
Extensible Data Skipping
Paula Ta-Shma, Guy Khazma, Gal Lushi, Oshrit Feder

IBM Research
Email: {paula,oshritf}@il.ibm.com, {Guy.Khazma,Gal.Lushi}@ibm.com

Abstract—Data skipping reduces I/O for SQL queries by
skipping over irrelevant data objects (files) based on their
metadata. We extend this notion by allowing developers to
define their own data skipping metadata types and indexes
using a flexible API. Our framework is the first to natively
support data skipping for arbitrary data types (e.g. geospatial,
logs) and queries with User Defined Functions (UDFs). We
integrated our framework with Apache Spark and it is now
deployed across multiple products/services at IBM. We present
our extensible data skipping APIs, discuss index design, and
implement various metadata indexes, requiring only around 30
lines of additional code per index. In particular we implement
data skipping for a third party library with geospatial UDFs
and demonstrate speedups of two orders of magnitude. Our
centralized metadata approach provides a x3.6 speed up even
when compared to queries which are rewritten to exploit Parquet
min/max metadata. We demonstrate that extensible data skipping
is applicable to broad class of applications, where user defined
indexes achieve significant speedups and cost savings with very
low development cost.

I. INTRODUCTION

According to today’s best practices, cloud compute and stor-
age services should be deployed and managed independently.
This means that potentially huge datasets need to be shipped
from the storage service to the compute service to analyse
the data. This is problematic even when they are connected
by a fast network, and highly exacerbated when connected
across the WAN e.g. in hybrid cloud scenarios. To address
this, minimizing the amount of data sent across the network
is critical to achieve good performance and low cost. Data
skipping is a technique which achieves this for SQL analytics
on structured data.

Data skipping stores summary metadata for each object
(or file) in a dataset. For each column in the object, the
summary might include minimum and maximum values, a
list or bloom filter of the appearing values, or other metadata
which succinctly represents the data in that column. This
metadata can then be indexed to support efficient retrieval,
although since it can be orders of magnitude smaller than the
data itself, this step may not be essential. The metadata can
be used during query evaluation to skip over objects which
have no relevant data. False positives for object relevance are
acceptable since the query execution engine will ultimately
filter the data at the row level. However false negatives must
be avoided to ensure correctness of query results.

Unlike fully inverted database indexes, data skipping in-
dexes are much smaller than the data itself. This property is
critical in the cloud, since otherwise a full index scan could
increase the amount of data sent across the network instead of

reducing it. In the context of database systems, data skipping is
used as an additional technique which complements classical
indexes. It is referred to as synopsis in DB2 [41] and zone
maps in Oracle [48], where in both cases it is limited to
min/max metadata. Data skipping and the associated topic
of data layout, has been addressed in recent research papers
[44], [42] and is also used in cloud analytics platforms [12],
[6]. Data skipping metadata is also included in specific data
formats [5], [4].

Despite the important role of data skipping, almost all
production ready implementations are limited to min/max
indexes over numeric or string columns, with the exception
of the ORC/Parquet formats which also support bloom filters.
Moreover, queries with UDFs cannot be handled. For example,
today’s implementations do not support data skipping for the
query below1.

SELECT max(temp) FROM weather
WHERE ST_CONTAINS(India, lat, lon)
AND city LIKE ’%Pur’

We address this by implementing data skipping support for
Apache Spark SQL[21], and making it extensible in several
ways.

1) users can define their own data skipping metadata beyond
min/max values and bloom filters

2) data skipping can be applied to additional column types
beyond numeric and string types e.g. images, arrays, user
defined types (UDTs), without changing the source data

3) users can enable data skipping for queries with UDFs by
mapping them to conditions over data skipping metadata

For the query above, our framework allows defining a suffix
index for text columns and mapping the LIKE predicate to
exploit it for skipping, as well as mapping the ST_CONTAINS
UDF to min/max metadata on geospatial attributes. This can
reduce the amount of data scanned by orders of magnitude.
Our implementation supports plugging in metadata stores,
with connectors for Parquet and Elastic Search, and is in-
tegrated into multiple IBM products/services including IBM
Cloud®SQL Query, IBM Analytics Engine and IBM Cloud
Pak®for Data [12], [10], [11].

We demonstrate various use cases for extensible data skip-
ping, show its benefits far outweigh its costs, and show that
centralized metadata storage provides significant performance
benefits beyond relying on data (Parquet/ORC) formats only
for data skipping.

1’India’ denotes a polygon with India’s geospatial coordinates

ar
X

iv
:2

00
9.

08
15

0v
2

 [
cs

.D
B

]
 1

5
N

ov
 2

02
0

Fig. 1: Index creation flow

This paper is organised as follows. Section II covers ex-
tensible data skipping APIs, section III discusses our imple-
mentation, section IV covers metadata index design, section V
discusses experimental results, section VI covers related work
and section VII presents our conclusions.

II. EXTENSIBLE DATA SKIPPING

Our Scala APIs allow the developer to (1) create data
skipping indexes, including adding support for new index
types, and (2) specify how to exploit data skipping indexes
during query evaluation by mapping predicates to operations
on summary metadata. Our framework covers compositions of
predicates e.g. using AND, OR and NOT, allowing expressions
of arbitrary complexity.

A. Extensible Data Skipping APIs

For simplicity, we provide a running example for
min/max data skipping, but our APIs can handle ar-
bitrary predicates/UDFs and user defined metadata (e.g.
LIKE/ST_CONTAINS and suffix indexes). Useful data skip-
ping metadata for the query below is the minimum and
maximum temperature for an object (data subset2).

SELECT * FROM weather WHERE temp > 101

1) Index Creation: Users can define new metadata types
which extend our MetaDataType class, such as the example
below.

abstract class MetadataType
case class MinMaxMetaData(col: String,

var min: Double, var max: Double)
extends MetadataType

Indexes are created explicitly and executed as a dedicated
Spark job. Index creation runs in 2 phases - see figure 1. The
first phase accepts a Spark DataFrame (representing an object)
and generates metadata having some MetaDataType. The
second phase translates this metadata to a metadata store
representation. In order to implement the first phase, the
developer extends the Index class.

abstract class Index(params: Map[String,
String], col: String*) {

def collectMetaData(df: DataFrame):
MetadataType

}

Our example MinMaxIndex extends Index, and
collectMetadata returns a MinMaxMetaData instance
containing minimum and maximum values for the given
object column.

2Other alternatives for data subsets are blocks, row groups etc. Our
integration with Spark skips at the object level.

Fig. 2: An Expression Tree (ET) for the example query

Fig. 3: Query evaluation flow

2) Query Evaluation: Spark has an extensible query opti-
mizer called Catalyst[21], which contains a library for repre-
senting query trees and applying rules to manipulate them. We
focus on query predicates i.e. boolean valued expressions typi-
cally appearing in a WHERE clause, which can be represented
as Expression Trees (ETs). Figure 2 shows the expression tree
for our example query.

We analyse ETs and label tree nodes with Clauses. A Clause
is a boolean condition that can be applied to a data subset s,
typically by inspecting its metadata. Note that for a query
ET e, for every vertex v in e, we denote the set of Clauses
associated with v by CS(v).

Definition 1. Denote the universe of possible data subsets
(i.e., objects) by U . A Clause c is a boolean function U →
{0, 1}.

Definition 2. For a Clause c and a (boolean) query expression
e, we say that c represents e (denoted by c o e), if for every
data subset S, whenever there exists a row r ∈ S that satisfies
e, then S satisfies c.

This means that if S does not satisfy c, then S can be
safely skipped when evaluating the query expression e. For
example, let e be temp > 101. Given a data subset S, let c
be the Clause maxr∈S temp(r) > 101. Then c represents e.
Therefore, objects where
maxr∈S temp(r) <= 101 can be safely skipped.

