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Abstract—The vastness of the web imposes a prohibitive cost on
building large-scale search engines with limited resources. Crawl
frontiers thus need to be optimized to improve the coverage
and freshness of crawled content. In this paper, we propose an
approach for modeling the dynamics of change in the web using
archived copies of webpages. To evaluate its utility, we conduct
a preliminary study on the scholarly web using 19,977 seed
URLs of authors’ homepages obtained from their Google Scholar
profiles. We first obtain archived copies of these webpages from
the Internet Archive (IA), and estimate when their actual updates
occurred. Next, we apply maximum likelihood to estimate their
mean update frequency (λ) values. Our evaluation shows that λ
values derived from a short history of archived data provide a
good estimate for the true update frequency in the short-term,
and that our method provides better estimations of updates at
a fraction of resources compared to the baseline models. Based
on this, we demonstrate the utility of archived data to optimize
the crawling strategy of web crawlers, and uncover important
challenges that inspire future research directions.

Index Terms—Crawl Scheduling, Web Crawling, Search En-
gines

I. INTRODUCTION

The sheer size of the Web makes it impossible for small
crawling infrastructures to crawl the entire Web to build a
general search engine comparable to Google or Bing. Instead,
it is more feasible to build specialized search engines, which
employ focused web crawlers [1], [2] to actively harvest
webpages or documents of particular topics or types. Google
Scholar, for instance, is a specialized search engine that is
especially useful for scientists, technicians, students, and other
researchers to find scholarly papers.

The basic algorithm for a focused web crawler is straightfor-
ward. The crawl frontier is first initialized with seed URLs that
are relevant to the search engine’s focus. Next, the crawler visits
webpages referenced by seed URLs, extracts hyperlinks in them,
selects hyperlinks that satisfy preset rules (to ensure that only
related webpages are visited), adds them to the crawl frontier,

and repeats this process until the crawl frontier exhausts [3].
Although this works for relatively short seed lists, it does not
scale for large seed lists. For instance, the crawler may not
finish visiting all webpages before they change. Given such
circumstances, re-visiting web pages that have not changed
since their last crawl is a waste of time and bandwidth. It is
therefore important to select and prioritize a subset of seeds for
each crawl, based on their likeliness to change in the future.

Without sufficient crawl history, it is difficult to accurately
predict when a webpage will change. Web archives, such as
the well-known Internet Archive’s (IA) Wayback Machine [4]
and others, preserve webpages as they existed at particular
points in time for later replay. The IA has been collecting
and saving public webpages since its inception in 1996, and
contains archived copies of over 424 billion webpages [5],
[6]. The resulting record of such archived copies is known
as a TimeMap [7] and allows us to examine each saved copy
to determine if a change occurred (not every saved version
will represent a change in the webpage). TimeMaps provide a
critical source of information for studying changes in the web.
For example, if a researcher created his website in 2004, via a
TimeMap we could retrieve copies of the website observed by
the IA between 2004 and 2020, and examine these copies for
changes.

In this paper, we propose an approach to model the dynamics
of change in the web using archived copies of webpages.
Though such dynamics have been studied in previous papers,
e.g., [8]–[10], online activities have evolved since then, and
to the best of our knowledge, the use of archived data to
model these dynamics has not been explored. While many
web archives exist, we use the IA to obtain archived copies of
webpages due to its high archival rate, and efficiency of mass
queries. Given a URL, we first obtain its TimeMap from the
IA’s Wayback Machine, and identify mementos that represent
updates. Next, we use this information to estimate their mean
update frequency (λ). We then use λ to calculate the probability978-1-7281-6251-5/20/$31.00 ©2020 IEEE
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(p) of seeing an update d days after it was last updated. Before
each crawl, we repeat this process for each seed URL and use
a threshold (θ) on p to select a subset of seed URLs that are
most likely to have changed since their next crawl.

Our preliminary analysis demonstrates how this approach
can be integrated into a focused web crawler, and its impact on
the efficiency of crawl scheduling. Here, we select the scholarly
web as our domain of study, and analyze our approach at both
homepage-level (single webpage) and at website-level (multiple
webpages). The former, investigates changes occurring on
an author’s homepage, while the latter, investigates changes
occurring collectively on the homepage and any webpage
behind it, e.g., publications, projects, and teaching webpages.
Our contributions are as follows:

1) We studied the dynamics of the scholarly web using
archived data from the IA for a sample of 19,977 authors’
websites.

2) We verified that the updates to authors’ websites and
homepages follow a near-Poisson distribution, with spikes
that may represent non-stochastic activities.

3) We developed History-Aware Crawl Scheduler (HACS),
which uses archived data to find and schedule a subset of
seed URLs that are most likely to have changed before
the next crawl.

4) We compared HACS against baseline models for a
simulated web crawling task, and demonstrated that it
provides better estimations.

A. Crawling the Web

Although the basic focused web crawling algorithm [3] is
simple, challenges in the web, such as scale, content selection
trade-offs (e.g., coverage vs freshness), social obligations,
and adversaries, makes it infeasible to crawl the web in that
manner. Crawl frontiers should thus be optimized to improve
the robustness of web crawlers. One approach is to reorder
the crawl frontier to maximize some goal (e.g., bandwidth,
freshness, importance, relevance) [11], [12]. Fish-Search [13],
for instance, reorders the crawl frontier based on content
relevance, and is one of the earliest of such methods. Given
a seed URL and a driving query, it builds a priority queue
that prioritizes webpages (and their respective out-links) that
match the driving query. Shark-Search [14] is an improved
version of Fish-Search which uses cosine similarity (number
between 0 and 1) to calculate the relevance of a webpage to
the driving query, instead of binary similarity (either 0 or 1)
used in Fish-Search. Such algorithms do not require the crawl
history to calculate relevance, and can be applied at both the
initial crawl and any subsequent crawls.

