
C-SMOTE: Continuous Synthetic Minority
Oversampling for Evolving Data Streams

Alessio Bernardo
DEIB - Politecnico di Milano

Milano, Italy
alessio.bernardo@polimi.it

Heitor Murilo Gomes
University of Waikato

Hamilton, New Zealand
heitor.gomes@waikato.ac.nz

Jacob Montiel
University of Waikato

Hamilton, New Zealand
jmontiel@waikato.ac.nz

Bernhard Pfahringer
University of Waikato

Hamilton, New Zealand
bernhard@waikato.ac.nz

Albert Bifet
University of Waikato, New Zealand

LTCI, Télécom ParisTech, France
abifet@waikato.ac.nz

Emanuele Della Valle
DEIB - Politecnico di Milano

Milano, Italy
emanuele.dellavalle@polimi.it

Abstract—Streaming Machine Learning (SML) studies single-
pass learning algorithms that update their models one data item
at a time given an unbounded and often non-stationary flow of
data (a.k.a., in presence of concept drift). Online class imbalance
learning is a branch of SML that combines the challenges of both
class imbalance and concept drift. In this paper, we investigate
the binary classification problem of rebalancing an imbalanced
stream of data in the presence of concept drift, accessing one
sample at a time. We propose Continuous Synthetic Minor-
ity Oversampling Technique (C-SMOTE), a novel rebalancing
meta-strategy to pipeline with SML classification algorithms.
C-SMOTE is inspired by the popular SMOTE algorithm but
operates continuously. We benchmark C-SMOTE pipelines on
ten different groups of data streams. We bring empirical evidence
that models learnt with C-SMOTE pipelines outperform models
trained on imbalanced data stream without losing the ability to
deal with concept drifts. Moreover, we show that they outperform
other stream balancing techniques from the literature.

Index Terms—Streaming data, Concept Drift, Balancing, Bi-
nary Classification

I. INTRODUCTION

Nowadays, data abound as a multitude of smart devices,
such as smartphones, wearables, computers, and Internet of
Things (IoT) sensors produce massive, continuous and un-
bounded flows of data namely data streams. This poses several
challenges to Machine Learning (ML). First of all, 1) it is
impossible to load a data stream as a whole in memory because
it is infinite and, 2) it is often non-stationary, i.e. there is a
constant presence of concept drift [1]. This means that the
function which generates instances at time step t does not
need to be the same that generates instances at time step t+1.
ML practitioners address the first challenge by transforming
the stream into a sequence of batches and retraining a model
as new batches are available. As a consequence, another
challenge arises: the need to retrain a model within strict time
constrains. Moreover, dealing with concept drift requires an
algorithm that can adjust quickly to changing conditions. The
risk is that the model trained up to that point does not fit

978-1-7281-6251-5/20/$31.00 ©2020 IEEE

anymore the data received after the change. The traditional
ML techniques are not designed to monitor concept drift,
so their models are prone to introduce classification errors
when it happens. In recent years, a different approach was
introduced to tackle time, memory, and concept drift problems
that affect batch methods. It is often referred to as the
Streaming Approach (a.k.a. Data Stream Mining or Online
Learning) [2]. Ideally, every time a new instance arrives,
a streaming learner inspects it without saving in memory,
updates the model incrementally, and it is able to predict
at each moment. In this way, the data storage problem is
avoided because the new instance is immediately discarded
after the training phase, and the time problem is addressed
by updating the model incrementally, one instance at a time,
without the need of retraining it from the beginning. Moreover,
this approach includes some techniques able to detect when
concept drift occurs and to adapt the model accordingly to it.

In this paper, we focus on streaming binary classification
problems involving concept drift and imbalanced data. It is
a relevant topic since classification techniques tend to focus
on the most representative instances, thus neglecting minority
instances [3]. This may prevent or delay the discovery of any
existing patterns in the minority class. Moreover, due to the
concept drift occurrence, classes can swap, i.e. all the samples
labeled as minority (majority) class before the concept drift
occurrence get labeled as majority (minority) class after it.

The combined problems of concept drift and class imbal-
ance are found in many real-world applications. A current
example could be the diagnosis of COVID-19 disease starting
from patients’ symptoms. This new disease represents the mi-
nority class and it is difficult to diagnose because its symptoms
are similar to a seasonal flu. At the beginning, the minority
instances are rare and could be ignored, but, as time went on,
they become increasingly more important and, so, the correct
classification importance increases, too. Another application
could be spam filtering. It is a typical classification problem
involving class imbalance and concept drift. The spam class
is the minority one and suffers from a higher misclassification

cost. Moreover, the spammers are actively working on how to
break through the filter. It means that the adversary actions are
adaptive. For example, one of the spamming behaviors is to
change email content and presentation in disguise, implying a
concept drift.

To address these problems, techniques to rebalance the
training dataset were proposed in the batch scenario. One of
the most famous and powerful [3] is the Synthetic Minority
Oversampling Technique (SMOTE) [4]. All of them need the
entire data batch to rebalance it, but, in the streaming approach,
such a batch is not available.

In this paper, we investigate the following research ques-
tion: if one has a binary classification problem on an im-
balanced data stream in presence of concept drift, should
continuous rebalance the data stream before applying a SML
classification algorithm?

The main contributions of this paper are:
• C-SMOTE, a meta-strategy inspired by the well known

SMOTE technique (applicable only to batches) that can
be pipelined with any data stream classifier;

• an analysis of the performances of C-SMOTE when
pipelined with different data stream classifiers on ten
groups of dynamic and imbalanced data streams (eight
real and two synthetic) showing at least an improvement
of the minority class performances; and

• a comparison between C-SMOTE and four other
strategies able to deal with class imbalance in the
streaming scenario, namely Adaptive Random For-
est with Resampling (ARFRE) [5], RebalanceStream
(RB) [6], undersampling-based Online Bagging (UOB)
and oversampling-based Online Bagging (OOB) [7]
showing that there is at least one algorithm pipelined with
C-SMOTE that outperforms the state of the art one.

The remainder of this paper is organized as follows. Sec-
tion II describes the investigated problem and presents tech-
niques able to handle it. Section III describes the method
proposed. Section IV introduces the related works. Section V
presents our research hypotheses, introduces the datasets used
in the experiments, and shows the evaluation results. Finally,
Section VI discusses the conclusions and outlines directions
for future research.

II. SAMPLING TECHNIQUES FOR CLASS IMBALANCE

An unequal distribution between the classes characterizes
imbalance data. Since the instances contained in the minority
class(es) rarely occur, the patterns for classifying these classes
tend to be rare, undiscovered, or ignored. This can be a
problem during the training phase: in fact, the model can
analyze a sample and cleverly decide that the best thing to
do is predicting the majority class without examining any of
its features.

He and Garcia [3] characterize the approaches to han-
dle class imbalance as: sampling techniques, cost-sensitive
learning, kernel-based methods, and active learning methods.
This work focuses on sampling techniques because they allow

Fig. 1. SMOTE example.

creating a new meta-strategy that can be run during the pre-
processing phase, regardless of the streaming method chosen.
The user is free to choose the SML algorithm to use. Sam-
pling techniques change the data distribution so that standard
algorithms focus on the cases that are more relevant to the
user.

Sampling techniques includes oversampling and undersam-
pling methods. Oversampling methods increase the number
of minority class instances through the creation of synthetic
instances, until classes are balanced or nearly balanced. After
the creation of new instances, the minority class, which was
originally underrepresented, may exert a greater influence on
learning and future predictions. Undersampling methods, on
the other hand, aim at reducing the number of instances from
the majority class by removing instances from this class. They
often act in two ways, by removing noisy instances, or simply
reducing instances by some heuristics or even randomly. Both
methods introduce their own set of drawbacks that can worsen
the learning phase [3]. In case of undersampling, removing
instances from the majority class may cause important con-
cepts loss. In case of oversampling, since data are replicated or
synthetically generated, the drawback is that multiple iterations
over the same instances can result in overfitting.