Query evaluation is done in 2 phases as shown in figure 3. In
the first phase, a query’s ET e is labelled using a set of clauses
and the clauses are combined to provide a single clause which
represents e. The labelling process is extensible, allowing for
new index types and for new ways of using metadata. In the
second phase, this clause is translated to a form that can be
applied at the metadata store to filter out the set of objects
which can be skipped during query evaluation.

The labelling process is done using filters. Typically there
will be one or more filters for each metadata index type. For
example, we will define a MinMaxFilter to correspond to
our MinMaxIndex.

Definition 3. An algorithm A is a filter if it performs the
following action: When given an expression tree e as input,
for every (boolean valued) vertex v in e, it adds a set of clauses

Fig. 4: The result of a filter on an ET

C s.t. ∀c ∈ C: c o v to the existing set of clauses. 3

For example a filter f might label our ET using
MaxClause, as shown in figure 4, where for a column name c
and a value v, MaxClause(c,>,v) is defined as maxr∈S c(r) >
v. Since MaxClause(temperature,>,101) represents the node to
which it was applied, f acted as a filter. Since maxr∈S c(r)
is stored as metadata in MinMaxMetaData, MaxClause can
be evaluated using this metadata only.

We provide the user with APIs to define clauses and filters.
A Clause is a trait which can be extended. A Filter needs
to define the labelNode method.

case class MaxClause(col:String, op:opType,
value:Literal) extends Clause

case class MaxFilter(col:String) extends
BaseMetadataFilter {

def labelNode(node:LabelledExpressionTree):
Option[Clause] = {

node.expr match {
case GreaterThan(attr: Attribute, v:

Literal) if attr.name == col =>
Some(MaxClause(col, GT, v))

case _ => None
}}

Filters typically use pattern matching on the ET structure4.
Similarly we can define a MinFilter which can label a tree
with MinClauses. Patterns can also match against UDFs in
expression trees e.g. ST_CONTAINS - see also section V-C
for queries using UDFs.

In some cases a filter’s patterns may need to match against
complex predicates using AND/OR/NOT. For example, the
GeoBox index (section IV) stores a 2 dimensional bounding
box for each object and the corresponding filter needs to match
against an AND with child constraints on both lat and lng.
Figure 5 illustrates this.

Each MetaDataFilter needs to be registered in our
system, and during query optimization we inspect the types
of metadata that were collected and run the relevant filters
on the query’s ET. Running the complete set of registered
filters will generate an ET where each node can be labelled
by multiple Clauses. For every vertex v in e, we denote the
set of Clauses associated with v by CS(v). We recursively
merge all of an ET’s Clauses to form a unified Clause which
represents it. This Clause is then applied to the metadata to

3Note that for a particular node, a filter might not add any clauses (this is
the special case of adding the empty set).

4For simplicity we left out the cases of ≤ and ≥ for MaxFilter above.

Fig. 5: The result of a geobox filter on a complex query
expression

Fig. 6: Modified Spark query execution flow after integration
with extensible data skipping

make a final skipping decision. For a full formal description of
the algorithm used and proof of correctness, see Appendix A

III. IMPLEMENTATION

We implemented data skipping support for Apache Spark
SQL[21] as an add-on Scala library which can be added to
the classpath and used in Spark applications. Our work applies
to storage systems which implement the Hadoop FileSystem
API, which includes various object storage systems as well as
HDFS. We tested our work using IBM Cloud Object Storage
(COS) and the Stocator connector [19], [46]. Metadata is
stored via a pluggable API which we describe in section
III-B. The library supports multiple levels of extensibility:
code which implements any of our extensible APIs such as
metadata types, and clause and filter definitions, as well as
additional metadata stores, can be added as plugin libraries.

A. Spark Integration

Spark uses a partition pruning technique to filter the list of
objects to be read if the dataset is appropriately partitioned.
Our approach further prunes this list according to data skipping
metadata as shown in figure 6.

Our technique applies to all Spark supported native for-
mats e.g. JSON, CSV, Avro, Parquet, ORC, and can benefit
from optimizations built into those formats in Spark. Unlike
approaches which embed data skipping metadata inside the
data format which require reading footers of every object, our
approach avoids touching irrelevant objects altogether. It also
avoids wasteful resource allocation because when relying on
a format’s data skipping, Spark allocates resources to handle
entire objects, even when only object footers need to be
processed. We provide an API for users to retrieve how much
data was skipped for each query.

We used APIs provided by Spark’s Catalyst query optimizer
to achieve this without changing core Spark. In particular,
we added a new optimization rule using the Spark session
extensions API[34]. Spark SQL maintains an
InMemoryFileIndex which tracks the objects to be read
for the current query and their properties. Our rule wraps
the InMemoryFileIndex with a new class extending it by
adding the additional filtering step from figure 6.

We refrain from skipping objects when our metadata about
them is stale. This can happen if objects are added, deleted
or overwritten in a dataset after indexing it. We keep track of
freshness using last modified timestamps, which are retrieved
during file listing by the InMemoryFileIndex. We also
provide a refresh operation, which updates stale metadata.

B. Metadata Stores

We support a pluggable API for metadata stores including
the specification of how metadata and clauses should be
translated for a particular store. This includes the indexing
time translation API for figure 1 and the query time translation
API for figure 3. The key property is that these translations
should preserve the correctness of our skipping algorithm. We
used this API to implement both Parquet and Elastic Search[8]
metadata stores.

It is now widely accepted practice to use the same storage
system for both data and metadata[7], [3], [2], avoiding
deployment of an additional metadata service. This is achieved
using our Parquet metadata store, and all storage systems
implementing the Hadoop FS API are supported. Relevant
metadata indexes are scanned prior to query execution, but
this cost is not significant, since metadata is typically con-
siderably smaller than data. By leveraging Parquet’s column-
wise compression and projection pushdown for metadata, we
minimize the amount of metadata that needs to be read per
query, ensuring low overhead. Use of Parquet also allows
generating and storing metadata for multiple columns together,
resulting in better indexing and refresh performance, compared
with storing indexes on each column separately.

C. Protecting Sensitive Data and Metadata

Security and privacy protection for sensitive data are es-
sential for today’s cloud services. Parquet supports column-
wise encryption of sensitive columns in a modular and effi-
cient fashion[16], [17], and being format-agnostic, our library
supports skipping over encrypted parquet data transparently.
However, an end-to-end solution needs to encrypt metadata,
since it can also leak sensitive information. To prevent leakage,
when storing metadata in Parquet, we implemented an option
to encrypt indexes on sensitive columns, by assigning a key to
each index. A user can choose the same key used to encrypt
the column the index originates from, choose another key, or
leave the index as plaintext. This scheme enables scenarios
such as storing data and metadata at a shared location, where
each user can only access a subset of the columns and indexes
according to their keys.

Spark’s partition pruning capability relies on either (1) a
widely accepted naming convention which names appropri-
ately partitioned data objects according to their partitioning
column name and column value or (2) a Hive metastore. The
first option leaks metadata into object names, and therefore
partitioning according to sensitive columns is problematic. Use
of a Hive metastore in a multi-tenant cloud service pushes
the problem of managing sensitive multi-tenant metadata to
the underlying database. An alternative is to rely on our data
skipping framework for partition pruning, thereby ensuring
end-to-end data and metadata protection, without sacrificing
performance.

IV. METADATA INDEX DESIGN

In this section we explain the requirements of a good meta-
data index type and cover indicators of skipping effectiveness.
We show that in theory both selecting and designing optimal
indexes are hard problems. However, we demonstrate practical
choices that work well in this and the following section. We
survey various index types implemented using our APIs with
a summary in table I.