In incremental crawling, webpages need to be re-visited
once they change, to retain the freshness of their crawled
copies. Several methods have been proposed [15], [16]. Olston
et. al. [17], for instance, studied the webpage revisitation
policy that a crawler should employ to achieve good freshness.
They considered information longevity, i.e., the lifetime of
content fragments that appear and disappear from webpages
over time, to avoid crawling ephemeral content such as

advertisements, which have limited contribution to the main
topic of a webpage. Such methods require sufficient crawl
history to identify ephemeral content, and until sufficient crawl
history is generated, the algorithm may yield sub-optimal
results.

Algorithms proposed by Cho et al. [18], reorders the crawl
frontier based on the importance of webpages. Here, the query
similarity metric used in Fish-Search and Shark-Search was
extended with additional metrics such as, back-link count,
forward-link count, PageRank, and location (e.g., URL depth,
top-level domain). Alam et al. [19] proposed a similar approach,
where the importance of a webpage was estimated using
PageRank, partial link structure, inter-host links, webpage titles,
and topic relevance measures. Although such methods take
advantage of the crawl history, the importance of a webpage
may not reflect how often it changes. Thus, such methods
favour the freshness of certain content over the others.

Focused web crawlers should ideally discover all webpages
relevant to its focus. However, the coverage that it could
achieve depends on the seed URLs used. Wu et al. [20], for
instance, proposed the use of a whitelist and a blacklist for
seed URL selection. The whitelist contains high-quality seed
URLs selected from parent URLs in the crawl history, while
the blacklist contains seed URLs that should be avoided. The
idea was to concentrate the workforce to exploit URLs with
potentially abundant resources. In addition, Zheng et al. [21]
proposed a graph-based framework to select seed URLs that
maximize the value (or score) of the portion of the web graph
“covered” by them. They model this selection as a Maximum
K-Coverage Problem. Since this is a NP-hard [22] problem, the
authors have proposed several greedy and iterative approaches
to approximate the optimal solution. Although this works well
for a general web crawler, studies show that the scholarly
web has a disconnected structure [23]. Hence, the process of
selecting seed URLs for such use cases may benefit from the
crawl records of a general web crawler.

CiteSeerX [24] is a digital library search engine that has
more than 10 million scholarly documents indexed and is
growing [25]. Its crawler, identified as citeseerxbot, is an
incremental web crawler that actively crawls the scholarly web
and harvests scholarly papers in PDF format [25]. Compared
to general web crawlers, crawlers built for the scholarly web
has different goals in terms of optimizing the freshness of their
content. The crawl scheduling model used by citeseerxbot,
which we refer to as the Last-Obs model, prioritizes seed
URLs based on the time elapsed since a webpage was last
visited. In this work, we use the Last-Obs model as a baseline
to compare with our method.

B. Modeling Updates to a Webpage

Updates to a webpage can be modeled as a Poisson
process [9], [26], [27]. The model is based on the following
theorem.

Theorem 1: If T is the time of occurrence of the next event
in a Poisson process with rate λ (number of events per unit



t

Fig. 1. An illustration of accesses ( O,4 ), accesses with updates ( H ), true update occurrences ( ◦ ) and the interpolated update occurrences ( N ) over time.
Gray shades represent the deviation of the observed and interpolated update occurrences from the true update occurrences.

time period), the probability density for T is

fT (t) = λe−λt, t > 0, λ > 0. (1)

Here, we assume that each update event is independent. While
this assumption is not always true (i.e. certain updates are
correlated), as shown later, it is a reasonable estimation. By
integrating fT (t), we obtain the probability that a certain
webpage changes in interval [t0, t]:

P (∆t) =

∫ t

t0

fT (t) dt = 1− e−λ∆t (2)

Note that the value of λ may vary for different webpages. For
the same webpage, λ may also change over time but for a
short period of time, λ is approximately constant. Therefore,
by estimating λ, we calculate how likely a webpage will be
updated since its last update at time tc. Intuitively, λ can be
estimated using,

λ̂ = X/T (3)

in which X is the number of updates detected during n accesses,
and T is the total time elapsed during n accesses. As proven
in [9], this estimator is biased and it is more biased when
there are more updates than accesses in the interval T . For
convenience [26] defines an intermediate statistical variable
r = λ/f , the ratio of the update frequency to the access
frequency. An improved estimator was proposed below:

r̂ = − log

(
X̄ + 0.5

n+ 0.5

)
, X̄ = n−X. (4)

This estimator is much less biased than X/T and i It is also
consistent, meaning that as n→∞, the expectation of r̂ is r.

Unfortunately, since archival rates of the IA depend on its
crawl scheduling algorithm and the nature of the webpages
themselves, its crawl records have irregular intervals. As a
result, archived copies may not reflect every update that
occurred on the live web, and not all consecutive archived
copies may reflect an update. Since both Eq. (3) and Eq. (4)
assume regular access, they cannot be used directly. To address
this limitation, we use a maximum likelihood estimator to
calculate which λ is most likely to produce an observed set of
events.

m∑
i=1

tci
exp (λtci)− 1

=

n−m∑
j=1

tuj
, (5)

Here, tci is the i-th time interval where an update was detected,
tuj

is the j-th time interval where an update was not detected,
and m is the total number of updates detected from n accesses
(see Figure 1). λ is calculated by solving Eq. (5). Since this
equation is nonlinear, we solve it numerically using Brent’s
method [28]. There is a special case when m = n (i.e. updates
detected at all accesses) where solving Eq. (5) yields λ =∞.
In this case, Eq.(5)’s solution is infinity and Eq.(4) is used.