A popular balancing techniques is SMOTE [4], shown in
Fig. 1. It is an oversampling technique, therefore it synthet-
ically generates instances for the minority class to balance
the training data. For each minority class sample xi (orange
triangle), SMOTE finds its K-nearest neighbours among the
other minority class samples, it randomly chooses one x̂i from
them, and its distance from xi is multiplied by a random
number δ ∈ [0, 1]. The resulting new sample xn (black circle)
is located between xi and the selected neighbor x̂i.

In general SMOTE has been shown to improve classifica-
tion. Moreover, it may also show drawbacks related to the
way it creates synthetic samples. Specifically, SMOTE gen-
erates new samples without considering the neighbour exam-
ples, which increases the occurrence of overlapping between
classes. To this end, various adaptive sampling methods have
been proposed to overcome this limitation. Some representa-
tive works include the Borderline-SMOTE, Adaptive Synthetic
Sampling and SMOTE+Tomek algorithms, all presented in [3].

Moreover, as a sampling technique, SMOTE caches the
entire dataset in memory. This approach is against the basic

Fig. 2. Architecture of C-SMOTE meta-strategy pipelined with an Online
Learner.

principles of the data stream paradigm that states that a sample
can be inspected only once, as fast as possible, and then
discarded. In Section III, we explain how to overcome this
problem.

III. C-SMOTE

This section describes the proposed meta-strategy
Continuous-SMOTE (C-SMOTE), shown in Fig. 2, inspired
by the SMOTE technique. C-SMOTE is designed to
rebalance an imbalanced data stream and it can be pipelined
with any streaming classification techniques. C-SMOTE
stands for Continuous-SMOTE, meaning that the new
SMOTE version is applied continuously.

As said before, the real problem is the lack of the entire data
during the rebalance phase. Moreover, it is impossible to store
every new sample in memory until the data stream ends for two
reasons: 1) the data streams are assumed infinite, and 2) this
would be against the stream paradigm approach. The solution
is to use ADWIN [8] to save only the recently-seen samples and
using the minority class samples stored in the ADWIN window
to apply SMOTE. ADWIN keeps a variable-length window
of recently seen items and it is able to automatically detect
and adapt its window to the current rate of change. ADWIN,
in (1), uses a threshold called delta in order to automatically
configure the error with two levels, named warning and change
level. The warning level is identified using delta× 10, while
the change level is identified using delta. Since delta appears
to the denominator, using delta × 10 will produce a lower
value than using delta. So the warning level will occur before
the change one. n is the width of the window in that moment.

levelError = log(
2× log n

delta
) (1)

ADWIN monitors the error over the data in the window. If the
error becomes greater than a warning level, ADWIN assumes
that a concept drift starts to occur and it starts collecting new
samples in a new window, too. If the error becomes greater
than the change level, ADWIN assumes that a concept occurred
and it substitutes the old window with the new one.

In this way, the online version of SMOTE is always applied
on data that are consistent with the current concept, and

Algorithm 1:
Symbols:
minSizeMinority: Minimum number of minority
class instances to allow the rebalancement procedure;
l: Streaming learner;
t: Balance ratio to achieve;
S: Binary classification data stream;
S0: Number of samples contained into the class 0;
S1: Number of samples contained into the class 1;
S0: Number of class 0 synthetically generated samples;
S1: Number of class 1 synthetically generated samples;
Sgen: Number of synthetic samples generated by each
sample in W ;
W : Sliding window with all the recently-seen samples;
Wlabel: Sliding window of bits stating if a sample
belongs to class 0 or 1;
adwin: Drift detector;
imbalanceRatio: Imbalance ratio of the window W ;

1 Function C-SMOTE (minSizeMinority, l, t, S):
2 W,Wlabel ← ∅
3 S0, S1, S0, S1 ← 0
4 Sgen ← ∅
5 imbalanceRatio← 0
6 adwin← ∅
7 while hasNext(S) do
8 X, y ← next(S)
9 prequentialEvaluation(X, l)

10 train(X, y, l)
11 W ← add(X, y)
12 updateWindows(X, y,Wlabel)
13 updateCounters(y, S0, S1)
14 adwin← add(y)
15 checkConceptDrift(adwin,W,Wlabel, S0, S1,
16 S0, S1, Sgen)

17 Wmin, Smin, Smin ←
selectMinorityClass(W,Wlabel, S0, S1, S0, S1)

18 Wmaj , Smaj , Smaj ←
selectMajorityClass(W,Wlabel, S0, S1, S0, S1)

19 if checkMinSize(minSizeMinority, Smin)
then

20 imbalanceRatio←
ratio(Smin, Smaj , Smin, Smaj)

21 while t > imbalanceRatio do
22 X̂, ŷ ← newSample(Wmin, Sgen)

23 Smin ← Smin + 1

24 train(X̂, ŷ, l)
25 imbalanceRatio←

ratio(Smin, Smaj , Smin, Smaj)

26 end
27 end
28 end
29 End Function

the new generated samples will be consistent to it, too. The
pseudo-code of C-SMOTE is presented in Algorithm 1.

Given a stream S {(X1, y1), (X2, y2), ...}, where Xi is a
feature vector, and yi is the class label, C-SMOTE keeps
two sliding windows of samples (Line 2): W contains all the
samples related to the current concept, while Wlabel is an array
of bits stating if the corresponding samples in W belong to
the class 0 or 1. The variable adwin (Line 6) is the change
detector that, using the class value of the sample in input,
is responsible for keeping the two windows consistent with
concept drift. It is not its responsibility to adapt the model to
concept drift. The pipelined streaming classifier model may
or may not incorporate a change detector. C-SMOTE has
also five counters (Line 3-4): S0 and S1, respectively, count
the number of instances in each class; S0 and S1 count,
respectively, the number of instances of class 0 and 1 generated
by C-SMOTE; Sgen, for each sample i in W , keeps track of
how many times i is used to introduce synthetic samples. The
reason why C-SMOTE keeps track of the instances of both
classes is that, after a concept drift, in W , the samples of class
1 may be less than the ones of class 0. In this case, the samples
of class 1 are considered as minority class and they are used
by SMOTE to introduce new synthetic samples.

Every time a new sample (X, y) is available, the prequential
evaluation approach [9] is applied and then, the pipelined
learner l is trained (Lines 8-10). After that, the new sample
(X, y) is saved in W . The function updateWindows at
Line 12, depending of the class value y, adds a new bit
into Wlabel (0 if y = 0 or 1 if y = 1), while the function
updateCounters at Line 13, depending of the class value
y, increments the relative counter S0 or S1. Then, adwin
is updated with the class value y of the sample in input
(Line 14) and the checkConceptDrift function uses adwin
to check the presence of a concept drift change (Line 15). If a
concept drift has occurred, the function adapts and reduces
W in according with the window maintained by adwin.
Accordingly to W , it also updates Wlabel and the counters S0,
S1. Moreover, if the instances removed from W have been
used to generate some new synthetic samples, the function
updates the counter of instances generated for that class S0 or
S1, too. The next step identifies the real minority (Line 17) and
majority (Line 18) class and saves the corresponding window
and counters into, respectively, Wmin, Smin, Smin and Wmaj ,
Smaj , Smaj . Then, Line 19 checks if the instances in Wmin

are at least equal to the hyperparameter minSizeMinority
specified by the user. If it is true, the algorithm can proceed
with the rebalance phase, otherwise it waits another sample
in input. If minSizeMinority is equal to −1, no check is
performed on the minority class size, so the checkMinSize
function will always return true. At Line 20, the actual
imbalanceRatio (2) between the number of minority and
majority instances stored in W is calculated.

imbalanceRatio =
Smin + Smin

Smin + Smaj + Smin + Smaj
(2)

