problem

cMGMP Centered Multiplex Graph Matching Problem
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M-GMMF Multiplex Graph Matching Matched Filters

M-FAQ Multiplex Fast Approximate Quadratic

ME (Single Channel Source) Error Multiplex

MS (Single Channel Errors) Source Multiplex

GED Graph Edit Distance

LAP Linear Assignment Program

DARPA Defense Advanced Research Projects Agency

MAA Modeling Adversarial Activity

AIDA Active Interpretation of Disparate Alternatives

Declarations

Availability of data and materials

The background graphs for the 3-channel social network in Section 3 is available at http://

multilayer.it.uu.se/datasets.html. The data from the DARPA MAA analysis Section is not
publicly available, and the obtained results for the outside algorithms appear in the cited papers
in the literature.
The code implementing the M-GMMF and M-FAQ procedures can be downloaded as part of our R

package, iGraphMatch, which is available on CRAN or can be downloaded at https://github.com/
dpmcsuss/iGraphMatch.

Competing interests

Not applicable.

Funding

Dr. Sussman’s contribution to this work was partially supported by a grant from MIT Lincoln Labs
and the Department of Defense. This material is based on research sponsored by the Air Force
Research Laboratory and DARPA under agreement numbers FA8750-18-2-0035 and FA8750-20-2-
1001. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research Laboratory and
DARPA or the U.S. Government.

20

http://multilayer.it.uu.se/datasets.html
http://multilayer.it.uu.se/datasets.html
https://github.com/dpmcsuss/iGraphMatch
https://github.com/dpmcsuss/iGraphMatch


Authors’ contributions

Daniel L. Sussman, Carey E. Priebe and Vince Lyzinski, and Konstantinos Pantazis conceived of
the method and developed the theory. Konstantinos Pantazis, Youngser Park, Daniel L. Sussman,
Vince Lyzinski and Zhirui Li worked on writing and implementing the algorithm and performing
relevant experiments. Konstantinos Pantazis, Daniel L. Sussman and Vince Lyzinski wrote and
curated the manuscript.

Acknowledgments

Not applicable.

References

[1] Y. Aflalo, A. Bronstein, and R. Kimmel. On convex relaxation of graph isomorphism. Pro-
ceedings of the National Academy of Sciences, 112(10):2942–2947, 2015.

[2] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular network
motif counting and discovery by color coding. Bioinformatics, 24(13):i241–i249, 2008.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM (JACM), 42(4):844–856,
1995.

[4] J. Arroyo, D. L. Sussman, C. E. Priebe, and V. Lyzinski. Maximum likelihood estimation and
graph matching in errorfully observed networks. arXiv preprint arXiv:1812.10519, 2018.

[5] B. Barak, C. Chou, Z. Lei, T. Schramm, and Y. Sheng. (nearly) efficient algorithms for the
graph matching problem on correlated random graphs. arXiv preprint arXiv:1805.02349, 2018.

[6] J. Bento and S. Ioannidis. A family of tractable graph distances. arXiv preprint
arXiv:1801.04301, 2018.

[7] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance,
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[25] M. Kivelä and M. A. Porter. Isomorphisms in multilayer networks. IEEE Transactions on
Network Science and Engineering, 2017.

[26] A. Kopylov, J. Xu, K. Ni, S. Roach, and T.-C. Lu. Semantic guided filtering strategy for
best-effort subgraph matching in knowledge graphs. In 2020 IEEE International Conference
on Big Data (Big Data), pages 2539–2545. IEEE, 2020.

22



[27] J. Lee, W. Han, R. Kasperovics, and J. Lee. An in-depth comparison of subgraph isomorphism
algorithms in graph databases. In Proceedings of the VLDB Endowment, volume 6, pages 133–
144. VLDB Endowment, 2012.

[28] L. Liu, B. Du, and H. Tong. G-finder: Approximate attributed subgraph matching. In 2019
IEEE International Conference on Big Data (Big Data), pages 513–522. IEEE, 2019.

[29] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro. Relax
at your own risk. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages
60–73, 2016.