To the best of our knowledge, there has not been an
open source crawl scheduler for the scholarly web that takes
advantage of the update model above. With IA providing an
excellent, open-accessible resource to model the updates of
scholarly webpages, this model can be applied on focused
crawl schedulers to save substantial time on crawling and
re-visitation.

II. METHODOLOGY

A. Data Acquisition

The seed list used in this work was derived from a
dataset containing Google Scholar profile records of 396,423
researchers. This dataset was collected around 2015 by scraping
profile webpages in Google Scholar with a long crawl-delay.
The steps for data acquisition and preparation are illustrated
in Figure 2.

Step 1: From the Google Scholar profile records, we
discovered 139,910 profiles that provided homepage URLs.
These URLs referenced either individual author homepages, or
organizational websites. Since our study focused on modeling
the dynamics of the websites of individual authors, we removed
organizational websites. This was nontrivial using a simple
rule-based filter as there were personal homepages that look
similar to organizational homepages. Therefore, we restricted
our scope to homepage URLs hosted within a user directory
of an institution, i.e., URLs with a tilde (∼) in them (e.g.,
foo.edu/∼bar/). In this manner, we obtained 24,236 homepage
URLs.

Step 2: Next, we performed a wildcard query on the IA
Wayback CDX Server API [29] to obtain TimeMaps for each
author website under their homepage URL. Out of 24,236
websites, we obtained TimeMaps for 21,171 author websites
(87.35% archival rate). The remaining websites were either
not archived, or the CDX Server API returned an error code

foo.edu/~bar/
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Scholar
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CDX API
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Data
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CDX/HTML
(21,171 records)Homepage

URLs

Fig. 2. Steps followed to acquire and prepare data from IA (depths 0–2).

during access. The resulting TimeMaps provided information
such as the crawl timestamps and URI-Ms of archived copies
of each webpage. From these webpages, we selected webpages
at depth ≤2 (Depth 0 is the homepage). For instance, for a
homepage foo.edu/∼bar, a link to foo.edu/∼bar/baz is of depth
1 and is selected. However a link to foo.edu/∼bar/baz/qux/quux
is of depth 3 and is not selected.

Step 3: Next, we generated the D0 dataset and D2 dataset,
which we use in our analysis. First, we de-referenced the URI-
Ms of each URL selected in Step 2, and saved their HTML for
later use. When doing so, we dropped inconsistent records such
as records with invalid checksum, invalid date, multiple depth
0 URLs, and duplicate captures from our data. The resulting
data, which we refer to as the D2 dataset, contained HTML
of 19,977 websites, totaling 581,603 individual webpages. The
average number of webpages per website is 227.49. The
minimum and maximum number of webpages per website
are 1 and 35,056, respectively. We selected a subset of the
D2 dataset consisting HTML of only the 19,977 homepages,
which we refer to as the D0 dataset.

Fig. 3. Captures (blue dots) of homepage URLs over time, with URLs sorted
by their earliest capture time (red dots). The captures between 2015-06-01
and 2018-06-01 (green vertical lines) were used for the evaluation.

Figure 3 shows the distribution of captures in the D0 dataset,
sorted by their earliest capture time. Here, the median crawl
interval of 80% of author homepages were between 20− 127
days. The distribution of capture density over time suggests
that the capture densities of IA vary irregularly with time. For
instance, captures during 2015–2018 show a higher density
on average than the captures during 2010–2014. Since high-

cadence captures help to obtain a better estimation for the
update occurrences, we scoped our analysis to the period
between June 1, 2015 and June 1, 2018 (shown by green
vertical lines in Figure 3).

B. Estimating Mean Update Frequency

The exact interpretation of update may differ depending on
the purpose of study. We examine a specific type of update
– the addition of new links. The intuition here is to identify
when authors add new publications into their webpages, as
opposed to identifying when that webpage was updated in
general. We claim that this interpretation of update is more
suited to capture such behavior.

For each webpage in datasets D0 and D2, we processed
each capture mi to extract links l(mi) from its HTML, where
l(mi) is the set of links in the ith capture. Next, we calculated
|l∗(mi)|, i.e., the number of links in a capture mi that was never
seen before mi, for each capture in these datasets. Formally,

l∗(mi) = l(mi)− ∪i−1
k=1l(mk), i ≥ 2.

and ∪i−1
k=1l(mk) is the union of links from captures m1 to mi−1.

Finally, we calculated the observed-update intervals tci ∈Tc
and observed non-update intervals tuj

∈Tu based on captures
that show link additions, i.e., l∗(mi) > 0 and ones that do not,
i.e., l∗(mi) = 0 (see Figure 1). We estimate λ in two ways.

1) Estimation Based on Observed Updates: For each web-
page, we substituted tci and tuj

values into Eq. (5) or Eq.(4)
and solved for λ using Brent’s method to obtain its estimated
mean observed-update frequency (λ). In this manner, we
calculated λ for author websites at both homepage-level (using
D0 dataset) and webpage-level (using D2 dataset).

Figure 4 shows the distribution of Iest = 1/λ at both website-
level and homepage-level, obtained using captures from 2015-
06-01 to 2018-06-01. Both distributions are approximately
log-normal, with a median of 74 days at website-level, and of
110 days at homepage-level. This suggests that most authors
add links to their homepage less often than they add links to
their website (e.g., publications).