If imbalanceRatio is less than the hyperparameter bal-

ance ratio to achieve t, which means that W is imbal-
anced, some new synthetic samples (X̂, ŷ) are generated until
the imbalanceRatio is equal to t, which means that W
is balanced now (Lines 22-25). In particular, the function
newSample, at Line 22, is responsible to generate a new
synthetic sample. This is different from the original SMOTE.
Before starting to generate new instances, SMOTE calculates
the number of instances to introduce for each minority sample
in the batch and then it starts to execute. C-SMOTE randomly
chooses one sample (X, y) from Wmin and uses it to apply
SMOTE. Then, it increments the counter Sgen for (X, y) and
the function, in this rebalance phase, does not use anymore
(X, y) to generate other synthetic instances. The only excep-
tion is when the number of synthetically generated instances
needed to rebalance W is greater than the number of the
minority class sample Smin. Only in this case, the function
reuses (X, y) multiple times in the same rebalance phase. So,
in our continuous version, not all the minority class instances
are used to generate new instances. After that, at Line 23,
Smin is updated, the new instance (X̂, ŷ) is used to train the
learner l and the new imbalanceRatio is calculated.

IV. RELATED WORK

In the literature, there are SML approaches able to learn
from imbalanced data stream in presence of concept drift. They
are commonly categorized into two major groups: passive
versus active approaches, depending on whether an explicit
drift detection mechanism is employed. Passive approaches
train a model continuously without an explicit trigger reporting
the drift, while active approaches determine whether a drift
has occurred before taking any actions. Examples of passive
approaches are RLSACP, ONN, ESOS-ELM, an ensemble
of neural network, OnlineUnderOverBagging, OnlineSMOTE-
Bagging, OnlineAdaC2, OnlineCSB2, OnlineRUSBoost and
OnlineSMOTEBoost, while ARFRE, RebalanceStream, OOB,
UOB, WEOB1 and WEOB2 are considered active approaches.

RLSACP [10] is inspired from the recursive least square
(RLS) filter error model. In the proposed error model, non-
stationarity is handled with the forgetting factor (k) in the RLS
error model while for handling class imbalance, two adaptive
error weighting strategies are proposed. In the first one, error
weights are adapted based on classifier results in different
classes. In the second one, the number of instances in the
minority and majority class are counted in a fixed window
of the most recent samples and the weights are assigned
accordingly.

ONN [11] is a similar approach. It is an online Multi Layer
Perceptron model composed by two parts. The former is a
forgetting function for handling concept drift while the latter
is an error weighting function for handling class imbalance.

EONN [12] is an online ensemble neural network model
composed by two layers. The first layer is a cost-sensitive
neural network for handling class imbalance, while the sec-
ond layer contains a method for weighting classifiers of the
ensemble.

TABLE I
THE PRINCIPAL CHARACTERISTICS OF THE RELATED WORKS COMPARED TO C-SMOTE.

Method Classifier type Approach type Approach for CD Approach for Class Imbalance
RLSACP [10] Single Passive Forgetting factor Cost weight
ONN [11] Ensemble Passive + Active module Forgetting factor Cost weight
EONN [12] Ensemble Passive Weighted ensemble Cost weight
ESOS-ELM [13] Ensemble Passive Weighted ensemble Cost weight
OnlineUnderOverBagging [14] Ensemble Passive Weighted ensemble Undersampling + Oversampling
OnlineSMOTEBagging [14] Ensemble Passive Weighted ensemble SMOTE
OnlineAdaC2 [14] Ensemble Passive Weighted ensemble Cost weight
OnlineCSB2 [14] Ensemble Passive Weighted ensemble Cost weight
OnlineRUSBoost [14] Ensemble Passive Weighted ensemble Undersampling
OnlineSMOTEBoost [14] Ensemble Passive Weighted ensemble SMOTE
ARFRE [5] Ensemble Active ADWIN Cost weight
RB [6] Multiple (4) Active ADWIN SMOTE
OOB [7] Ensemble Active Weighted ensemble Oversampling + Cost weight
UOB [7] Ensemble Active Weighted ensemble Undersampling + Cost weight
WEOB1/WEOB2 [15] Ensemble Active Weighted ensemble Cost weight
C-SMOTE Meta-strategy Left to pipelined algorithm Left to pipelined algorithm SMOTE + ADWIN

Another passive technique is ESOS-ELM [13]. It is an
ensemble approach that, for tackling class imbalance, resam-
ples the data using fixed weights to train each classifier with
approximately equal number of majority and minority class
samples. Instead, for tackling concept drift, it uses a voting
weights system according to the geometric-mean (G-mean)
performance metric. ESOS-ELM has also an active module to
handle recurring concept drift.

OnlineUnderOverBagging, OnlineSMOTEBagging, Onlin-
eAdaC2, OnlineCSB2, OnlineRUSBoost and OnlineSMOTE-
Boost [14] are the online extensions of the popular batch cost-
sensitive ensemble learning algorithms UnderOverBagging,
SMOTEBagging, AdaC2, CSB2, RUSBoost and SMOTE-
Boost respectively. The main challenge for adapting them to
the online settings resides in finding a way to embed costs into
online ensembles for boosting algorithms without having all
the data. They reformulate the batch cost-sensitive boosting
algorithms in a way that there is no normalization step at
each iteration, and then to incrementally estimate the quantities
embedded with the cost setting in the online learning scenario.
Whereas cost sensitivity in the batch setting is achieved by
different resampling mechanisms, in the online ensembles it
is achieved by manipulating the parameters of the Poisson
distribution for different classes.

ARFRE [5] is an extension of the original ARF [16] algo-
rithm. ARFRE resamples instances based on the current class
label distribution, such that it adapts the weights of the Poisson
distribution to simulate a balance of the instances to the base
models of the forest. To calculate the weights (3), it uses Sc

and Sn that represents the number of instances from class
c and the total number of instances observed on the stream,
respectively.

weight(Sc, Sn, λ) =
100− Sc×100

Sn

100
× Poisson(λ) (3)

Effectively, if a sample is part of the minority class, its weight
used during the training phase will be increased in comparison
to a sample from the majority class.

RebalanceStream (RB) [6] uses ADWIN [8] to detect con-
cept drift in the stream by training four models m1, m2, m3,
and m4 in parallel: m1 is trained with the original samples in
input; m2 uses the samples collected and rebalanced using
SMOTE from the beginning to a change (when the last
concept drift occurred); m3 uses the samples collected from a
warning (when the most recent concept drift started to occur)
to a change; and m4 uses the same data of m3 but rebalanced
using SMOTE. After a change, the best model among them
is chosen and it is used to continue the execution according
to k-statistics.

Oversampling-based Online Bagging (OOB) and
undersampling-based Online Bagging (UOB) [7] are other two
resampling-based ensemble methods. When class imbalance
is detected, oversampling or undersampling embedded in
Online Bagging [17] is triggered to either increase the chance
of training minority class examples or reduce the chance
of training majority class examples. If the new example
(X, y) belongs to one of the minority classes (y ∈ Y min),
OOB will tune the parameter λ of Poisson distribution to
1/wk, which indirectly increases the number of copies of
the current example for training. In other words, it combines
oversampling with Online Bagging. If (X, y) belongs to one
of the majority classes (y ∈ Y maj), UOB will set λ to
(1 − wk). Training examples from the majority class will be
undersampled. Some performance analysis [15] on OOB and
UOB show that UOB is a better choice than OOB in terms
of minority-class Recall and G-mean. However, it has some
weaknesses when the majority class in the data stream turns
into the minority class. OOB is more robust against changes.
To combine the strength of OOB and UOB, WEOB1 and
WEOB2 [15], are proposed. They are based on the idea of
ensembles, which train and maintain both OOB and UOB. A
weight is maintained for each of them, adjusted adaptively
according to their current performance measured by G-mean.
It evaluates the degree of inductive bias in terms of a ratio
of positive accuracy and negative accuracy. Their combined
weighted vote will decide the final prediction. WEOB1 and

WEOB2 differ in the weight adjusting strategy that they use.
All the described methods with their principal characteris-

tics are summarized and compared to C-SMOTE in Table I.