Our goal is to minimize the total number of bytes scanned,
because there is a close correlation between this and query
completion time (e.g. see section V). Moreover, users of
serverless SQL services are typically billed in proportion to
the number of bytes scanned[1], [13].

For each query, prior to reading the data, the relevant
metadata is scanned and analyzed. As long as the metadata
is much smaller than the data, this approach can significantly
reduce the amount of data scanned overall. For big datasets
the overhead of scanning metadata is usually insignificant
compared to the benefits of skipping data (see figure 8), and
in some cases metadata can also be cached in memory or
on SSDs. When using our Parquet metadata store, we read
only the relevant metadata indexes by using Spark and Parquet
column projection capabilities.

A. Indicators of Skipping Effectiveness

Given a dataset (set of rows) D and a query Q, a row r in
D is relevant to Q if r must be read in order to compute Q
on D. Let Dr denote the set of relevant rows in D. Assuming
D is stored as objects5, let O denote the set of all objects for
D, let Or denote the set of objects relevant to Q (i.e. having
at least one relevant row), and let Om be the set of objects
deemed relevant according to the metadata associated with D.
Note that Or ⊆ Om. Note that Os = O − Om is the set of
objects that can be skipped.

Denote the number of rows in object o (or dataset D) as |o|
(|D|). All definitions below are w.r.t. a dataset D and a query
Q.

Definition 4. The selectivity σ of a query is the proportion
of relevant rows σ = |Dr|

|D|

5alternatively other units can be considered such as blocks, row groups etc.

Data skipping can potentially reduce bytes scanned for
selective6 queries. The definitions use relevant rows rather than
rows in the result set to account for queries which perform
further computations such as aggregation.

Definition 5. The layout factor λ of a query is the proportion
of relevant rows in relevant objects
λ = |Dr|∑

o∈Or
|o|

Mixing relevant and irrelevant rows in the same object
decreases the layout factor. A high layout factor (grouping rel-
evant rows together) increases the potential for data skipping.
To realise this potential we need effective metadata.

Definition 6. The metadata factor µ of a query is
µ =

∑
o∈Or

|o|∑
o∈Om

|o|

The metadata factor is closely related to the metadata’s
false positive ratio - a low false positive ratio gives rise to
a high metadata factor. In addition the metadata factor takes
into account the relative size of each object. A high metadata
factor denotes that the metadata is close to optimal given the
data layout.

Definition 7. The scanning factor ψ of a query is the
proportion of rows actually scanned (using metadata)
ψ =

∑
o∈Om

|o|
|D|

Our aim is to achieve the lowest possible scanning factor.
According to our definitions

ψ =
σ

λµ
(1)

To achieve this for a selective query we need λµ to be high,
and we are equally dependent on good layout and effective
metadata7.

We focus here on metadata effectiveness for any given data
layout, and refer the reader to previous work regarding data
layout optimization[44], [42]. In practice, often data layout
is given and cannot be changed e.g. legacy requirements,
compliance, encryption of one or more sensitive columns. In
other cases, re-layout of the data is too costly, or it might be
difficult to meet the needs of multiple conflicting workloads
without duplicating the entire dataset.

Our approach is to enable an extensible range of metadata
types, which cater to data within a reasonable range of
layout factors. Generating data skipping metadata is typically
significantly cheaper than changing the data layout, since no
shuffling of the data is needed. Moreover, unlike data layout,
it can be done without write access to the dataset and only
requires read access to the column(s) at hand. Each user can
potentially store metadata corresponding to their particular
workload.

On the other hand, using equation 1, we can identify cases
where the layout factor is prohibitively low and good skipping
is unachievable without re-layout.

6Selectivity ranges between 0 and 1.“Highly selective” queries have close
to 0 selectivity

7Note that the scanning factor is not defined for queries with 0 selectivity

To take averages of skipping indicators when considering
multiple queries, we use the geometric mean, following[22].
Let G(X) denote (

∏n
i=1 xi)

1
n . Given a dataset D and a

workload with queries q1, . . . , qn, where for each qi we have
ψi = σi

λiµi
, then we also have

G(ψ) =
G(σ)

G(λ)G(µ)
(2)

We apply this approach to measuring the skipping indicators
on real world datasets and workloads in section V.

B. The Index Selection Optimization Problem

Given a dataset D and query workload (set of queries) Q,
it is natural to ask what is the optimal set of metadata indexes
we can store to achieve the lowest possible scanning factor.
Since the workload and data layout are given, σ and λ are
given, and to achieve low ψ we need to achieve high µ. We
assume that every metadata index i has a cost ci, and that we
need to stay within a given metadata budget K. A natural cost
definition is the size of the metadata in object storage. We also
assume that each index i ∈ I provides a benefit vi which in our
case corresponds to the increase in µ as a result of i. Ideally,
given K and a set of candidate metadata indexes I , one could
choose an optimal subset I ′ ⊆ I which gives maximal µ while
staying within budget. We show that this problem is NP-hard
using a reduction from the knapsack problem. Previous work
showed that the problem of finding a data layout providing
optimal skipping is also NP-hard[44].

Problem 8. Given dataset D, workload Q, a set of indexes I ,
and a metadata budget K, find I ′ ⊆ I that maximizes

∑
i∈I′ vi

subject to
∑
i∈I′ ci ≤ K.

Claim 9. Problem 8 is NP-hard.

Proof. By reduction from {0,1}-knapsack. Knapsack item
weight and value correspond to the cost and benefit of an
index respectively, and knapsack capacity corresponds to the
metadata budget. Clearly, maximizing the value of items in the
knapsack within capacity is equivalent to maximizing index
benefit within a metadata budget.

Remark 10. This formulation shows that even in the special
case where the benefit of an index is independent from other
indexes, the problem is hard. In the general case, the benefit of
indexes is relative since, for example, an index which achieves
maximal µ renders further addition of indexes obsolete.

Given a fixed metadata budget, choosing optimal indexes is
a hard problem. However, for many index types8 we store a
fixed #bytes per object, thereby bounding the index size to a
small fraction of the data size. Using such index types, it is
reasonable to index all data columns, assuming the metadata
is stored in the same storage system as the data (i.e. with the
same storage/access cost).

8all index types in table I except for value list and prefix/suffix indexes

C. An Index Design Optimization Problem

Choosing an optimal set of indexes is hard. What about
designing a single optimal index? We show that this is hard
even for a range query workload on a single column. Consider
a single column c with a linear order e.g. integers, and a
workload Q with range queries over c i.e. queries of the
form

SELECT * FROM D
WHERE c between c1 and c2

Storing min/max metadata only for c may not achieve maximal
µ, for example, when an object’s rows have gaps in column
c between the min and max values. In this case if c1 and c2
both fit inside the gap then min/max metadata will give a false
positive for the query above. A gap list metadata index could
store a list of such gaps per object, and be used to skip objects
having gaps covering the intervals used in queries. Given a
dataset D, a workload Q and metadata budget of k gaps, which
gaps should be stored to give optimal µ? (We assume the cost
of each gap is equal). An algorithm which achieves this is
provided in [31]. However, we show that allowing queries with
disjunction turns this into a hard problem.

Problem 11. Given a dataset D with a column c having a
linear order, a workload Q comprising of disjunctive range
queries over c, and a metadata budget of K gaps, find a set
of k gaps where k ≤ K such that µ is maximized.

Problem 12. (Densest k-Subhypergraph problem) Given a
hypergraph G = (V,E) and a parameter k, find a set of k
vertices with maximum number of hyperedges in the subgraph
induced by this set[29].

Claim 13. Problem 11 is NP-hard.