2) Estimation Based on Interpolated Updates: The method
described in Section II-B1 calculates the maximum likelihood
of observing the updates given by intervals tci and tuj

.
Intuitively, an update could have occurred at any time between
t(mx−1) and t(mx), where t(mx) is the time of an updated

foo.edu/~bar
foo.edu/~bar/baz
foo.edu/~bar/baz/qux/quux


Fig. 4. Distribution of 1/λ of author websites at website-level (red) and
homepage-level (blue). Here, λ was calculated using captures from 2015-06-01
to 2018-06-01.

capture, and t(mx−1) is the time when the capture before it
was taken. Here, we use an improved method where we first
interpolate when a URL was updated. We define interpolated-
update time (N) as (t(mx−1) + t(mx))/2, i.e., the midpoint
between t(mx) and t(mx−1). Next, we obtain the update
intervals t̃ci and t̃uj

from these interpolated updates, and use
them to calculate the estimated mean interpolated-update
frequency (λ̃).

C. Distribution of Updates

Figure 5 shows the distribution of 1/λ̃ (red) and the median
interpolated-update interval (∆̃t) (blue) of author websites at
both homepage-level and website-level. It suggests that the
distribution of 1/λ̃ is consistent with the distribution of median
∆̃t at both homepage-level and website-level.

D. Poisson Distribution

Next, we observe whether updates to author websites follow
a Poisson distribution, at both homepage-level and website-
level. Here, we group author websites by their calculated 1/λ̃
values into bins having a width of 1 day. Within each bin, we
calculate the probability (y-axis) of finding an author website
having an interpolated-update interval (∆̃t) of d days (x-axis).

Figure 6 shows the probability distributions for homepage-
level (using D0 dataset) and website-level (using D2 dataset),
at 1/λ̃ = 35 days and 1/λ̃ = 70 days, respectively. The
majority of data points follow a power-law distribution in
the logarithmic scale, indicating that they fit into a Poisson
distribution. We also observe that at homepage-level, the data
points follow a power-law distribution with a positive index
when d is (approximately) lower than 1/λ̃. We observe sporadic
spikes on top of the power law. This indicates that: (1) For
a given λ̃, consecutive changes within short intervals occur
less frequently than predicted by a Poisson distribution, (2)
The updates of scholarly webpages are not absolutely random

(a) Homepage-level

(b) Website-level

Fig. 5. The distributions of 1/λ̃ (red) and the median interpolated-update
interval (∆̃t) (blue) of author websites at (a) homepage-level and (b) website-
level. The y-axis represents individual author websites, in the increasing order
of 1/λ̃.

but exhibit a certain level of weak correlation. Investigating
the reasons behind these correlations is beyond the scope of
this paper, but presumably, they may reflect collaboration or
community-level activities. Probability distributions for other
values of 1/λ̃ also exhibit similar patterns (see Figures 15, 16,
17, and 18 in Appendix).

E. Prediction Model

We formally define our prediction model using two functions,
f and g. The function f : m → (λ, τ) takes the captures m
(i.e. crawl snapshots from the IA) of a website as input, and
outputs its estimated mean update frequency λ (See Eq. (5))
and last known update time τ . The function g : (λ, τ, e)→ p
takes a website’s estimated mean update frequency (λ), its last
known update time (τ ), and a time interval (e) as input, and



(a) Homepage-level, 1/λ̃ = 35 days (b) Homepage-level, 1/λ̃ = 70 days

(c) Website-level, 1/λ̃ = 35 days (d) Website-level, 1/λ̃ = 70 days

Fig. 6. Probability (y-axis) of finding author websites with an interpolated-update interval (∆̃t) of d days (x-axis) at both homepage-level and website-level,
among author websites having 1/λ̃ of 35 days and 70 days, respectively. The vertical blue line shows where d = 1/λ̃.

outputs the probability (p) that the website changes after the
time interval e since its last known update time τ .

III. EVALUATION

Here, we study how archived copies of webpages, and the
quasi-Poisson distribution of webpage updates can be leveraged
to build a focused crawl scheduler for the scholarly web.

w
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x
x x x x

xx
x

xx
x

t
e

u1
u2
u3
u4

time
t+et-w

Fig. 7. An illustration of history size (w), reference point (t), evaluation
interval (e), and updates (×). For each URL ui, λ was estimated using
updates between [t−w, t] (green), and the probability of change (p) at t+ e
was calculated. In Evaluation 1, the correctness of p (red) was checked using
the actual updates between [t, t+ e]. In Evaluation 2, URLs were ordered by
p, and compared against the ordering of those that changed first after t.

Figure 7 illustrates our crawl scheduling model, HACS. For
a selected date t between 2015-06-01 and 2018-06-01, we
first obtain, from the D2 and D0, archived captures of seed
URLs within w weeks prior to t (i.e., in the interval [t−w, t] ).
Based on these captures, we calculate the estimated mean
interpolated-update frequency (λ̃) of each seed URL. Next,
we use the λ̃ values thus obtained, to calculate the probability
(p) that each seed URL would exhibit a change e days from t
(i.e., by day t+ e). Following this, we sort the seed URLs in
the decreasing order of p, and apply a threshold parameter (θ)
to select a subset of seed URLs to be crawled on that date.

A. Simulated Crawl Scheduling Task

Here, we set e = 1 week, and advance t across different
points in time from 2015-06-01 to 2018-06-01, to simulate a
crawl scheduling task. At each t, we use standard IR metrics
to evaluate whether the selected subset of seed URLs were the
ones that actually changed within the interval [t, t + e]. We
also experiment with different values of w (i.e., history size),
to determine which w yields an optimal result.

The following metrics are used for evaluating our model
in comparison with several baseline models. First, we look at



precision, recall, and F1 to measure how accurately the sched-
uler selects URLs for a simulated crawl job (see Evaluation 1).
Then, we use P@K to evaluate how accurate the scheduler
ranks URLs in the order they change (see Evaluation 2).