[30] V. Lyzinski and D. L. Sussman. Matchability of heterogeneous networks pairs. arXiv preprint
arXiv:1705.02294, 2017.

[31] M. Magnani and L. Rossi. The ml-model for multi-layer social networks. In 2011 International
Conference on Advances in Social Networks Analysis and Mining, pages 5–12. IEEE, 2011.

[32] C. McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–
188, 1989.

[33] J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, and A. L. Bertozzi. Filtering methods for
subgraph matching on multiplex networks. In 2018 IEEE International Conference on Big
Data (Big Data), pages 3980–3985. IEEE, 2018.

[34] J. D. Moorman, T. Tu, Q. Chen, X. He, and A. Bertozzi. Subgraph matching on multiplex
networks. IEEE Transactions on Network Science and Engineering, 2021.

[35] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J. Onnela. Community structure
in time-dependent, multiscale, and multiplex networks. Science, 328(5980):876–878, 2010.

[36] M. K. Ng, X. Li, and Y. Ye. Multirank: co-ranking for objects and relations in multi-relational
data. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1217–1225. ACM, 2011.

[37] E. Onaran, S. Garg, and E. Erkip. Optimal de-anonymization in random graphs with commu-
nity structure. In 2016 50th Asilomar Conference on Signals, Systems and Computers, pages
709–713. IEEE, 2016.

[38] P. Pedarsani and M. Grossglauser. On the privacy of anonymized networks. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1235–1243. ACM, 2011.

[39] C. E. Priebe, D. L. Sussman, M. Tang, and J. T. Vogelstein. Statistical inference on errorfully
observed graphs. Journal of Computational and Graphical Statistics, 24(4):930–953, 2015.

[40] R. C. Read and D. G. Corneil. The graph isomorphism disease. Journal of Graph Theory,
1(4):339–363, 1977.

[41] D. L. Sussman, V. Lyzinski, Y. Park, and C. E. Priebe. Matched filters for noisy induced sub-
graph detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, accepted
for publication.

23



[42] F. W. Takes, W. A. Kosters, and B. Witte. Detecting motifs in multiplex corporate net-
works. In International Workshop on Complex Networks and their Applications, pages 502–
515. Springer, 2017.

[43] T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, and A. L. Bertozzi. Inexact attributed subgraph
matching. In 2020 IEEE International Conference on Big Data (Big Data), pages 2575–2582.
IEEE, 2020.

[44] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),
23(1):31–42, 1976.

[45] J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the nervous system
of the nematode caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci, 314(1165):1–340,
1986.

[46] J. Yan, X. Yin, W. Lin, C. Deng, H. Zha, and X. Yang. A short survey of recent advances in
graph matching. In Proceedings of the 2016 ACM on International Conference on Multimedia
Retrieval, pages 167–174. ACM, 2016.

[47] B. Yang and J. Liu. Mining multiplex structural patterns from complex networks. In Wisdom
Web of Things, pages 275–301. Springer, 2016.

A Appendix

Herein we collect details of our auxiliary algorithms and proofs of our main results.

A.1 Multiplex FAQ

The details of the M-FAQ algorithm are presented below.

Algorithm 2 Multiplex FAQ

Input: Multiplex graphs A ∈Mc
m and B ∈Mc

n; weights (λi); padding regime; tolerance
ε ∈ R > 0; initialization P (0)

Pad A and B accordingly; Denote the modified, padded multiplex graphs via H (=

Ã or Â ) and G (= B̃ or B̂ )
while ‖P (t) − P (t−1)‖F> ε do
i. P (t) ← P (t−1)

ii. ∇(P (t))←
∑c

i=1 λi
(
(Hi ⊕ 0n−m)>P (t)Gi + (Hi ⊕ 0n−m)P (t)G>i

)
;

iii. Q(t) ← maxQ∈Dn trace
[
∇(P (t))>Q

]
;

iv. α∗ ← maxβ∈[0,1]