V. EXPERIMENTAL EVALUATION

Section V-A discusses the experimental settings, Sec-
tion V-B introduces the research hypotheses, while Sec-
tion V-C presents and discusses the results of our experiments.

A. Experimental Settings

To empirically evaluate the new C-SMOTE meta-strategy,
we use ten groups of data streams: two groups are synthetic
and eight are real. Each group is composed by ten different
versions of the same dataset. In case of real data streams,
the original version is shuffled ten times with different seed
values to artificially introduce some concept drift. In case of
synthetic data streams, since the original version is already
generated with some concept drift, each new version is directly
generated using a different seed value. So, we performed
in total 100 tests. No K-fold cross validation is performed.
The characteristics of the original versions of all the data
streams are summarized in Table II. For convenience, in all
data streams, the minority class is always the class 0, while
the majority one is the class 1.

The synthetic data stream SYN is generated through the
RandomRBFGeneratorDrift in the MOA framework [2]. It
is composed by 106 samples and it uses 50 centroids, a
speed change of 10−7, 10 numerical attributes and 2 classes.
To change the imbalance level, the class ratio is randomly
chosen from values between (0.6;0.4) and (0.9;0.1) and it is
abruptly changed every n numbers of rows. The number of
rows n between two consecutive changes is randomly sampled
from a Gaussian model with mean µ = 25, 000 and variance
σ2 = 100. Table II reports the final imbalance ratio. SYN-CD
is synthetically generated through ELKI [18]. It is composed
by 10 clusters created by a normal distribution. Each one of
them has different parameters, in order to introduce 3 concept
drifts. The dataset has 105 samples, 10 numerical attributes
and 2 classes. The Ann-Thyroid (ANN) data stream [19] deter-
mines whether a patient referred to the clinic is hypothyroid. It
has three classes (hyper-function, subnormal functioning, not
hypothyroid), but to introduce a significant imbalance level
the first two classes are treated as minority class, while the
last one as majority class. In the Bank Marketing (BNK) data
stream [20], the classification goal is to predict if the client
will subscribe a term deposit. The Credit Card Fraud Detection
(FD) data stream [21] is highly imbalanced and it is usually
used for outlier detection. The task is to classify if a transaction
is fraudulent or not. The aim of the IEEE-CIS Fraud Detection
dataset (CIS-FD) is the same of the previous one, but the
data come from the IEEE Computational Intelligence Society
(IEEE-CIS)1. The number of instances and the dimension are
different, too. The Give Me Some Credit (GMSC) data stream
predicts whether a loan should be granted. The Page Blocks

1https://cis.ieee.org/

(PB) data stream2 classifies all the blocks of the page layout of
a document that has been detected by a segmentation process.
The Image Segmentation (IS) data stream2 contains image data
describing seven outdoor images (grass, path, window, cement,
foliage, sky, brick face). To imbalance the data stream, all the
grass images are treated as minority class, while the other
ones as majority class. In the Statlog Shuttle (SLOG) data
stream [19], the task is to decide what type of control of the
vessel should be employed.

We evaluate the predictive performance using the prequen-
tial evaluation approach [9]. Following [3], we use metrics
extracted from the computation of a confusion matrix. The
model saves the instances that are correctly classified as
number of True Positives (TP) and True Negatives (TN), while
those that are wrongly classified are saved as number of False
Positives (FP) and False Negatives (FN). In particular, we
use the Recall (4) and F1-Measure (5) metrics on each class:
Recall[0], F1-Measure[0] for minority class and Recall[1], F1-
Measure[1] for majority class. We do not use the Accuracy (6)
because it is not reliable in case of imbalanced dataset due
to the impact of the least-represented, and possibly more
important, examples is reduced when compared to that of the
majority class.

Recall =
TP

TP + FN
(4)

F1−Measure =
2×Recall × Precision
Recall + Precision

(5)

accuracy =
TP + TN

TP + FN + TN + FP
(6)

We tested Adaptive Random Forest (ARF) [16], Naive Bayes
(NB), Hoeffding Adaptive Tree (HAT) [22], K-Nearest Neigh-
bor (KNN) and Temporally Augmented Classifier (SWT) [23]
with ARF as base learner. We pipeline these algorithms with
the new C-SMOTE meta-strategy and compare against the
stand-alone versions. We also compare the ARFRE [5] tech-
nique to ARF pipelined with C-SMOTE and the RB [6] strat-
egy to SWT pipelined with C-SMOTE. We show the OOB
and UOB [7] results compared to the best technique pipelined
with C-SMOTE, too. Unfortunately, the implementations of
the other algorithms cited in Section IV are unavailable or do
not work3.

All the experiments are made using the MOA framework [2]
with default hyperparameters values for all the techniques
involved. The only parameter that we set in C-SMOTE is
minSizeMinority, the minimum number of minority class
samples stored into the window to allow the rebalance proce-
dure. We use C-SMOTE with minSizeMinority = 10 as
it was the top performer among [10, 100, 500, 1000] in our
hyper-parameter analysis.

Reported Recall rc and F1-Measure fc values of the class
c for an algorithm a, using a group of data streams dn with

2https://sci2s.ugr.es/keel/imbalanced.php
3In a future extended version of this paper, we will implement all the

unavailable methods

TABLE II
THE CHARACTERISTICS OF THE DATA STREAMS USED IN THE EXPERIMENTS. THE POSSIBLE TYPES ARE R FOR REAL AND S FOR SYNTHETIC. THE

DIMENSION COLUMN REPRESENTS THE NUMBER OF NUMERIC/NOMINAL FEATURES.

Data Stream # Instances Dimension Type % Min (0) % Maj (1) # Drifts
SYN 1,000,000 10 / 0 S 26.23 73.77 7-18
SYN-CD 100,000 10 / 0 S 5.00 95.00 3
ANN 7,200 6 / 0 R 7.40 92.60 0
BNK 45,211 7 / 9 R 11.70 88.30 35
FD 284,807 30 / 0 R 0.17 99.83 0
CIS-FD 100,000 383 / 49 R 4.00 96.00 0
GMSC 150,000 10 / 0 R 6.68 93.32 0
PB 5,472 10 / 0 R 10.20 89.80 14
IS 2,308 20 / 0 R 14.20 85.80 0
SLOG 58,000 9 / 0 R 21.00 79.00 0

n = [1..10], are calculated as follows. For each version di of
the data stream contained in the group n, Recall rci and F1-
Measure fci values are calculated. The final Recall rc and F1-
Measure fc results are the average of all the rci and fci values,
with i = [1..10]. To evaluate the dispersion, we calculated the
standard deviation of all the rci and fci values, too.

B. Research Hypotheses

We formulate our hypotheses as follows:
• Hp.1: The Recall[0] and F1-Measure[0] of the minority

class when applying C-SMOTE are better, in at least one
algorithm, than those of the state-of-the-art.

• Hp.2: The Recall[1] and F1-Measure[1] of the majority
class when applying C-SMOTE are better, in at least one
algorithm, than those of the state-of-the-art.

C. Results and Discussion

In this section, we discuss the results presented in Tables III
and IV for the minority class, and in Tables V and VI for the
majority class.

We start the discussion from the minority class. In the ANN
and GMSC data streams, both Recall and F1-Measure results
of all the algorithms pipelined with C-SMOTE outperform the
results of those without it. A high F1-Measure value means
that C-SMOTE improves the Precision, too. In the BNK data
stream, only the F1-Measure of the base NB technique is better
than the C-SMOTE one. It means that C-SMOTE pipelined
with NB improves the Recall but not the Precision w.r.t. NB.
The same is observed in the CIS-FD dataset with HAT.