B. Evaluation 1
Because most implementations of scholarly web crawlers

are not published, we compare with two baseline models,
(1) random URLs (Random), and (2) Brute Force (select all
URLs). We introduce a threshold parameter θ ∈ [0, 1] to select
webpages with a probability of change p ≥ θ for crawling.
Formally, we define the scheduling function as,

Dw,t(θ) = {u; g(λ, τ, 1) ≥ θ, (λ, τ) = f(Mw,t(u)) | ∀u ∈ U}

Mw,t(u) = {mx;x ∈ [t− w, t] | ∀m ∈Mu}

Here, U is the set of all seed URLs, and Mu is the set of
captures of a seed URL u. The parameters w, t, and θ are
the history size, reference point, and threshold, respectively.
The functions f and g are as defined in Section II-E. For
each (w, t, θ), the following actions are performed: In the
HACS model, we use Dw,t(θ) to select URLs for crawling. In
the Random model, we randomly pick |Dw,t(θ)| URLs from
Dw,t(0), i.e., all URLs having captures within the time window
of [t−w, t]. In the Brute Force model, we mimic the behavior
of a hypothetical crawler by picking all URLs from Dw,t(0).
The results from each model were compared to the URLs that
actually changed within the interval [t, t+ e].

Following this, we counted the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN) at each (w, t, θ). Next, we got rid of the reference point t
by macro/micro-averaging over t, and calculated Precision (P ),
Recall (R), and F1 (F ) for each w and θ, respectively. At each
w, we then calculated the threshold θ = θ̂ which maximizes
F1 for both homepage-level and website-level. Table I shows
the results from this evaluation.

We also show how P , R and F1 changes with θ ∈ [0, 1] for
both homepage-level and website-level updates. Figures 8,9,
and 10 illustrate these results at w = 1 and w = 2 (also, results
at w = 3 given in Figures 12, 13, and 14 in Appendix).

C. Evaluation 2

Here, the HACS model was compared against two baseline
models: Last-Obs and Random. In the HACS model, URLs that
have a higher probability of change on the crawl date (t+ e)
are ranked higher. In the Last-Obs model, URL ranks are
determined by the date they were last accessed. Here, URLs
that have not been updated the longest (i.e. larger (t − τ))
are ranked higher. In the Random model, URLs are ranked
randomly. By comparing the URL rankings from each model
to the expected URL ranking (where URLs that were updated
closer to t were ranked higher), we calculate a weighted P@K
over all K. Here, the weights were obtained via a logarithmic
decay function to increase the contribution from lower K
values. This weighted P@K provides a quantitative measure
of whether URLs that were actually updated first were ranked
higher. Next, we get rid of the reference point t by calculating
the mean weighted P@K over all t, at each history size w.

In this manner, we obtain the mean weighted P@K of each
model when different history sizes (w) are used. Figure 11
shows the results from this evaluation.

IV. RESULTS

The results in Table I indicate that the P and F1 values of
HACS model are higher than the Random and Brute Force
models for all values of w (history size in weeks). This lead
is higher when w is lower. However, this difference becomes
less significant as w increases. The Brute Force method had
a consistent R of 1.00, since it crawls all URLs at all times.
However, this model is impractical due to resource constraints.
The HACS model produced a higher R than the Random
model at all w. Also, θ̂ ∈ [0.7, 0.9] for homepage-level and
θ̂ ∈ [0.5, 0.5] for website-level indicates the optimal ranges for
θ.

From Figure 8, as θ increases, the F1 score of HACS model
increases until θ = θ̂, and then drops as θ increases further. At
θ̂, the HACS model yields the highest micro-average F1 score
at both the homepage-level and the website-level. This trend is
more prominent at the homepage-level than the website-level.
In terms of macro-average F1, the Random model closely
follows the HACS model at homepage-level when w = 1.
However, the HACS model yields better F1 scores in all other
cases. The Brute Force model gives constant F1 scores at both
homepage-level and website-level, as it selects all seed URLs
regardless of θ.

When comparing precision P , Figure 9 shows that both
micro-average and macro-average P ’s of HACS model in-
creases as θ increases. This is expected as the URL selection
becomes stricter as θ increases, which, in turn, generates less
false positives. Similar to F1, the lead in P of the HACS
model is more noticeable at homepage-level than website-level.
Nevertheless, the HACS model yields higher P than other
models in all cases. The Brute Force model has a constant P ,
as it selects all URLs regardless of θ. However, P of Brute
Force model is lower than HACS model at both homepage-level
and website-level. Interestingly, the P of both Brute Force and
Random models remain close to each other. At θ = 0.0 (i.e.
when no threshold is applied), all models give the same results,
as they select all seed URLs.

When comparing results of R, Figure 10 shows that both
micro-average R and macro-average R decreases as θ increases.
This is expected as the URL selection becomes stricter as θ
increases, which, in turn, generates less false negatives. The
Brute Force model has a constant R of 1.00, as it selects all
URLs regardless of θ. At θ = 0.0 (i.e. when no threshold is
applied), all models give R = 1.00 as they select all seed URLs.
At θ = 1.0, both HACS and Random models give R = 0.00,
as they select no URLs here. For θ values other than these, the
HACS model consistently yields better R than Random model
at both homepage-level and website-level. However, this lead
is less significant at website-level than at homepage-level, and
diminishes as w increases.

When comparing the average P@K results, Figure 11 shows
that the HACS model yields a better average P@K than the



TABLE I
COMPARISON OF HACS MODEL TO BASELINE MODELS USING PRECISION (P ), RECALL (R) AND F1 VALUES AT e = 1 WEEK, AND AT THRESHOLD θ̂

WHERE F1 IS MAXIMUM. HERE, w IS THE HISTORY SIZE (IN WEEKS). MAXIMUM VALUES ARE IN BOLD, AND HIGHLIGHTED IN BLUE.