∑c
i=1 λitrace((Hi⊕0n−m)Q

(t)
α Gi(Q

(t)
α )>), where Q

(t)
α = αP (t) +(1−

α)Q(t);
v. P (t) ← α∗P (t) + (1− α∗)Q(t);

end while
P ∗ ← maxP∈Πn trace

(
P>P (final)

)
;

Output: P ∗ matching multiplex graphs A and B;
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A.2 Proof of Eq. (6)

For each P ∈ Πn define

XP : =
1

4

[
c∑
i=1

‖Âi − PB̂iP T ‖2F−
c∑
i=1

‖Âi − B̂i‖2F

]
=

c∑
i=1

1

2

(
tr(ÂiB̂i)− tr(ÂiPB̂iP

T )
)

(19)

=
c∑
i=1

∑
{j,`}∈∆P

Âi(j, `)
[
B̂i(j, `)− B̂i(σp(j), σp(`))

]
Assuming that P ∈ Πn,m,k, then |∆P |≤ mk. Note that XP is a function of (at most) 3c|∆P |
independent Bernoulli random variables, and changing any one of these Bernoulli random variables
can change the value of XP by at most 8. McDiarmid’s inequality [32] then implies that for any
t ≥ 0,

P(|XP − E(XP )|≥ t) ≤ 2exp

{
− 2t2

192cmk

}
. (20)

Note that if Ĉi(j, k), D̂i(j, k), D̂i(σp(j), σp(k)) ∈ {1,−1} then

E Âi(j, `)B̂i(j, `) = Ĉi(j, `)D̂i(j, `) (1− 2si)(1− 2qi)

E Âi(j, `)B̂i(σp(j), σp(`)) = Ĉi(j, `)D̂i(σp(j), σp(`)) (1− 2si)(1− 2qi).

Define

∆
(i,0)
P = { {j, `} ∈ ∆P s.t. Ĉi(j, `) 6= 0};

∆
(i,1)
P = { {j, `} ∈ ∆

(i,0)
P s.t. 0 6= Ĉi(j, `) 6= D̂i(σp(j), σp(`)) 6= 0};

∆
(i,2)
P = { {j, `} ∈ ∆

(i,0)
P s.t. 0 6= Ĉi(j, `) 6= D̂i(σp(j), σp(`)) = 0};

∆
(i,3)
P = { {j, `} ∈ ∆

(i,0)
P s.t. 0 6= Ĉi(j, `) = D̂i(σp(j), σp(`))};

so that |∆(i,0)
P |= |∆(i,1)

P |+|∆(i,2)
P |+|∆(i,3)

P |. We then have

E(XP ) =

c∑
i=1

[
|∆(i,0)

P | (1− 2si)(1− 2qi)− |∆(i,3)
P | (1− 2si)(1− 2qi)

+ |∆(i,1)
P | (1− 2si)(1− 2qi)

]
=

c∑
i=1

(
2|∆(i,1)

P |+|∆(i,2)
P |

)
(1− 2si)(1− 2qi). (21)

Note that if P,Q ∈ Πn,m,k, then XP = XQ if σp(j) = σq(j) for all j ∈ [m]; i.e., if there exists
a U ∈ Pm,n such that PU = Q. Note that this defines an equivalence relation on P,Q ∈ Πn,m,k

which we will denote by “∼,” and let Π∗n,m,k be a fixed (but arbitrarily chosen) set composed of one

member of each equivalence class according to “∼.” Note that |Π∗n,m,k| is at most m2kn2k. Letting
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t = E(XP ) in Eq. (20), we have that if n > n = max(n0, n1)

P(∃P /∈ Pm,n s.t. XP ≤ 0) ≤
m∑
k=1

∑
P∈Π∗

n,m,k

P(XP ≤ 0)

≤
m∑
k=1

∑
P∈Π∗

n,m,k

P(|XP − E(Xp)|≥ E(XP ))

≤
m∑
k=1

∑
P∈Π∗

n,m,k

2exp

{
−1344m1+αck2

192βcmk

}

≤
m∑
k=1

∑
P∈Π∗

n,m,k

exp

{
−7mαk

β

}

≤
m∑
k=1

2exp {−7k log n+ 2k log n+ 2k logm}

≤ 2exp {−2 log n}

as desired.