In the FD data stream, the base versions of ARF and HAT
outperform those pipelined with C-SMOTE ones. This can
be due to the extreme imbalance of the data stream, which
is usually used for outlier detection. In this case, SMOTE in
particular and over-sampling techniques in general, might not
be suitable. It is conceivable that the minority class samples
are used multiple times to generate synthetic samples, harming
learning by introducing noise.

In the PB, IS, and SLOG data streams, the F1-Measure of
the stand-alone KNN algorithm is better than the one of C-
SMOTE pipelined with KNN, even if the C-SMOTE KNN
Recall is better than the base one. The reason is that the Recall
gain is smaller than the Precision loss. With high imbalanced
data streams, correctly classifying a minority class sample is

difficult because the majority class samples tend to be common
among the k nearest neighbors.

In the SYN data stream, only the NB algorithm pipelined
with C-SMOTE outperforms its baseline, while, in the
SYN-CD data stream, only the HAT and NB algorithms
pipelined with C-SMOTE outperform their baselines.

Comparing C-SMOTE to ARFRE, the former pipelined
with ARF outperforms the latter in all the experiments. The
RB strategy outperforms C-SMOTE pipelined with SWTARF
only in ANN data stream and only in the Recall measure. It
means that in all the other cases, the C-SMOTE meta-strategy
improves Precision too. Furthermore, our results prove that
in case of data streams, introducing new synthetic samples
as soon as the imbalance ratio changes is better rather than
waiting a concept drift and introducing them all together, as
RB does. Regarding OOB and UOB, for each data stream, we
select the best C-SMOTE meta-strategy and we compare it
against OOB and UOB. The OOB or UOB Recall results are
slightly better than those of C-SMOTE, but, in most cases,
the C-SMOTE F1-Measure results are better than the OOB
and UOB ones. This means that C-SMOTE improves the
Precision.

For the majority class results, we observe that in all the
datasets tested the base versions are slightly better than the C-
SMOTE ones. Comparing C-SMOTE to ARFRE, the former
pipelined with ARF outperforms the latter only in the F1-
Measure results. RB strategy is outperformed in both Recall
and F1-Measure. OOB and UOB are slightly better than the
C-SMOTE results only in four data streams (SYN, BNK,
CIS-FD, GMSC).

We calculate the increment/decrement inc for each data
stream d, for both classes c and metrics m, and for each couple
of algorithms alg (baseline and corresponding C-SMOTE
version). The single incd,m,c,alg for a fixed class, metric
and couple of algorithms (with and without C-SMOTE) is
calculated as in (7), where resm,d,c,algCS is the 10-run average
m of the c class results achieved by an algorithm pipelined
with C-SMOTE using d dataset and resd,m,c,algBase is the
10-run average m of the c class results achieved by the
corresponding algorithm without C-SMOTE using d dataset.

incd,m,c,alg =
resm,d,c,algCS − resd,m,c,algBase

resd,m,c,algBase
× 100 (7)

TA
B

L
E

III
R

E
C

A
L

L
O

F
T

H
E

M
IN

O
R

IT
Y

C
L

A
S

S
R

E
S

U
LT

S
O

F
A

L
L

T
H

E
D

A
TA

S
E

T
S.C

S
M

E
A

N
S

T
H

A
T,

T
H

E
A

L
G

O
R

IT
H

M
IS

U
S

E
D

P
IP

E
L

IN
E

D
W

IT
H

T
H

E
C

-S
M

O
T

E
M

E
TA

-S
T

R
A

T
E

G
Y.R

B
S

TA
N

D
S

F
O

R
T

H
E

R
E

B
A

L
A

N
C

ES
T

R
E

A
M

S
T

R
A

T
E

G
Y.R

E
S

U
LT

S
IN

B
O

L
D

A
R

E
T

H
E

B
E

S
T

F
O

R
T

H
A

T
A

L
G

O
R

IT
H

M
,

W
H

IL
E

R
E

S
U

LT
S

U
N

D
E

R
L

IN
E

D
A

R
E

T
H

E
B

E
S

T
A

M
O

N
G

A
L

L
T

H
E

A
L

G
O

R
IT

H
M

S
O

N
T

H
A

T
D

A
TA

S
E

T.

R
ecall[0]