Homepage-level

w
Micro Average Macro Average

θ̂ HACS Random Brute θ̂ HACS Random Brute

P

1 0.8 0.759 0.028 0.014 0.9 0.919 0.034 0.026
2 0.7 0.367 0.020 0.021 0.8 0.647 0.018 0.026
3 0.7 0.267 0.031 0.026 0.7 0.305 0.025 0.029
4 0.6 0.175 0.046 0.037 0.7 0.243 0.038 0.039
5 0.6 0.178 0.053 0.044 0.7 0.220 0.047 0.046
6 0.6 0.155 0.047 0.044 0.7 0.186 0.045 0.045
7 0.6 0.134 0.047 0.043 0.6 0.136 0.044 0.045
8 0.6 0.124 0.046 0.043 0.6 0.125 0.044 0.045
9 0.7 0.134 0.050 0.045 0.7 0.139 0.048 0.047

10 0.7 0.127 0.047 0.045 0.7 0.132 0.046 0.047
11 0.7 0.121 0.047 0.045 0.7 0.125 0.046 0.047
12 0.7 0.114 0.050 0.045 0.7 0.118 0.050 0.046

R

1 0.8 0.500 0.019 1.000 0.9 0.556 0.026 1.000
2 0.7 0.332 0.018 1.000 0.8 0.321 0.007 1.000
3 0.7 0.291 0.033 1.000 0.7 0.346 0.025 1.000
4 0.6 0.426 0.111 1.000 0.7 0.299 0.043 1.000
5 0.6 0.445 0.133 1.000 0.7 0.322 0.070 1.000
6 0.6 0.445 0.136 1.000 0.7 0.325 0.083 1.000
7 0.6 0.448 0.156 1.000 0.6 0.459 0.147 1.000
8 0.6 0.454 0.168 1.000 0.6 0.466 0.164 1.000
9 0.7 0.335 0.125 1.000 0.7 0.342 0.122 1.000

10 0.7 0.342 0.125 1.000 0.7 0.351 0.124 1.000
11 0.7 0.348 0.134 1.000 0.7 0.356 0.134 1.000
12 0.7 0.349 0.153 1.000 0.7 0.358 0.152 1.000

F1

1 0.8 0.603 0.022 0.028 0.9 0.750 0.678 0.044
2 0.7 0.349 0.019 0.041 0.8 0.420 0.221 0.048
3 0.7 0.279 0.032 0.051 0.7 0.306 0.087 0.055
4 0.6 0.248 0.065 0.071 0.7 0.255 0.070 0.074
5 0.6 0.254 0.076 0.084 0.7 0.253 0.071 0.087
6 0.6 0.230 0.070 0.084 0.7 0.228 0.067 0.086
7 0.6 0.206 0.072 0.083 0.6 0.205 0.073 0.086
8 0.6 0.194 0.072 0.082 0.6 0.194 0.071 0.086
9 0.7 0.191 0.071 0.086 0.7 0.192 0.072 0.090

10 0.7 0.186 0.068 0.086 0.7 0.187 0.069 0.089
11 0.7 0.180 0.069 0.086 0.7 0.181 0.067 0.089
12 0.7 0.172 0.075 0.085 0.7 0.173 0.074 0.088

Website-level

w
Micro Average Macro Average

θ̂ HACS Random Brute θ̂ HACS Random Brute

P

1 0.5 0.195 0.103 0.099 0.5 0.191 0.096 0.098
2 0.5 0.185 0.104 0.099 0.5 0.181 0.099 0.099
3 0.5 0.164 0.099 0.096 0.5 0.162 0.095 0.096
4 0.5 0.158 0.097 0.096 0.5 0.157 0.094 0.096
5 0.5 0.150 0.098 0.096 0.5 0.150 0.097 0.096
6 0.5 0.139 0.094 0.092 0.5 0.139 0.093 0.093
7 0.5 0.130 0.091 0.089 0.5 0.131 0.091 0.090
8 0.5 0.123 0.089 0.087 0.5 0.124 0.089 0.088
9 0.5 0.118 0.087 0.085 0.5 0.120 0.088 0.087
10 0.5 0.113 0.084 0.084 0.5 0.115 0.085 0.085
11 0.5 0.108 0.083 0.082 0.5 0.110 0.084 0.084
12 0.5 0.104 0.081 0.080 0.5 0.106 0.082 0.082

R

1 0.5 0.435 0.230 1.000 0.5 0.444 0.228 1.000
2 0.5 0.447 0.253 1.000 0.5 0.457 0.257 1.000
3 0.5 0.460 0.277 1.000 0.5 0.471 0.280 1.000
4 0.5 0.475 0.292 1.000 0.5 0.486 0.297 1.000
5 0.5 0.482 0.315 1.000 0.5 0.493 0.320 1.000
6 0.5 0.488 0.329 1.000 0.5 0.498 0.334 1.000
7 0.5 0.492 0.345 1.000 0.5 0.502 0.349 1.000
8 0.5 0.494 0.356 1.000 0.5 0.504 0.361 1.000
9 0.5 0.497 0.367 1.000 0.5 0.507 0.373 1.000
10 0.5 0.501 0.374 1.000 0.5 0.510 0.378 1.000
11 0.5 0.505 0.385 1.000 0.5 0.512 0.389 1.000
12 0.5 0.507 0.393 1.000 0.5 0.514 0.397 1.000