Proof. By reduction from the densest k-Subhypergraph prob-
lem. Given G = (V,E) and k, we construct an input to
problem 11 as follows. We create a dataset with one object
O such that its column c induces |V | gaps - {g1, g2, .., g|V |},
and use the function f(vi) = gi to map each vertex to a gap.
Each hyperedge e ∈ E is mapped to a query with a WHERE
clause comprised of a predicate of the form: ∨v∈ec ∈ f(v).
In order to skip O for this query we need exactly those gaps
in {f(v)|v ∈ e}. In this setting maximizing µ (the number
of queries where O is skipped) is equivalent to finding the
densest k-Subhypergraph.

D. Metadata Index Types

Table I contains a summary of common index types (Min-
Max, BloomFilter) as well as novel ones we found useful
for our use cases and implemented for our Parquet metadata
store. All metadata enjoys Parquet columnar compression and
efficient encoding - therefore the Bytes/Object values in the
table can be considered an upper bound.

The MetricDist index enables similarity search queries
using UDFs based on any metric distance e.g. Euclidean,
Manhattan, Levenshtein. Applications include document and
genetic similarity queries. Recently semantic similarity queries

have been applied to databases[26], where values are con-
sidered similar based on their context, allowing queries such
as “which employee is most similar to Mary?”. Assuming a
metric function for similarity, extensible data skipping can be
successfully applied.

Additional index types can be easily integrated by imple-
menting our APIs - example candidates include SuRF[47],
HOT[24], HTM[45]. Recent work demonstrated the use of
range sets (similar to our gap lists) to optimize queries with
JOINs[35]. Adding a new index type via our APIs requires
roughly 30 lines of new code.

E. A Hybrid Index

When a column typically has low cardinality per object, a
value list is both more space efficient than a bloom filter and
avoids false positives. However, for high cardinality, value list
metadata size can approach that of the data. In order to achieve
the best of both worlds, we implemented a hybrid index, which
uses a value list up to a certain cardinality threshold, and a
bloom filter otherwise. We now explain how we determined
an appropriate threshold.

Assuming equality predicates only, we compare value list
and bloom filter indexes using the formulas presented in table
I. Our aim is to minimize the total bytes scanned for data
and metadata. Given an object of size |o|, a column with v
distinct values each one of size b̄ bits, and a workload Q =
{qi}ni=1 of exact match queries, let Ei ∈ {0, 1} be the event
in which o must be read for qi. It follows that the average data
to be scanned for the workload using a bloom filter index is
approximately 1

n

∑n
i=1(−v ln f

ln2 2
+ Ei|o| + (1 − Ei)f |o|). The

average data to be scanned for the workload using value list
is exactly 1

n

∑n
i=1(vb̄ + Ei|o|). Therefore, a value list index

is preferable when:

v(b̄+
ln f

ln2 2
) < f |o|(1− 1

n

n∑
i=1

Ei)

The term 1
n

∑n
i=1Ei can be approximated using the expected

scanning factor when using a value list index, which can be
derived from the workload mean layout and selectivity factors
using equation 2.

For example, given an object of size 64MB with a string
column of up to 64 characters (b̄ = 512) and a target scanning
factor of 0.01, a value list up to 10,088 elements is preferable
over a bloom filter with f = 0.01. We implemented a hybrid
index which creates a bloom filter or value list per object
according to the column cardinality. By default we use a
threshold of 10K elements based on the above example, but
this threshold can be changed according to dataset properties.

V. EXPERIMENTAL RESULTS

We focus on use cases where data is born in the cloud
at a high, often accelerating, rate so highly scalable and low
cost solutions are critical. We demonstrate our library for
geospatial analytics (representing IoT workloads in general)
and log analytics on 3 proprietary datasets. We collect skipping
effectiveness indicators and discuss their effect on the scanning

TABLE I: Data Skipping Index Types

Index Type Description Column Types Handles Predicates1 Bytes/Object2

MinMax Stores minimum/maximum values for a column ordered p(n, c) 2b
GapList Stores a set of k gaps indicating ranges where there are ordered p(n, c) kb

no data points in an object
GeoBox Applies to geospatial column types e.g. Polygon, Point. geospatial geo UDFs 2xb

Stores a set of x bounding boxes covering data points
BloomFilter Bloom filter is a well known technique[25] hashable n = c, n ∈ C −v ln f

ln2 2
(in bits)

ValueList Stores the list of unique values for the column has =, text n = c, n ∈ C, LIKE vb
Prefix Stores a list of the unique prefixes having b1 characters text LIKE ’pattern%’ v1b1
Suffix Stores a list of the unique suffixes having b2 characters text LIKE ’%pattern’ v2b2

Formatted Handles formatted strings. There are many uses cases. text template based UDFs varies
MetricDist Stores an origin, max and min distance per object has metric dist metric distance UDFs 2m+ b

1 p ∈ {<,≤, >,≥,=}. n is a column name and c is a literal, C is a set of literals.
2 b is the (average) number of bytes needed to store a single column element. v is the number of distinct values in a column for the

given object. k is the number of gaps (configurable). x is the number of boxes per object. v1 (v2) is the number of distinct values
with prefix (suffix) of size b1 (b2). m is the number of bytes needed to store a distance value. f is the false positive rate (f ∈ (0, 1)).

factor (hence data scanned). All experiments were conducted
using Spark 2.3.2 on a 3 node IBM Analytics Engine cluster,
each with 128GB of RAM, 32 vCPU, except where mentioned
otherwise. The datasets are stored in IBM COS. All experi-
ments are run with cold caches.

A proprietary (1) Weather Dataset contains a 4K grid of
hourly weather measurements. The data consists of a single
table with 33 columns such as latitude, longitude, temperature
and wind speed. The data was geospatially partitioned using
a KD-Tree partitioner[42]. One month of weather data was
stored in 8192 Parquet objects using snappy compression with
a total size of 191GB.

The two proprietary http server log datasets below are
samples of much larger datasets and use Parquet with snappy
compression:

(2) A Cloud Database Logs dataset, consisting of a single
table with 62 columns such as db name, account name,
http request. The data was partitioned daily with layout ac-
cording to the account name for each day, resulting in 4K
objects with a total size of 682GB.

(3) A Cloud Storage Logs dataset, consisting of a single
table with 99 columns such as container name, account name,
user agent. The data was partitioned hourly, resulting in 46K
objects with a total size of 2.47TB.

A. Indexing

Use of our APIs allows adding new index types achieving
similar performance to native index types with little pro-
grammer effort. Table II in appendix B reports statistics for
indexing a single column using various index types on our
datasets. In addition, we implemented an optimization which
reads min/max statistics from Parquet footers, which gives
significant speedups when only MinMax indexes are used on
Parquet data9.

Figure 7 shows that indexing multiple columns using the
Hybrid index is significantly faster than indexing each column
separately10, even for Parquet data where columns are scanned

9If additional index types are used it provides no benefit since the Parquet
row groups need to be accessed in any case.

10other index types behave similarly

Fig. 7: Indexing time/size vs #columns (log scale) with Hybrid
(cloud database logs) and MinMax (weather)

individually. For MinMax the indexing time remains low
(benefiting from our MinMax optimization) and flat when
varying the number of columns.

We note that indexing can be done per object at data
generation or ingestion time, and can alternatively be done
using highly scalable serverless cloud frameworks e.g. [33].

B. Metadata versus Data Processing

Figure 8 shows time and bytes scanned for 4 queries
searching for different values of the db name column (cloud
database logs dataset). The queries retrieve 8 columns, and
we compare ValueList, BloomFilter and Hybrid indexes on
the db name column, and in all cases either ValueList or the
Hybrid index outperforms BloomFilter (whereas BloomFilter
is the index most widely adopted in practice). There is a clear
correspondence between bytes scanned and query completion
times, and data skipping reduces query times roughly between
x3 and x20. In all cases, the time spent on metadata processing
is a small fraction of the overall time. For all queries, the
Hybrid index requires the least metadata processing time
because of its smaller size. For Q4, when almost all data is
skipped, the Hybrid index is superior for this reason. For Q2
and Q3, Hybrid and BloomFilter incur false positives and so
retrieve more data than ValueList, resulting in longer query
times.