%
D

ataset
C

S
A

R
F

A
R

F
A

R
F

R
E

C
S

H
AT

H
AT

C
S

N
B

N
B

C
S

K
N

N
K

N
N

C
S

SW
T

A
R

F
SW

T
A

R
F

R
B

B
E

ST
C

S
O

O
B

U
O

B

SY
N

84.81
84.95

67.07
82.20

82.21
66.22

39.62
91.42

86.07
82.30

84.91
71.95

91.42
92.42

93.81
±

1.01
±

1.30
±

3.05
±

1.07
±

0.99
±

0.29
±

2.38
±

0.23
±

1.04
±

1.40
±

1.39
±

2.84
±

0.23
±

0.22
±

0.30

SY
N

-C
D

99.79
99.88

99.30
99.71

97.51
18.75

13.32
97.68

98.39
99.82

99.89
99.71

99.79
97.36

99.95
±

0.03
±

0.01
±

0.00
±

0.02
±

0.08
±

13.91
±

12.70
±

0.76
±

0.65
±

0.04
±

0.01
±

0.13
±

0.03
±

0.09
±

0.01

A
N

N
79.14

65.82
2.60

93.95
88.39

58.43
43.41

22.17
22.17

86.05
86.05

86.69
93.95

96.95
91.14

±
2.26

±
5.45

±
4.00

±
1.66

±
2.98

±
7.08

±
3.09

±
1.02

±
1.02

±
5.86

±
5.86

±
4.34

±
1.66

±
0.97

±
5.58

B
N

K
37.80

22.11
0.30

64.29
30.79

71.37
51.91

55.14
8.15

32.66
23.26

29.28
71.37

79.16
83.79

±
3.06

±
5.63

±
0.21

±
1.83

±
4.41

±
2.57

±
0.72

±
0.53

±
0.18

±
1.36

±
2.46

±
3.72

±
2.57

±
1.64

±
1.37

FD
66,75

68.58
0.00

64.96
65.06

84.47
82.68

60.20
0.39

71.61
71.38

66.69
71.61

77.50
85.53

±
2.03

±
2.74

±
0.00

±
2.42

±
5.14

±
0.88

±
0.34

2.76
±

0.35
±

2.88
±

3.25
±

4.98
±

2.88
±

1.08
±

0.68

C
IS-FD

41.96
1.80

0.36
95.88

73.54
63.06

64.65
52.72

2.61
50.30

1.45
0.77

63.06
0.62

76.80
±

9.84
±

1.93
±

0.45
±

1.68
±

36.91
±

1.63
±

0.73
±

2.13
±

0.31
±

5.62
±

2.57
±

1.01
±

1.63
±

0.11
±

5.63

G
M

SC
27.16

12.09
0.01

58.23
18.05

78.36
6.69

44.93
2.38

12.76
9.93

11.03
58.23

57.21
67.65

±
1.55

±
0.84

±
0.03

±
1.53

±
1.85

±
12.92

±
2.83

±
0.79

±
0.24

±
0.76

±
1.18

±
4.09

±
1.53

±
0.91

±
3.89

PB
79.66

69.36
15.46

79.00
44.96

66.35
49.30

75.46
55.12

76.57
70.73

40.36
79.66

72.24
64.33

±
1.27

±
1.64

±
5.66

±
3.57

±
12.05

±
5.49

±
2.61

±
1.87

±
1.29

±
2.38

±
2.74

±
15.74

±
1.27

±
4.33

±
3.74

IS
92.67

87.93
55.96

92.31
52.46

94.86
96.72

96.96
95.20

93.83
91.12

60.06
93.83

95.50
95.99

±
1.08

±
2.24

±
7.90

±
1.90

±
28.52

±
1.97

±
0.59

±
0.55

±
1.37

±
1.31

±
1.38

±
26.52

±
1.31

±
0.74

±
0.96

SL
O

G
99.49

99.34
98.60

99.27
97.76

66.22
62.86

98.31
97.52

99.28
99.11

97.51
99.49

98.90
97.29

±
0.08

±
0.10

±
0.33

±
0.29

±
0.78

±
0.90

±
0.70

±
0.09

±
0.10

±
0.10

±
0.10

±
0.55

±
0.08

±
0.39

±
0.57

Total
7/10

8/10
8/10

8/10
7/10

2/10
TA

B
L

E
IV

F
1-M

E
A

S
U

R
E

O
F

T
H

E
M

IN
O

R
IT

Y
C

L
A

S
S

R
E

S
U

LT
S

O
F

A
L

L
T

H
E

D
A

TA
S

E
T

S.C
S

M
E

A
N

S
T

H
A

T,
T

H
A

T
A

L
G

O
R

IT
H

M
IS

U
S

E
D

P
IP

E
L

IN
E

D
W

IT
H

T
H

E
C

-S
M

O
T

E
M

E
TA

-S
T

R
A

T
E

G
Y.R

B
S

TA
N

D
S

F
O

R
T

H
E

R
E

B
A

L
A

N
C

ES
T

R
E

A
M

S
T

R
A

T
E

G
Y.R

E
S

U
LT

S
IN

B
O

L
D

A
R

E
T

H
E

B
E

S
T

F
O

R
T

H
A

T
A

L
G

O
R

IT
H

M
,

W
H

IL
E

R
E

S
U

LT
S

U
N

D
E

R
L

IN
E

D
A

R
E

T
H

E
B

E
S

T
A

M
O

N
G

A
L

L
T

H
E

A
L

G
O

R
IT

H
M

S
O

N
T

H
A

T
D

A
TA

S
E

T.

F1-M
easure[0]

%
D

ataset
C

S
A

R
F

A
R

F
A

R
F

R
E

C
S

H
AT

H
AT

C
S

N
B

N
B

C
S

K
N

N
K

N
N

C
S

SW
T

A
R

F
SW

T
A

R
F

R
B

B
E

ST
C

S
O

O
B

U
O

B

SY
N

87.77
88.59

79.41
77.43

85.14
60.06

50.96
84.01

87.46
86.24

88.59
73.17

84.01
90.25

85.96
±

0.60
±

0.70
±

2.08
±

1.73
±

0.80
±

1.17
±

1.94
±

1.02
±

0.69
±

0.84
±

0.71
±

2.50
±

1.02
±

0.30
±

1.13

SY
N

-C
D

99.88
99.92

99.63
99.84

98.72
29.58

21.61
98.82

99.18
99.89

99.92
99.83

99.88
98.64

99.95
±

0.01
±

0.01
±

0.00
±

0.01
±

0.04
±

18.84
±

18.55
±

0.39
±

0.33
±

0.02
±

0.01
±

0.06
±

0.01
±

0.05
±

0.01

A
N

N
78.06

72.69
4.77

81.35
80.23

61.23
56.05

35.10
35.10

81.51
81.51

79.83
81.35

81.31
72.24

±
1.32

±
3.18

±
7.26

±
2.26

±
2.78

±
4.31

±
2.43

±
1.17

±
1.17

±
2.93

±
2.93

±
3.88

±
2.26

±
3.34

±
3.58

B
N

K
44.22

32.16
0.60

46.68
39.26

45.08
49.08

31.26
14.30

41.09
33.87

38.81
45.08

56.65
51.60

±
2.36

±
6.11

±
0.41

±
0.93

±
3.75

±
1.95

±
0.60

±
0.46

±
0.28

±
1.07

±
2.67

±
3.46

±
1.95

±
0.40

±
0.76

FD
75,40

77.04
0.00

43.45
63.17

13.29
12.00

53.10
0.76

79.21
78.70

64.78
79.21

75.52
8.19

±
1.42

±
1.61

±
0.00

±
2.53

±
3.32

±
0.97

±
0.38

±
4.40

±
0.70

±
1.67

±
1.74

±
3.42

±
1.67

±
3.46

±
0.83

C
IS-FD

9.94
3.34

0.68
6.96

7.36
12.83

13.91
9.83

4.39
10.25

2.72
0.39

12.83
1.19

9.85
±

0.43
±

3.53
±

0.85
±

0.07
±

0.86
±

0.53
±

0.11
±

0.38
±

0.45
±

0.74
±

4.67
±

1.98
±

0.53
±

0.22
±

1.04

G
M

SC
31.44

19.95
0.03

24.32
11.75

14.80
9.48

18.72
4.52

19.22
16.93

17.86
24.32

40.49
32.21

±
1.94

±
1.15

±
0.06

±
0.92

±
1.93

±
0.88

±
2.58

±
0.24

±
0.44

±
1.01

±
1.76

±
5.22

±
0.92

±
0.28

±
1.48

PB
79.66

76.76
26.17

58,70
51.77

59.29
50.15

64.36
66.03

78.72
77.19

46.49
79.66

64.73
56.23

±
1.24

±
1.66

±
8.67

±
3.54

±
8.19

±
4.25

±
2.25

±
1.08

±
0.92

±
2.27

±
1.91

±
11.93

±
1.24

±
3.81

±
2.28

IS
94.56

91.96
70.84

86.94
47.09

65.93
64.79

84.10
93.02

95.25
94.18

51.00
95.25

71.85
64.32

±
0.86

±
1.71

±
6.43

±
6.53

±
15.08

±
3.25

±
1.32

±
1.02

±
0.95

±
0.83

±
0.97

±
13.88

±
0.83

±
5.21

±
1.91

SL
O

G
99.69

99.63
99.27

99.18
98.35

69.77
71.48

95.05
97.53

99.56
99.49

98.14
99.69

99.20
98.00

±
0.04

±
0.05

±
0.17

±
0.37

±
0.53

±
0.89

±
0.32

±
0.16

±
0.07

±
0.05

±
0.06

±
0.39

±
0.04

±
0.32

±
0.42

Total
7/10

7/10
7/10

4/10
8/10

6/10

TA
B

L
E

V
R

E
C

A
L

L
O

F
T

H
E

M
A

JO
R

IT
Y

C
L

A
S

S
R

E
S

U
LT

S
O

F
A

L
L

T
H

E
D

A
TA

S
E

T
S.C

S
M

E
A

N
S

T
H

A
T,

T
H

A
T

A
L

G
O

R
IT

H
M

IS
U

S
E

D
P

IP
E

L
IN

E
D

W
IT

H
T

H
E

C
-S

M
O

T
E

M
E

TA
-S

T
R

A
T

E
G

Y.R
B

S
TA

N
D

S
F

O
R

T
H

E
R

E
B

A
L

A
N

C
ES

T
R

E
A

M
S

T
R

A
T

E
G

Y.R
E

S
U

LT
S

IN
B

O
L

D
A

R
E

T
H

E
B

E
S

T
F

O
R

T
H

A
T

A
L

G
O

R
IT

H
M

,
W

H
IL

E
R

E
S

U
LT

S
U

N
D

E
R

L
IN

E
D

A
R

E
T

H
E

B
E

S
T

A
M

O
N

G
A

L
L

T
H

E
A

L
G

O
R

IT
H

M
S

O
N

T
H

A
T

D
A

TA
S

E
T.