F1

1 0.5 0.269 0.142 0.180 0.5 0.262 0.132 0.177
2 0.5 0.261 0.148 0.181 0.5 0.256 0.141 0.179
3 0.5 0.242 0.145 0.175 0.5 0.238 0.140 0.174
4 0.5 0.237 0.146 0.175 0.5 0.234 0.141 0.175
5 0.5 0.229 0.150 0.175 0.5 0.227 0.146 0.175
6 0.5 0.216 0.146 0.168 0.5 0.215 0.143 0.169
7 0.5 0.206 0.144 0.163 0.5 0.206 0.143 0.164
8 0.5 0.197 0.142 0.159 0.5 0.197 0.141 0.161
9 0.5 0.191 0.141 0.157 0.5 0.192 0.140 0.159
10 0.5 0.184 0.137 0.154 0.5 0.186 0.137 0.156
11 0.5 0.178 0.136 0.151 0.5 0.180 0.136 0.154
12 0.5 0.173 0.134 0.149 0.5 0.175 0.134 0.151

Last-Obs and Random models at both homepage-level and
website-level, for all values of w. However, the HACS model
yields a higher average P@K for lower values of w than for
higher values of w. As w increases, the average P@K of all
models become approximately constant. At homepage-level, the
Last-Obs model yields a better average P@K than the Random
model for lower values of w. At website-level, however, it
yields a worse average P@K than the Random model for
higher values of w.

V. DISCUSSION

From Table I, the P , R, and F1 values obtained from the
HACS model are greater than the baseline models at both
the homepage-level and the website-level, when the optimal
threshold θ̂ is selected. Figure 8 shows that regardless of
the θ selected, the HACS model performs better than the
baseline models. Also, the P of the HACS model increases as
θ increases. This indicates that the HACS model predicted a
higher probability (p) for the URLs that got updated first during

[t, t+ e]. This is also confirmed by the higher mean weighted
P@K values obtained by the HACS model (see Figure 11).
Since R decreases with increasing θ while P increases with
increasing θ, it is imperative that an optimal θ value should be
selected. Results in Table I show that selecting θ = θ̂ (which
maximizes F1) provides a good compromise between precision
and recall, yet perform better than the baseline models.

The P and R of the Brute Force model is constant
irrespective of θ. Though this model yields the highest R
(which is 1.00), it consumes a significant amount of resources
to crawl everything. This approach does not scale well to a
large number of seed URLs. It also yields a lower P and F1
than the HACS model across all w, at both homepage-level
and website-level. These results suggest that the HACS model,
which yields a much higher P and F1 at a marginal reduction
in R, is more suited for a resource-constrained environment.

Recall that the archival of webpages is both irregular and
sparse (See Figure 3). In our sample, authors updated their
homepages every 141.5 days on average, and their websites
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Fig. 8. F1 vs Threshold (θ). The HACS model produced a higher F1 than other baseline models. This lead is more visible at the homepage-level than
the website-level. As θ increases, the F1 of the HACS model increases up to θ = θ̂, and then drops as θ further increases. This drop is more visible at the
website-level than the homepage-level. The macro-average F1 of Random model follows the HACS model with a similar trend at the Homepage-level, History
= 1 week.

every 75 days on average. Note that here, an update to a
webpage means adding a new link into it. Authors may update
their homepages or websites by updating content or adding
external links. Content updates can be studied in a similar
way by comparing the checksum of webpages. Since CDX
files only contain mementos of webpages within the same
domain, taking external links into consideration may require
other data sources. The better performance of the HACS model
in estimating the mean update frequency (λ) for homepages
may be attributed to the fact that homepages undergo fewer
changes than websites.

From Table I, the best micro-average F1 measure obtained
at homepage-level and website-level were 0.603 and 0.269,
respectively. Similarly, the best macro-average F1 measures
obtained at homepage-level and website-level were 0.750 and
0.262, respectively. In both cases, these F1 measures originated
from the HACS model when w = 1 and θ ∈ [0.5, 0.9].

Figure 8 demonstrates the efficiency of our model. As the

threshold θ increases, the number of false positives is reduced,
thereby increasing the precision. Here, we note that even a
small increase in precision matters, because for a large number
of seed URLs, even the slightest increase in precision attributes
to a large decrease in false positives. If crawling is performed
on a regular basis, the HACS model could be utilized to pick
seed URLs that have most likely been updated. This, based on
the above results, would improve collection freshness while
using resources and bandwidth more effectively.

VI. CONCLUSION

We studied the problem of improving the efficiency of a
focused crawl scheduler for the scholarly web. By analyzing
the crawl history of seed URLs obtained from the IA, we fit
their change information into a Poisson model and estimated
the probability that a webpage would update (addition of new
links) by the next crawl. Finally, our scheduler automatically
generates a list of seed URLs most likely to have changed



0.0 0.2 0.4 0.6 0.8 1.0
Threshold ( )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

History: 1 week(s), Scheduling: 1st week
HACS (Micro Avg)
HACS (Macro Avg)
Random (Micro Avg)
Random (Macro Avg)
Brute Force (Micro Avg)
Brute Force (Macro Avg)

Precision: Page Level

(a) Homepage-level, History = 1 week

0.0 0.2 0.4 0.6 0.8 1.0
Threshold ( )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

History: 2 week(s), Scheduling: 1st week
HACS (Micro Avg)
HACS (Macro Avg)
Random (Micro Avg)
Random (Macro Avg)
Brute Force (Micro Avg)
Brute Force (Macro Avg)

Precision: Page Level

(b) Homepage-level, History = 2 weeks

0.0 0.2 0.4 0.6 0.8 1.0
Threshold ( )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

History: 1 week(s), Scheduling: 1st week
HACS (Micro Avg)
HACS (Macro Avg)
Random (Micro Avg)
Random (Macro Avg)
Brute Force (Micro Avg)
Brute Force (Macro Avg)

Precision: Site Level

(c) Website-level, History = 1 week

0.0 0.2 0.4 0.6 0.8 1.0
Threshold ( )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