We point out that for this scenario it only takes around
3 queries to save the 10 mins that were spent on indexing

(a) (b)

Fig. 8: Breakdown of time spent on data and metadata processing for 4 queries on cloud database logs and corresponding
bytes scanned

the db name column. On the other hand, the overhead for all
queries (selective and non selective) with all indexes is less
than 20 seconds per query. In terms of bytes scanned, we
scanned 6.73 GB to index the db name column, whereas each
query saves over 100GB (because of the additional columns
retrieved). Therefore in terms of cost, a user can achieve
payback after a single query.

C. Data Skipping for Geospatial UDFs

We demonstrate data skipping for queries with predicates
containing UDFs. To our knowledge, no other SQL engine
supports this, since query optimizers typically know very little
about UDFs. We used our extensible APIs to create filters
that identify UDFs from IBM’s geospatial toolkit[14] and map
them to MinMax and GeoBox index types. Supported pred-
icates include containment, intersection, distance and many
more [9].

For example, the following query retrieves all data whose
location is in the Bermuda Triangle. Without data skipping,
the entire dataset needs to be scanned.

SELECT * FROM weather WHERE
ST_CONTAINS(ST_WKTToSQL(
’POLYGON((-64.73 32.31,...))’),
ST_POINT(lat, lng))

In order to support skipping we can either use the GeoBox
index on the pair of lat/lng columns, or use independent
MinMax indexes on both lat and lng. For each case we map
the relevant UDFs to the corresponding Clauses. The GeoBox
index has the advantage that it can handle lower layout factors
by using multiple boxes per object. Since we partitioned the
dataset according to lat/lng, the MinMax approach is also
effective.

Figure 9 compares running ST Contains queries with and
without data skipping.11 The queries were run on an extrap-
olation of the weather dataset to a 5 year period. We used

11The results for ST Distance are similar.

Fig. 9: Effects of skipping versus no skipping for ST Contains
applied to the weather dataset with varying time window sizes

MinMax indexes resulting in 11MB of metadata for close to
12TB of data. The specific query we ran has the same form
as our example query, and selects data with location in the
Research Triangle area of North Carolina, with time windows
ranging between 1 to 12 months. We achieved a cost and
performance gap which is over 2 orders of magnitude - the
gap increases in proportion to the size of the time window.
For a 5 month window we achieved a x240 speedup. The
cost gaps reflected by amount of data scanned are similar. We
conclude that even with a high layout factor, running queries
with UDFs directly on big datasets is clearly not feasible
without extensible data skipping.

D. Benefits of Centralized Metadata

An alternative approach is to apply geospatial data layout
and rewrite queries to exploit min/max metadata, if available
in the storage format. This approach requires users to rewrite
queries manually, or else query rewrite needs to be imple-
mented for each query template. For example, the previous
query could be rewritten to the one below

SELECT * FROM weather WHERE
ST_CONTAINS(ST_WKTToSQL(
’POLYGON((-64.73 32.31,...))’),
ST_POINT(lat, lng))
AND lat BETWEEN 18.43 AND 32.31

Fig. 10: Effects of skipping versus rewrite approach for
ST Contains applied to the weather dataset with varying time
window sizes

AND lng BETWEEN -80.19 AND -64.73

Our approach uses centralized metadata which avoids read-
ing the footers of irrelevant Parquet/ORC objects altogether.
This achieves a performance boost for 2 main reasons: over-
heads for each GET requests are relatively high for object stor-
age, and Spark cluster resources are used more uniformly and
effectively. The bytes scanned are reduced both by avoiding
reading irrelevant footers and by metadata compression, which
lowers cost. Figure 10 compares the cost and performance of
extensible data skipping to a query rewrite approach. Since the
data is partitioned geospatially, both identify the same objects
as irrelevant. However, our centralized metadata approach
performs x3.6 better at run time at x1.6 lower cost for 5 year
time windows, demonstrating significant benefit.

E. Prefix/Suffix Matching

SQL supports pattern matching using the LIKE operator,
supporting single and multi-character wildcards. We added
prefix and suffix indexes to support predicates of the form
LIKE ’pattern%’ and LIKE ’%pattern’ respectively. The in-
dexes accept a length as a parameter and store a list of
distinct prefixes (suffixes) appearing in each object. This is
more efficient and results in smaller indexes compared to value
list when a column’s prefixes/suffixes are repetitive. 12

In figure 11 we present the skipping effectiveness indicators
for prefix/suffix matching on the db name column and prefix
matching on the http request column of the cloud database
logs dataset. For the db name column we stored prefixes
and suffixes of length 15, and for the http request column
we stored prefixes of length 20. Note the average column
lengths for these columns are much higher. We generated a
workload for each index consisting of 50 queries. For the
prefix workloads, each query has a LIKE ’pattern%’ predicate,
where the pattern is a random column value in the dataset with
prefix of random size up to the column value length. The suffix
workload is generated similarly.

Overall the aim is to bring the scanning factor as close
as possible to the selectivity. The extent to which this is
possible depends on how close we can bring the layout
and metadata factors to 1 (equation 2). Despite relatively
low layout factors (layout was not done according to the

12A trie based implementation is a topic for further work.

queried columns), good skipping is achievable. All indexes
shown here achieve metadata factor close to 1, despite storing
only prefixes/suffixes, and give a range of beneficial scanning
factors.

Fig. 11: Skipping effectiveness indicators for prefix/suffix and
format specific user agent indexes. For selectivity and scanning
factors lower is better, for metadata and layout factors higher
is better. With approximately equal metadata factors, a highly
selective (selectivity closer to 0) user agent workload makes
up for a significantly lower layout factor, achieving the best
scanning factor overall. All indexes are beneficial, achieving
between 1/1000 and 1/10 scanning factors.

In figure 12 we show the effects of increasing the prefix
length in terms of skipping indicators as well as metadata
size. In this case we generated a different random workload
for the db name column with 20 queries13. Here the selectivity
and layout factors are fixed so the scanning factor is inversely
proportional to the metadata factor. According to equation 1
the lowest possible scanning factor is around 10−2. We achieve
this for prefix length 15 with an order of magnitude smaller
metadata compared to a value list index.

Fig. 12: Skipping effectiveness indicators and metadata size
for a prefix index on the db name column w.r.t. prefix length.

F. Format Specific Indexing

As is typical for log analytics, many columns in our logs
datasets e.g. db name, http request have additional applica-
tion specific (nested) structure not captured by prefix/suffix
indexes, such as hierarchical paths and parameter lists. We
show how to index such columns, avoiding the need to add

13The selectivity is slightly different from that shown in figure 11 because
the workload is a different set of queries.

new data columns, which is often not feasible for large and
fast growing data.

We indexed the user agent column[40] of both datasets to
track the history of malicious http requests. Our extensible
framework enables easy integration with open source tools.
We used the Yauaa library[18], benefitting from its accurate
client identification[23], its handling of idiosyncrasies in the
format, and its keeping up to date with frequent client changes.
The library parses a user agent string into a set of field
name-value pairs. To generate the metadata, we parsed out the
agent name field, and stored a list of names per object. We
also implemented the getAgentName UDF. The query below
retrieves all malicious http requests in the log.

SELECT * FROM storagelogs
WHERE getAgentName(user_agent)=‘Hacker’

In figure 11 we show the skipping effectiveness indicators for
this index, using a workload consisting of 50 queries, where
for each query we chose a random agent name appearing in
the dataset. This highly selective workload enables very good
skipping even with low layout factor.