A.3 Proof of Eq. (7)

We have that if each Wi ∼ER(n, pi), then

∆
(i,1)
P =

∑
{j,`}∈∆P

1{Ĉi(j, `) 6= D̂i(σp(j), σp(`))},

so that E(∆
(i,1)
P ) = 2pi(1 − pi)|∆P |. Also, ∆

(i,1)
P is then a function of at most 2|∆P | independent

Bernoulli random variables, and changing the value of any one these can change the value of ∆
(i,1)
P

by at most 2. McDiarmid’s inequality then yields the desired result

P(|∆(i,1)
P − E(∆

(i,1)
P )|≥ t) ≤ 2exp

{
− 2t2

8|∆P |

}
, (22)

by setting t = pi(1− pi)|∆P |.

A.4 Proof details for Eq. 9

Let the equivalence relation “∼” on Πn,m,k be defined via P ∼ Q if there exists a U ∈ Pn,m such
that PU = Q. Note that if P ∼ Q then

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F=

c∑
i=1

‖(Âi ⊕ 0n−m)Q−QB̂i‖2F .

Let Π∗n,m,k be a fixed (but arbitrarily chosen) set composed of one member of each equivalence class

according to “∼,” and note that |Π∗n,m,k| is at most m2kn2k. Given the assumptions in Section 2.2,
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for n > n2 we have that for each P ∈ Π∗n,m,k,

P
( c⋃
i=1

{
|∆(i,1)

P |< 1

3
mkpi(1− pi)

})

≤
c∑
i=1

2exp

{
−2mkp2

i

96

}
≤ 2exp {−8k log n+ log c} ≤ 2exp {−7k log n} . (23)

Denote the event bound in Eq. (23) via En,P .
For n > max(n2, n0), we then have

P
(

arg min
P∈Πn

c∑
i=1

‖(Âi ⊕ 0n−m)P − PB̂i‖2F 6⊂ Pm,n
)

= P(∃P /∈ Pm,n s.t. XP ≤ 0)

≤
m∑
k=1

∑
P∈Π∗

n,m,k

P(XP ≤ 0)

≤
m∑
k=1

∑
P∈Π∗

n,m,k

P(|XP − E(Xp)|≥ E(XP ) ∩ Ecn,P ) + P(En,P )

≤
m∑
k=1

∑
P∈Π∗

n,m,k

2exp

{
−1344m1+αck2

192βcmk

}
+ 2exp(−7k log n)

≤
m∑
k=1

4exp(−7k log n+ 2k log n+ 2k logm) ≤ 4n−2,

as desired.

A.5 Proof details for Eq. (13)

For P ∈ Πn, define

∆
(1)
P := {{j, `} ∈ ∆P s.t. T (j, `) = 1;W (σp(j), σp(`)) = 0};

∆
(2)
P := {{j, `} ∈ ∆P s.t. T (j, `) = 0;W (σp(j), σp(`)) = 1};

∆
(3)
P := {{j, `} ∈ ∆P s.t. T (j, `) = W (σp(j), σp(`)) = 1};

∆
(4)
P := {{j, `} ∈ ∆P s.t. T (j, `) = W (σp(j), σp(`)) = 0};
eP := {{j, `} ∈ ∆P s.t. T (j, `) = 1};
nP := {{j, `} ∈ ∆P s.t. T (j, `) = 0}.

For P ∈ Πn,m,k, we then have that XP defined in Eq. (19) satisfies

E(XP ) =(|eP |−|∆(3)
P |)

∑
i

(1− 2si)(1− 2ri) + (|nP |−|∆(4)
P |)

∑
i

(1− 2qi)(1− 2ti)

+ |∆(1)
P |
∑
i

(1− 2si)(1− 2ti) + |∆(2)
P |
∑
i

(1− 2qi)(1− 2ri)

=|∆(1)
P |
∑
i

2(1− 2si)(1− ri − ti) + |∆(2)
P |
∑
i

2(1− 2qi)(1− ri − ti).
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