R
ecall[1]

%
D

ataset
C

S
A

R
F

A
R

F
A

R
F

R
E

C
S

H
AT

H
AT

C
S

N
B

N
B

C
S

K
N

N
K

N
N

C
S

SW
T

A
R

F
SW

T
A

R
F

R
B

B
E

ST
C

S
O

O
B

U
O

B

SY
N

97.20
97.73

99.41
90.28

96.39
82.05

94.79
91.35

96.44
97.22

97.75
91.84

91.35
95.86

91.84
±

0.24
±

0.24
±

0.12
±

0.38
±

0.33
±

0.57
±

0.61
±

0.04
±

0.25
±

0.26
±

0.28
±

0.62
±

0.04
±

0.22
±

0.42

SY
N

-C
D

100.00
100.00

100.00
100.00

100.00
99.99

99.99
100.00

100.00
100.00

100.00
100.00

100.00
100.00

100.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.01
±

0.01
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00

A
N

N
98.11

98.80
99.94

97.02
97.44

97.45
99.09

99.67
99.67

98.01
98.01

97.55
97.02

96.64
95.09

±
0.17

±
0.22

±
0.04

±
0.50

±
0.35

±
0.42

±
0.12

±
0.07

±
0.07

±
0.20

±
0.20

±
0.47

±
0.50

±
0.86

±
0.79

B
N

K
95.63

98.17
99.97

85.28
96.63

80.64
92.10

73.81
99.23

96.52
98.17

96.81
80.64

86.71
81.31

±
0.23

±
0.52

±
0.01

±
0.48

±
0.42

±
2.81

±
0.26

±
0.69

±
0.02

±
0.18

±
0.22

±
0.39

±
2.81

±
0.74

±
0.76

FD
99.98

99.98
100.00

99.77
99.93

98.11
97.93

99.88
100.00

99.98
99.98

99.93
99.98

99.95
96.67

±
0.00

±
0.00

±
0.00

±
0.02

±
0.01

±
0.19

±
0.08

±
0.03

±
0.00

±
0.00

±
0.00

±
0.01

±
0.00

±
0.02

±
0.36

C
IS-FD

74.12
99.89

99.94
5.08

28.20
69.52

71.64
65.79

99.40
69.03

99.97
99.10

69.52
99.88

47.74
±

6.03
±

0.09
±

0.08
±

2.52
±

40.58
±

2.19
±

0.62
±

2.83
±

0.09
±

4.23
±

0.04
±

2.59
±

2.19
±

0.04
±

10.52

G
M

SC
96.67

99.35
100.00

76.98
86.11

36.15
97.84

75.99
99.78

98.57
99.48

99.26
76.98

91.02
81.83

±
1.21

±
0.05

±
0.00

±
1.69

±
3.01

±
14.75

±
1.23

±
0.50

±
0.02

±
0.06

±
0.05

±
0.28

±
1.69

±
0.31

±
2.54

PB
97.68

98.71
99.90

89.7
97.06

93.46
94.62

93.28
98.66

97.95
98.58

96.93
97.68

94.21
92.68

±
0.33

±
0.20

±
0.04

±
1.20

±
1.08

±
0.98

±
0.54

±
0.47

±
0.10

±
0.35

±
0.22

±
1.34

±
0.33

±
0.47

±
0.33

IS
99.44

99.45
99.77

96.45
91.02

84.46
83.05

94.41
98.42

99.47
99.61

89.51
99.47

88.11
82.92

±
0.17

±
0.37

±
0.17

±
3.19

±
4.55

±
2.23

±
0.96

±
0.54

±
0.49

±
0.16

±
0.13

±
4.11

±
0.16

±
2.98

±
1.53

SL
O

G
99.97

99.98
99.98

99.75
99.71

93.56
96.46

97.67
99.33

99.96
99.97

99.68
99.97

99.87
99.65

±
0.01

±
0.01

±
0.00

±
0.13

±
0.09

±
1.08

±
0.48

±
0.10

±
0.04

±
0.01

±
0.01

±
0.10

±
0.01

±
0.07

±
0.09

Total
0/10

2/10
2/10

0/10
2/10

6/10
TA

B
L

E
V

I
F

1-M
E

A
S

U
R

E
O

F
T

H
E

M
A

JO
R

IT
Y

C
L

A
S

S
R

E
S

U
LT

S
O

F
A

L
L

T
H

E
D

A
TA

S
E

T
S.C

S
M

E
A

N
S

T
H

A
T,

T
H

A
T

A
L

G
O

R
IT

H
M

IS
U

S
E

D
P

IP
E

L
IN

E
D

W
IT

H
T

H
E

C
-S

M
O

T
E

M
E

TA
-S

T
R

A
T

E
G

Y.R
B

S
TA

N
D

S
F

O
R

T
H

E
R

E
B

A
L

A
N

C
ES

T
R

E
A

M
S

T
R

A
T

E
G

Y.R
E

S
U

LT
S

IN
B

O
L

D
A

R
E

T
H

E
B

E
S

T
F

O
R

T
H

A
T

A
L

G
O

R
IT

H
M

,
W

H
IL

E
R

E
S

U
LT

S
U

N
D

E
R

L
IN

E
D

A
R

E
T

H
E

B
E

S
T

A
M

O
N

G
A

L
L

T
H

E
A

L
G

O
R

IT
H

M
S

O
N

T
H

A
T

D
A

TA
S

E
T.

F1-M
easure[1]