VI. RELATED WORK

Hive style partitioning partitions data according to certain
attributes, encoded as metadata in filenames. Spark/Hadoop
use this metadata for partition pruning. Using this technique
alone is inflexible since only one hierarchy is possible, chang-
ing the partitioning scheme requires rewriting the entire dataset
when using object storage (which has no rename operation),
and range partitioning is not supported. Our framework for
extensible data skipping is complementary to this technique.

Parquet and ORC support min/max metadata stored in file
footers, as well as bloom filters[5], [4]. Both support dictionary
encodings which provide some of the benefit of our value
list indexes. Note that these encodings are primarily designed
to achieve compression, so in some cases other encodings
are used instead, compromising skipping[27]. Both formats
require all objects to be partially read to process a query, and
footer processing is not read optimised. Neither format allows
adding metadata to an existing file, whereas our approach
allows dynamic indexing choices. Parquet allows user defined
predicates as part of a Filter API, however this is designed to
work with existing metadata only. Since query engines have
not exposed similar APIs this does not achieve extensible
skipping.

Data skipping Min/max metadata, also known as synopsis
and zone maps, is commonly used in commercial DBMSs [41],
[48] and some data lakes[6]. Other index types have been
explored in research papers e.g. storing small materialized
aggregates (SMAs) per object column such as min, max,
count, sum and histograms[37]. Brighthouse[43] defines a data
skipping index similar to Gap List. Their Character Map index
could be easily defined using our APIs. Recently range sets
(similar to our gap lists) have been proposed to apply data
skipping to queries with joins[35].

Data layout research Many efforts optimize data layout to
achieve optimal skipping e.g.[44], [20], [42], [38]. We survey
those most relevant. The fine grained approach[44] adopts
bit vectors as the only supported metadata type, where 1 bit
is stored per workload feature. To obtain a list of features
one needs to analyze the workload, inferring subsumption
relationships between predicates and applying frequent itemset
mining. This approach does not work well when the workload
changes. To handle a UDF, the user needs to implement
a subsumption algorithm for it, although this aspect is not
explained in the paper. On the other hand, our framework
enables defining a feature based (bit vector) metadata index,
allowing feature based data skipping when applicable.

Both AQWA[20] and the robust approach[42] address
changing workloads by building an adaptive kd-tree based
partitioner which exploits existing workload knowledge and
is updated when as the workload changes. AQWA focuses
on geospatial workloads only whereas the robust approach
handles the more general case. Data layout changes are made
when beneficial according to a cost benefit analysis. kd-
trees apply to ordered column types, and generate min/max
metadata only. Other layout techniques are needed to handle
categorical data and application specific data types such as
server logs and images.

Extensible Indexing Hyperspace defines itself as an exten-
sible indexing framework for Apache Spark[15], although at
the time of this writing it only supports covering indexes which
require duplicating the entire dataset, and does not include any
data skipping (chunk elimination) indexes. The Generalized
Search Tree (GiST) [32], [36] focused on generalizing inverted
index access methods with APIs such that new access methods
can be easily integrated into the core DBMS supporting
efficient query processing, concurrency control and recovery.
Our work focuses on data skipping for big data where classical
inverted indexes are not appropriate, and a different set of
extensible APIs is needed.

Applications Prior work addressed specific applications
such as geospatial analytics[39], [20], and range and k nearest
neighbour (kNN) queries for metric functions e.g.[30], [28]
without providing general frameworks.

VII. CONCLUSIONS

Our work is the first extensible data skipping framework,
allowing developers to define new metadata types and support-
ing data skipping for queries with arbitrary UDFs. Moreover
our work enjoys the performance advantages of consolidated
metadata, is data format agnostic, and has been integrated with
Spark in several IBM products/services. We demonstrated that
our framework can provide significant performance and cost
gains while adding relatively modest overheads, and can be
applied to a diverse class of applications, including geospatial
and server log analytics. Our work is not inherently tied to
Spark and could be integrated in any system with the ability
to intercept the list of objects to be retrieved. Further work
includes integration into additional SQL engines and automatic
index selection.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Ofer Biran, Michael Factor
and Yosef Moatti for their close involvement in this work and
for providing valuable review feedback. Thanks to Linsong
Chu, Pranita Dewan, Raghu Ganti and Mudhakar Srivatsa for
collaboration on the geospatial integration, and to Michael
Haide, Daniel Pittner and Torsten Steinbach for fruitful long
term collaboration. Thanks to Guy Gerson for involvement in
the initial stages of this work.

This research was partially funded by the EU Horizon 2020
research and innovation programme under grant agreement no.
779747.

REFERENCES

[1] Amazon Athena pricing. https://aws.amazon.com/athena/pricing/.
[2] Apache Hudi. https://hudi.apache.org/.
[3] Apache Iceberg. https://iceberg.apache.org/.
[4] Apache ORC. https://orc.apache.org.
[5] Apache Parquet. https://parquet.apache.org/.
[6] Databricks Delta Guide. https://docs.databricks.com/delta/optimizations/

file-mgmt.html#data-skipping.
[7] Delta Lake (open source version). https://delta.io/.
[8] Elastic Search. https://www.elastic.co.
[9] Geospatial Toolkit functions. https://www.ibm.com/support/knowledgecenter/

SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo functions.html.
[10] IBM Analytics Engine. https://www.ibm.com/cloud/analytics-engine.
[11] IBM Cloud Pak for Data. https://www.ibm.com/products/cloud-pak-for-data.
[12] IBM Cloud SQL Query. https://www.ibm.com/cloud/sql-query.
[13] IBM Cloud SQL Query Pricing. https://cloud.ibm.com/catalog/services/

sql-query.
[14] IBM Geospatial Toolkit. https://www.ibm.com/support/knowledgecenter/

SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo intro.html.
[15] Microsoft Hyperspace. https://github.com/microsoft/hyperspace.
[16] Parquet Modular Encryption. https://github.com/apache/parquet-format/blob/

master/Encryption.md.
[17] Test Driving Parquet Encryption. https://medium.com/@tomersolomon/

test-driving-parquet-encryption-3d5319f5bc22.
[18] Yauaa: Yet Another UserAgent Analyzer. https://yauaa.basjes.nl.
[19] Stocator - Storage Connector for Apache Spark. https://github.com/

CODAIT/stocator, 2019.
[20] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani,

H. Elmeleegy, and T. Qadah. Aqwa: adaptive query workload aware
partitioning of big spatial data. Proceedings of the VLDB Endowment,
8(13):2062–2073, 2015.

[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql:
Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD international conference on management of data, pages 1383–
1394. ACM, 2015.

[22] C. Ballinger. TPC-D: Benchmarking for Decision Support. http://people.
cs.uchicago.edu/∼chliu/doc/benchmark/chapter3.pdf.

[23] N. Basjes. Yauaa: Making sense of the user agent string. https://techlab.
bol.com/making-sense-user-agent-string.

[24] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis. Hot: A height
optimized trie index for main-memory database systems. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
’18, pages 521–534, New York, NY, USA, 2018. ACM.

[25] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 1970.

[26] R. Bordawekar, B. Bandyopadhyay, and O. Shmueli. Cognitive database:
A step towards endowing relational databases with artificial intelligence
capabilities. CoRR, abs/1712.07199, 2017.

[27] B. Braams. Predicate Pushdown in Parquet and Apache Spark. PhD
thesis, Universiteit van Amsterdam, 2018.

[28] E. Chávez and G. Navarro. An effective clustering algorithm to index
high dimensional metric spaces. In Proceedings Seventh International
Symposium on String Processing and Information Retrieval. SPIRE
2000, pages 75–86. IEEE, 2000.

[29] E. Chlamtác, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The
densest k-subhypergraph problem. CoRR, abs/1605.04284, 2016.