History: 2 week(s), Scheduling: 1st week
HACS (Micro Avg)
HACS (Macro Avg)
Random (Micro Avg)
Random (Macro Avg)
Brute Force (Micro Avg)
Brute Force (Macro Avg)

Precision: Site Level

(d) Website-level, History = 2 weeks

Fig. 9. Precision (P ) vs Threshold (θ). The HACS model produced a higher P than other baseline models, and increases with θ. This lead is more visible at
homepage-level than website-level. Both Random and Brute Force models have a low P , regardless of θ.

since the last crawl. Our analysis found that the estimated
mean update frequency (or equivalently, update interval) follow
a log-normal distribution. For the 19,977 authors we studied
from Google Scholar, new links were added on an average
interval of 141.5 days for a homepage, and 75 days for a
website. We also observed that the median crawl interval of
80% of author homepages was between 20–127 days. Our
evaluation results show that our scheduler achieved better
results than the baseline models when θ is optimized. To
encourage reproducible research, our research dataset consisting
of HTML, CDX files, and evaluation results have been made
publicly available1.

In the future, we will investigate different types of updates,
such as the addition of a scholarly publication in PDF format.
Additionally, author websites could be crawled regularly to
ensure that updates are not missed, and its effect on the
estimation of mean update frequency could be evaluated. We

1https://github.com/oduwsdl/scholarly-change-rate

will also generalize this work into more domains by exploring
non-scholarly URLs.
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APPENDIX

This section documents additional results obtained from
the evaluation of HACS model against our baselines, and
the verification of the stochastic nature of scholarly webpage
updates for more interval sizes.

Figure 12 illustrates the F1 vs Threshold (θ) of each model,
when a history size of 3 weeks is used. Here too, the HACS
model produced a higher F1 than other baseline models. This
lead is more visible at the homepage-level than the website-
level. However, compared to a history size of 1 week and 2

weeks, this lead is less prominent at both homepage-level
and webpage-level. As θ increases, the F1 of the HACS
model increases up to θ = θ̂, and then drops as θ further
increases. This drop is more visible at the website-level than
the homepage-level. The macro-average F1 of Random model
follows the HACS model with a similar trend at the Homepage-
level, History = 1 week.

Figure 13 illustrates the Precision (P ) vs Threshold (θ) of
each model, when a history size of three weeks is used. Here
too, the HACS model produced a higher P than the baselines
for all values of θ at homepage level, and for θ ≤ 0.95 at
website level. This lead is more visible at homepage-level than
website-level. However, compared to a history size of 1 week
and 2 weeks, this lead is less prominent at both homepage-level
and webpage-level. Both Random and Brute Force models have
a low P , regardless of θ.

Figure 14 illustrates the Recall (R) vs Threshold (θ) of each
model, when a history size of three weeks is used. Here too,
the HACS model produced a higher R than other baseline
models for all values of θ, at both homepage level and website
level. This lead is more visible at homepage-level than website-
level. However, compared to a history size of 1 week and 2
weeks, this lead is less prominent at both homepage-level and
webpage-level. The Brute Force model has a consistent R of
1.0, as it selects all seed URLs regardless. The Random model
has a low R, regardless of θ.

Figures 15, 16, 17, and 18 illustrates the probability of
finding author websites with an interpolated update interval of
d days for additional values of d, ranging from 7 days to 70
days, at both homepage-level (see Figure 15) and webpage-
level (see Figure 16). The results suggest that as d increases,
the probability distribution gets closer to the expected poisson
distribution in both cases.

https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
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(b) Website-level, History = 3 weeks

Fig. 12. F1 vs Threshold (θ) when a history of 3 weeks is used
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(b) Website-level, History = 3 weeks

Fig. 13. Precision (P ) vs Threshold (θ) when a history of 3 weeks is used
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(a) Homepage-level, History = 3 weeks
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(b) Website-level, History = 3 weeks

Fig. 14. Recall (R) vs Threshold (θ) when a history of 3 weeks is used



(a) Homepage-level, 1/λ̃ = 7 days (b) Homepage-level, 1/λ̃ = 14 days

(c) Homepage-level, 1/λ̃ = 21 days (d) Homepage-level, 1/λ̃ = 28 days

Fig. 15. Probability (y-axis) of finding author websites with an interpolated
update interval (∆t) of d days (x-axis) at homepage-level, among author
websites having 1/λ̃ across different bin sizes. The vertical blue line shows
where d = 1/λ̃.

(a) Homepage-level, 1/λ̃ = 42 days (b) Homepage-level, 1/λ̃ = 49 days

(c) Homepage-level, 1/λ̃ = 56 days (d) Homepage-level, 1/λ̃ = 63 days

Fig. 16. Probability (y-axis) of finding author websites with an interpolated
update interval (∆t) of d days (x-axis) at homepage-level, among author
websites having 1/λ̃ across different bin sizes. The vertical blue line shows
where d = 1/λ̃.

(a) Website-level, 1/λ̃ = 7 days (b) Website-level, 1/λ̃ = 14 days

(c) Website-level, 1/λ̃ = 21 days (d) Website-level, 1/λ̃ = 28 days

Fig. 17. Probability (y-axis) of finding author websites with an interpolated
update interval (∆t) of d days (x-axis) at website-level, among author websites
having 1/λ̃ across different bin sizes. The vertical blue line shows where
d = 1/λ̃.

(a) Website-level, 1/λ̃ = 42 days (b) Website-level, 1/λ̃ = 49 days

(c) Website-level, 1/λ̃ = 56 days (d) Website-level, 1/λ̃ = 63 days

Fig. 18. Probability (y-axis) of finding author websites with an interpolated
update interval (∆t) of d days (x-axis) at website-level, among author websites
having 1/λ̃ across different bin sizes. The vertical blue line shows where
d = 1/λ̃.