%
D

ataset
C

S
A

R
F

A
R

F
A

R
F

R
E

C
S

H
AT

H
AT

C
S

N
B

N
B

C
S

K
N

N
K

N
N

C
S

SW
T

A
R

F
SW

T
A

R
F

R
B

B
E

ST
C

S
O

O
B

U
O

B

SY
N

96.13
96.43

94.55
92.10

95.30
84.91

88.26
94.08

95.94
95.82

96.44
91.33

94.08
96.63

94.72
±

0.18
±

0.15
±

0.27
±

0.25
±

0.32
±0.64

±
0.72

±
0.09

±
0.16

±
0.19

±
0.15

±
0.68

±
0.09

±
0.18

±
0.24

SY
N

-C
D

99.99
100.00

99.98
99.99

99.93
97.90

97.77
99.94

99.96
99.99

100.00
99.99

99.99
99.93

100.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.35
±

0.32
±

0.02
±

0.02
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00
±

0.00

A
N

N
98.22

98.04
96.22

98.25
98.24

97.07
97.33

96.81
96.81

98.44
98.44

98.23
98.25

98.17
97.13

±
0.10

±
0.16

±
0.14

±
0.26

±
0.26

±
0.21

±
0.07

±
0.03

±
0.03

±
0.19

±
0.19

±
0.36

±
0.26

±
0.44

±
0.41

B
N

K
93.82

94.17
93.79

89.76
93.91

87.42
92.81

82.12
93.88

93.96
94.24

93.95
87.42

91.52
88.64

±
0.09

±
0.12

±
0.01

±
0.25

±
0.10

±
1.55

±
0.14

±
0.45

±
0.01

±
0.05

±
0.06

±
0.19

±
1.55

±
0.33

±
0.42

FD
99.96

99.96
99.91

99.85
99.93

99.03
98.94

99.91
99.91

99.97
99.97

99.94
99.97

99.96
98.30

±
0.00

±
0.00

±
0.00

±
0.01

±
0.01

±
0.10

±
0.04

±
0.01

±
0.00

±
0.00

±
0.00

±
0.00

±
0.00

±
0.01

±
0.18

C
IS-FD

83.97
98.16

98.16
9.56

31.54
81.35

82.84
78.50

97.92
80.74

98.19
97.80

81.35
98.13

63.62
±

3.81
±

0.04
±

0.03
±

4.51
±

41.45
±

1.50
±

0.40
±

2.02
±

0.04
±

2.78
±

0.04
±

1.23
±

1.50
±

0.02
±

9.83

G
M

SC
95.76

96.62
96.54

85.53
89.68

51.1
95.68

84.47
96.51

96.25
96.62

96.54
85.53

93.79
88.85

±
0.59

±
0.01

±
0.00

±
1.04

±
1.71

±
13.80

±
0.54

±
0.31

±
0.01

±
0.03

±
0.02

±
0.02

±
1.04

±
0.14

±
1.43

PB
97.68

97.64
95.36

93.39
95.47

94.74
94.43

95.15
96.83

97.65
97.65

95.16
97.68

95.46
94.22

±
0.17

±
0.17

±
0.28

±
0.79

±
0.27

±
0.61

±
0.30

±
0.21

±
0.07

±
0.26

±
0.17

±
0.25

±
0.17

±
0.42

±
0.24

IS
99.12

98.73
96.36

97.53
91.5

91.14
90.47

96.87
98.80

99.22
99.07

91.26
99.22

93.28
90.33

±
0.14

±
0.27

±
0.63

±
1.64

±
0.35

±
1.31

±
0.59

±
0.25

±
0.18

±
0.13

±
0.15

±
0.36

±
0.13

±
1.64

±
0.89

SL
O

G
99.91

99.90
99.80

99.78
99.55

92.28
93.39

98.59
99.33

99.88
99.86

99.50
99.91

99.78
99.46

±
0.01

±
0.01

±
0.04

±
0.10

±
0.14

±
0.47

±
0.17

±
0.05

±
0.02

±
0.01

±
0.02

±
0.11

±
0.01

±
0.09

±
0.11

Total
5/10

4/10
4/10

0/10
5/10

5/10

Then, we calculate avgIncm,c,alg , the average among all the
incd,m,c,alg having the same m, c, alg. The final values are the
averages among all the avgIncm,c,alg having the same m, c.

We observe that in the case of the minority class, the
techniques pipelined with C-SMOTE outperform the others
in 7 out of 10 data streams, with an average improvement of
+550.61% in Recall and +166.22% in F1-Measure. In the case
of the majority class, the techniques pipelined with C-SMOTE
outperform the others in only 3 data streams out of 10. The
average decrease of C-SMOTE results is -7.54% in Recall and
-4.42% in F1-Measure. Notice that the gains in performance
for the minority class is three orders of magnitude larger than
the decrease in performance for the majority class. This is
relevant since, as previously mentioned, when learning from
imbalanced data the most relevant class is usually the minority
class.

We can conclude that the Hp.1 is validated, while the Hp.2 is
not but in general the C-SMOTE minority class performances
improvement is larger than the decline in the majority class.

VI. CONCLUSIONS

In this work, we presented a new meta-strategy called
C-SMOTE, inspired by the popular SMOTE technique, that
continuously balances an evolving data stream one sample at
time. C-SMOTE can be used as a data filter pipelined with
existing streaming classification techniques. This novel meta-
strategy does not require access to all data. New samples are
stored in a dynamic-size window whose size is maintained in
agreement with a drift detector (ADWIN). C-SMOTE uses the
minority class samples contained on this window to introduce
synthetic samples.

We tested the proposed meta-strategy pipelined with state-
of-the-art algorithms on multiple scenarios of imbalance, con-
cept drift and swapping between minority and majority classes.
Empirical results prove that, in most of cases, C-SMOTE
increases the Recall and F1-Measure performances.

We leave at the future extended version of this paper the
computational costs analysis of our meta-strategy, analyzing
the trade-off between the improved predictive performances
and the amount of time or RAM needed to train the model.
We will test other datasets with different types of concept drift,
too.

For future work, our main goal is to minimize the number
of instances saved into the window. Moreover, we want to
improve even more the C-SMOTE performance, in particular
on the majority class to validate the Hp.2. A potential solution
is to use Borderline-SMOTE, Adaptive Synthetic Sampling, or
SMOTE+Tomek. Other research venue is to adapt C-SMOTE
to multiclass and regression tasks.

REFERENCES

[1] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, p. 58, 2004.

[2] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive
online analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601–1604, 2010.

[3] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, 2009.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321–357, 2002.

[5] L. E. B. Ferreira, H. M. Gomes, A. Bifet, and L. S. Oliveira, “Adaptive
random forests with resampling for imbalanced data streams,” in Inter-
national Joint Conference on Neural Networks, IJCNN 2019 Budapest,
Hungary, July 14-19, 2019. IEEE, 2019, pp. 1–6.

[6] A. Bernardo, E. Della Valle, and A. Bifet, “Rebalancing learning on
evolving data streams,” in ICDM Workshops. IEEE, 2020, in press.

[7] S. Wang, L. L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Ensemble Learning, CIEL 2013, IEEE
Symposium Series on Computational Intelligence (SSCI), 16-19 April
2013, Singapore. IEEE, 2013, pp. 36–45.

[8] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” in Proceedings of the Seventh SIAM International
Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota,
USA. SIAM, 2007, pp. 443–448.

[9] J. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in evaluation of
stream learning algorithms,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Paris, France, June 28 - July 1, 2009, J. F. E. IV, F. Fogelman-Soulié,
P. A. Flach, and M. J. Zaki, Eds. ACM, 2009, pp. 329–338.

[10] A. Ghazikhani, R. Monsefi, and H. S. Yazdi, “Recursive least square
perceptron model for non-stationary and imbalanced data stream classi-
fication,” Evolving Systems, vol. 4, no. 2, pp. 119–131, 2013.

[11] ——, “Online neural network model for non-stationary and imbalanced
data stream classification,” Int. J. Machine Learning & Cybernetics,
vol. 5, no. 1, pp. 51–62, 2014.

[12] ——, “Ensemble of online neural networks for non-stationary and
imbalanced data streams,” Neurocomputing, vol. 122, pp. 535–544,
2013.

[13] B. Mirza, Z. Lin, and N. Liu, “Ensemble of subset online sequential
extreme learning machine for class imbalance and concept drift,” Neu-
rocomputing, vol. 149, pp. 316–329, 2015.

[14] B. Wang and J. Pineau, “Online bagging and boosting for imbalanced
data streams,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 12, pp. 3353–
3366, 2016.

[15] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Trans. Knowl. Data
Eng., vol. 27, no. 5, pp. 1356–1368, 2015.

[16] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfharinger, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Mach. Learn., vol. 106, no. 9-10,
pp. 1469–1495, 2017.

[17] N. C. Oza, “Online bagging and boosting,” in Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Waikoloa,
Hawaii, USA, October 10-12, 2005. IEEE, 2005, pp. 2340–2345.

[18] E. Schubert and A. Zimek, “ELKI: A large open-source library for data
analysis - ELKI release 0.7.5 ”heidelberg”,” CoRR, vol. abs/1902.03616,
2019.

[19] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[20] S. Moro, P. Cortez, and P. Rita, “A data-driven approach to predict the

success of bank telemarketing,” Decis. Support Syst., vol. 62, pp. 22–31,
2014.

[21] A. D. Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi,
“Credit card fraud detection: A realistic modeling and a novel learning
strategy,” IEEE Trans. Neural Netw. Learning Syst., vol. 29, no. 8, pp.
3784–3797, 2018.

[22] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,”
in Advances in Intelligent Data Analysis VIII, 8th International Sym-
posium on Intelligent Data Analysis, IDA 2009, Lyon, France, August
31 - September 2, 2009. Proceedings, ser. Lecture Notes in Computer
Science, N. M. Adams, C. Robardet, A. Siebes, and J. Boulicaut, Eds.,
vol. 5772. Springer, 2009, pp. 249–260.

[23] A. Bifet, J. Read, I. Zliobaite, B. Pfahringer, and G. Holmes, “Pitfalls
in benchmarking data stream classification and how to avoid them,” in
Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2013, Prague, Czech Republic, September
23-27, 2013, Proceedings, Part I, ser. Lecture Notes in Computer
Science, H. Blockeel, K. Kersting, S. Nijssen, and F. Zelezný, Eds.,
vol. 8188. Springer, 2013, pp. 465–479.