[30] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Proceedings of the 23rd
International Conference on Very Large Data Bases, VLDB ’97, pages
426–435, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers
Inc.

[31] M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and
J. Vondrak. Eagle-eyed elephant: Split-oriented indexing in hadoop.
In Proceedings of the 16th International Conference on Extending
Database Technology, EDBT ’13, pages 89–100, New York, NY, USA,
2013. ACM.

[32] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search
trees for database systems. In Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95, pages 562–573, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[33] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the
cloud: Distributed computing for the 99%. In Proceedings of the 2017
Symposium on Cloud Computing, pages 445–451, 2017.

[34] S. Kambhampati. Customize Spark for your deployment. https://developer.
ibm.com/technologies/analytics/blogs/customize-spark-for-your-deployment/,
2019.

[35] S. Kandula, L. Orr, and S. Chaudhuri. Pushing data-induced predicates
through joins in big-data clusters. Proceedings of the VLDB Endowment,
13(3):252–265, 2019.

[36] M. Kornacker. High-performance extensible indexing. In Proceedings
of the 25th International Conference on Very Large Data Bases, VLDB
’99, pages 699–708, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[37] G. Moerkotte. Small materialized aggregates: A light weight index
structure for data warehousing. In Proceedings of the 24rd International
Conference on Very Large Data Bases, VLDB ’98, pages 476–487, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[38] S. Nishimura and H. Yokota. Quilts: Multidimensional data partitioning
framework based on query-aware and skew-tolerant space-filling curves.
In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, pages 1525–1537. ACM, 2017.

[39] V. Pandey, A. Kipf, T. Neumann, and A. Kemper. How good are
modern spatial analytics systems? Proceedings of the VLDB Endowment,
11(11):1661–1673, 2018.

[40] E. R. Fielding, Ed. J. Reschke. Hypertext transfer protocol (http/1.1):
Semantics and content. RFC 7231, RFC Editor, June 2014.

[41] V. Raman et al. DB2 with BLU acceleration: So much more than just a
column store. Proceedings of the VLDB Endowment, 6(11):1080–1091,
2013.

[42] A. Shanbhag, A. Jindal, S. Madden, J. Quiane, and A. J. Elmore. A
robust partitioning scheme for ad-hoc query workloads. In Proceedings
of the 2017 Symposium on Cloud Computing. ACM, 2017.

[43] D. Slezak, J. Wróblewski, V. Eastwood, and P. Synak. Brighthouse: An
analytic data warehouse for ad-hoc queries. Proceedings of the VLDB
Endowment, 1:1337–1345, 08 2008.

[44] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained
partitioning for aggressive data skipping. In Proceedings of the 2014
SIGMOD. ACM, 2014.

[45] A. S. Szalay, J. Gray, G. Fekete, P. Z. Kunszt, P. Kukol, and A. Thakar.
Indexing the sphere with the hierarchical triangular mesh, 2007.

[46] G. Vernik, M. Factor, E. K. Kolodner, P. Michiardi, E. Ofer, and
F. Pace. Stocator: providing high performance and fault tolerance for
apache spark over object storage. In 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages
462–471. IEEE, 2018.

[47] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo. Surf: Practical range query filtering with fast succinct tries.
In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, pages 323–336, New York, NY, USA, 2018. ACM.

[48] M. Ziauddin, A. Witkowski, Y. J. Kim, D. Potapov, J. Lahorani,
and M. Krishna. Dimensions based data clustering and zone maps.
Proceedings of the VLDB Endowment, 10(12):1622–1633, 2017.

https://aws.amazon.com/athena/pricing/
https://hudi.apache.org/
https://iceberg.apache.org/
https://orc.apache.org
https://parquet.apache.org/
https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://docs.databricks.com/delta/optimizations/file-mgmt.html#data-skipping
https://delta.io/
https://www.elastic.co
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo_functions.html
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo_functions.html
https://www.ibm.com/cloud/analytics-engine
https://www.ibm.com/products/cloud-pak-for-data
https://www.ibm.com/cloud/sql-query
https://cloud.ibm.com/catalog/services/sql-query
https://cloud.ibm.com/catalog/services/sql-query
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo_intro.html
https://www.ibm.com/support/knowledgecenter/SSCJDQ/com.ibm.swg.im.dashdb.analytics.doc/doc/geo_intro.html
https://github.com/microsoft/hyperspace
https://github.com/apache/parquet-format/blob/master/Encryption.md
https://github.com/apache/parquet-format/blob/master/Encryption.md
https://medium.com/@tomersolomon/test-driving-parquet-encryption-3d5319f5bc22
https://medium.com/@tomersolomon/test-driving-parquet-encryption-3d5319f5bc22
https://yauaa.basjes.nl
https://github.com/CODAIT/stocator
https://github.com/CODAIT/stocator
http://people.cs.uchicago.edu/~chliu/doc/benchmark/chapter3.pdf
http://people.cs.uchicago.edu/~chliu/doc/benchmark/chapter3.pdf
https://techlab.bol.com/making-sense-user-agent-string
https://techlab.bol.com/making-sense-user-agent-string
https://developer.ibm.com/technologies/analytics/blogs/customize-spark-for-your-deployment/
https://developer.ibm.com/technologies/analytics/blogs/customize-spark-for-your-deployment/

APPENDIX A
FORMAL DESCRIPTION AND PROOFS

We point out that negation of an expression e can be handled
if we can construct a Clause representing ¬e.

Definition 14. Let c be a Clause that represents an expression
e, we say that a Clause c∗e is a negation of c with respect to
e if c∗e o ¬e

In the worst case, our algorithm will return None, meaning
that no skipping can be done.

Algorithm 1: Merge-Clause
input : an expression tree e with root v
output: A Clause C (possibly None)

1 if e = AND(a, b) then
2 /* Case 1 */
3 Let φ :=

∧
γ∈CS(v) γ

4 Run the algorithm recursively on a and b and
denote the result by α, β respectively

5 Return α ∧ β ∧ φ
6 else if e = OR(a, b) then
7 /* Case 2 */
8 Let φ :=

∧
γ∈CS(v) γ

9 Run the algorithm recursively on a and b and
denote the result by α, β respectively

10 Return (α ∨ β) ∧ φ
11 else if e = NOT (a) then
12 /* Case 3 */
13 Run the algorithm recursively on a, denote the

result by α
14 if α can be negated with respect to a then
15 Return α∗a
16 else
17 Return None
18 end
19 else
20 /* Case 4 */
21 Return

∧
γ∈CS(v) γ

Algorithm 2: Generate-Clause
input : a boolean expression e, a sequence of filters

f1, ..., fn
output: A Clause (possibly None) c

1 Apply f1, ..., fn to e
2 Run Merge− Clause(e) and return the result

A. Correctness

Given a query Q with ET e, we apply algorithm 2 to achieve
a Clause C using the filters defined using our extensible APIs
and registered in our system. We show that C o e. Therefore
we can safely skip all objects whose metadata does not satisfy
C.

Remark 15. A good perspective of how extensibility is
achieved is by viewing each extensible part’s role: metadata
types stand for what is the collected metadata, filters stand
for how to utilize the available metadata on a given query,
and metadata stores stand for how the metadata is stored.

Theorem 16. Let e denote a boolean expression, and f1, ..., fk
denote a sequence of filters. Denote by C the output of
algorithm 2 on e with f1, ..., fk. Then C o e.

B. Proof of theorem 16

To prove the theorem, we will use the following lemmas:

Lemma 17. Let e denote a boolean expression, let c1, c2 s.t.
c1 o e ∧ c2 o e. Then (c1 ∧ c2) o e.

Proof. Assume the stated assumptions. we will show that (c1∧
c2) o e by definition: let o ∈ U s.t. ∃r ∈ o.e(r) = 1. then -
since c1 o e we get c1(o) = 1, identically we get c2(o) = 1,
thus c1(o) = 1 ∧ c2(o) = 1 =⇒ (c1 ∧ c2)(o) = 1.

Lemma 18. Let e1, e2 denote a pair of boolean expressions,
let c1, c2 s.t. c1 o e1 ∧ c2 o e2. Then (c1 ∧ c2) o (e1 ∧ e2).

Proof. Assume the stated assumptions and let o ∈ U s.t.
∃r ∈ o.(e1 ∧ e2)(r), we will show that (c1 ∧ c2)(o): in
particular, e1(r), which implies c1(o). identically we get c2(o),
thus c1(o) ∧ c2(o) =⇒ (c1 ∧ c2)(o).

Lemma 19. Let e1, e2 denote a pair of boolean expressions,
let c1, c2 s.t. c1 o e1 ∧ c2 o e2. Then (c1 ∨ c2) o (e1 ∨ e2).

Proof. Assume the stated assumptions and let o ∈ U s.t. ∃r ∈
o.(e1 ∨ e2)(r), we will show that (c1 ∨ c2)(o): in particular, if
e1(r) then c1(o), else we get e2(r), which implies c2(o), thus
we get c1(o) ∨ c2(o) =⇒ (c1 ∨ c2)(o)

Remark 20. The above-mentioned lemmas can easily be re-
stated and re-proved for an arbitrary number of expressions,
by a simple induction. we omit these parts and from now we
will use the lemmas as if stated for an arbitrary number of
expressions.

Lemma 21. Let e denote a boolean expression, denote by Te
the expression tree rooted at e. Assume the following holds:

Assumption 22. ∀v ∈ Te∀c ∈ CS(v) : c o v.

Denote by C the output of Algorithm 1 on e, then C o e.

Proof. By full induction on d - the depth 14.we will assume
WLOG that all {∨,∧,¬} nodes are of degree ≤ 2.

Case 1: (Base case, d = 0) In this case, e is a single boolean
operator, so case 4 of Algorithm 1 is applied. By our
assumption, ∀c ∈ CS(e).c o e, by lemma 17 , we get∧
γ∈CS(e) γ o e, and indeed this is the output in this case.

Case 2: (Induction Step) Let d ∈ N+ and assume the claim holds
for all k ∈ {0...d − 1}. since d > 0, cases 1, 2, 3 of
Algorithm 1 are the only options.

14in this case the depth is defined as the maximum length (in edges) of a
path from the root (Te) to a {∨,∧,¬} node, comprised of {∨,∧,¬} nodes
only, so for example the depth of (a+ b < 2) ∧ (c < 5) is 1

Case 2.a: if e = AND(a, b) : in this case, Algorithm 1 is called
again on a, b, use α, β from Algorithm 1’s notation.
a, b are both expressions of depth strictly smaller than
d, so by the inductive hypothesis we have α oa and β ob
; by lemma 18 we get (α∧β) o (a∧ b). by lemma 17
and from Assumption 22 we get (φ =

∧
γ∈CS(e) γ) oe.

applying lemma 17 again we get (α ∧ β ∧ φ) o e, and
indeed this is the output in this case.

Case 2.b: if e = OR(a, b) : in this case, Algorithm 1 is called
again on a, b, use α, β from Algorithm 1’s notation.
a, b are both expressions of depth strictly smaller than
d, so by the inductive hypothesis we have α o a and
β o b; by lemma 19 we get (α ∨ β) o e. by lemma 17
and from Assumption 22 we get (φ =

∧
γ∈CS(e) γ) oe.

applying lemma 17 again we get ((α∨β)∧φ) oe, and
indeed this is the output in this case.

Case 2.c: if e = NOT (a): in this case, Algorithm 1 is called
again on a, and the result is denoted as α.

Case 2.d: if α can be negated with respect to a: Algorithm 1
returns α∗a, and by definition α∗a o ¬a = e

Case 2.e: if α CAN NOT be negated with respect to a: None
is returned, which represents any expression.

We are now ready to prove Theorem 16:

Proof of Theorem 16. From Algorithm 1’s assumptions we
know that f1, ..., fn are filters, thus Assumption 22 holds.
Thus, correctness follows from Lemma 21.

APPENDIX B
INDEXING STATISTICS

TABLE II: Indexing Statistics

Index Col Num. MD Indexing
Type Size Objects Size Time

(GB) (MB) (min)
ValueList 6.73 4000 163.2 9.4

BloomFilter 6.73 4000 67.8 10.0
Hybrid 6.73 4000 40.4 9.7

Prefix(15) 6.73 4000 17.0 10.0
Suffix(15) 6.73 4000 35.5 10.0
Value List 0.39 4000 34.2 8.5

BloomFilter 0.39 4000 38.9 9.4
Hybrid 0.39 4000 34.3 10.0

Formatted1 0.72 4000 0.27 15
MinMax 0.56 4000 0.125 0.97
MinMax 12.16 8192 0.38 1.2

1 Identifies malicious requests using user agent column
- see section V-F.

APPENDIX C
EXAMPLE DATA SKIPPING INDEX

The following is a simplified version of the user agent index
from section V-F. We registered a UDF in Spark which uses
the Yauaa library[18] to extract the user agent name from a
user agent string.

import nl.basjes.parse.useragent._
object UserAgentUDF {
// Define the analyzer at the object level
val analyzer =

UserAgentAnalyzer.newBuilder().build()
val getAgentName = (userAgent: String) => {
val res = analyzer.parse(userAgent)
.get(UserAgent.AGENT_NAME)
res.getValue

}}

The UDF registration is done in the main code using

spark.udf.register("getAgentName",
UserAgentUDF.getAgentName)

The user agent index collects a list of distinct agent names,
therefore, we reuse the Value List MetaDataType (rep-
resenting a set of strings) and its Clause as well as the
translation for both.

A. Index Creation

case class UserAgentNameListIndex(column :
String) extends Index(Map.empty, column) {
def collectMetaData(df: DataFrame):

MetadataType = {
ValueListMetaData(

df.select(getAgentName(col("user_agent")))
.distinct().collect().map(_.getString(0)))

}}

B. Query evaluation

The following filter identifies the query pattern appearing
in section V-F.

case class UserAgentNameFilter(col:String)
extends BaseMetadataFilter {

def labelNode(node:LabelledExpressionTree):
Option[Clause] = {

node.expr match {
case EqualTo(udfAgentName: ScalaUDF,v

: Literal) if
isUserAgentUDF(udfAgentName, col) =>

Some(ValueListClause(col,
Array(v.value.toString)))

case _ => None
}}

The function isUserAgentUDF checks for a match in the
ET with the getAgentName UDF.

	I Introduction
	II Extensible Data Skipping
	II-A Extensible Data Skipping APIs
	II-A1 Index Creation
	II-A2 Query Evaluation

	III Implementation
	III-A Spark Integration
	III-B Metadata Stores
	III-C Protecting Sensitive Data and Metadata

	IV Metadata Index Design
	IV-A Indicators of Skipping Effectiveness
	IV-B The Index Selection Optimization Problem
	IV-C An Index Design Optimization Problem
	IV-D Metadata Index Types
	IV-E A Hybrid Index

	V Experimental Results
	V-A Indexing
	V-B Metadata versus Data Processing
	V-C Data Skipping for Geospatial UDFs
	V-D Benefits of Centralized Metadata
	V-E Prefix/Suffix Matching
	V-F Format Specific Indexing

	VI Related Work
	VII Conclusions
	VIII Acknowledgements
	References
	Appendix A: Formal Description and Proofs
	A-A Correctness
	A-B Proof of theorem 16

	Appendix B: Indexing Statistics
	Appendix C: Example data skipping index
	C-A Index Creation
	C-B Query evaluation

