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Abstract—Maintaining aging infrastructure is a challenge cur-
rently faced by local and national administrators all around
the world. An important prerequisite for efficient infrastructure
maintenance is to continuously monitor (i.e., quantify the level
of safety and reliability) the state of very large structures.
Meanwhile, computer vision has made impressive strides in
recent years, mainly due to successful applications of deep
learning models. These novel progresses are allowing the au-
tomation of vision tasks, which were previously impossible to
automate, offering promising possibilities to assist administrators
in optimizing their infrastructure maintenance operations. In
this context, the IEEE 2020 global Road Damage Detection
(RDD) Challenge is giving an opportunity for deep learning and
computer vision researchers to get involved and help accurately
track pavement damages on road networks. This paper proposes
two contributions to that topic: In a first part, we detail our
solution to the RDD Challenge. In a second part, we present our
efforts in deploying our model on a local road network, explaining
the proposed methodology and encountered challenges.

Index Terms—Object Detection, Global Road Damage Detec-
tion Challenge 2020

I. INTRODUCTION

In the last decade, deep learning has led to important break-
throughs in computer vision [5]–[7], enabling the automation
of vision tasks, which were impossible before. The ability
to automate new perception tasks is now allowing to apply
quantitative approaches to existing problems, which were
previously either economically infeasible or plainly impossible
to perform quantitatively due to the time needed for humans
to perform the visual assessment tasks. Prominent exam-
ples of such instances in the scientific literature include the
connectomics endeavor [8], which requires the segmentation
of neurons from petabytes of electron microscopy, or the
cataloguing of celestial objects from the visible universe [9].
Such tasks could not be approached qualitatively due to the
intractable time needed by humans to identify and cross-
reference objects from a massive amount of visual information.

Outside the scientific spheres, many industrial processes
have been built around the technical constraint that perceptual
tasks were not subject to automation, and thus limited by
the time needed for humans to execute them. One field
where visual assessments at scale are of prime importance
is infrastructure monitoring. As administrations around the
world face the problem of maintaining a safe network of
public infrastructure, continuously monitoring the state of this
infrastructure is a global challenge of today. In this context,
Maeda et al. [1] proposed a large scale dataset of Japanese road
images captured from smartphone cameras, and annotated by
experts with pavement damage annotations. In a successive
project, the authors have successfully expanded the data ac-
quisition to multiple countries, namely the Czech Republic and
India, to investigate the applicability and generalization of their
method to different countries [2]. These datasets have been
made public for computer vision researchers around the world
to improve the automation of pavement damage detection.

This paper consists of two distinct parts. In section II, we
present our submission to the IEEE Big Data ”Global Road
Damage Detection Challenge 2020”, providing explanations
on the methods used and analyzing the failure cases of our
proposed model. In section III, we set ourselves the goal to
deploy our model in order to extract an accurate and exhaustive
set of pavement damages on a pre-defined road network. Our
objective is to determine the feasibility and arising complica-
tions of deploying our proposed model to provide actionable
insights for infrastructure managers. We start by defining a
set of goals and constraints for our deployment in section
III.A, and describe the various design choices and challenges
encountered in the rest of Section III. Finally, in section III.G,
we provide a toy problem formulation to illustrate the kind of
quantitative approaches to infrastructure management enabled
by large-scale visual intelligence extraction using computer
vision deployment.
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II. CHALLENGE

A. Dataset

The global Road Damage Detection (RDD) Challenge
dataset gathers images of road networks from Japan, India,
and the Czech Republic, labeled with a bounding box and
damage class annotations. The available training set contains
over 20.000 images, of which we used 85% as training data
and 15% as validation data. Participants to the challenge were
evaluated on two withheld test sets evaluated on the organisers’
servers. The F1 score achieved by our model on these test
sets were 0.541 and 0.543, respectively for test set 1 and 2.
As the test set annotations were not made available, we report
the results of our error analysis on the validation split, for
which we have access to the ground truth. For consistency, all
results are presented based on this validation split. It should be
noted that our results on the validation set are higher than the
results reported on the official test set. The reasons causing this
discrepancy have not been elucidated so far, but we assume
that it might be due to a difference in the exact evaluation
protocol.

Fig. 1. Distribution of the dataset damage annotations per class and countries

B. Proposed method

Our solution to the RDD challenge was based on the
FasterRCNN two-stage detection architecture. In most experi-
ments, unless specified otherwise, we used a ResNet-50 as our
baseline backbone, the training was performed with a linear
warm-up growing from 0 to 5×10−3 in one epoch, followed by
a cosine annealing schedule for 20 epochs. We used stochastic
gradient descent to optimize the model with a momentum of
0.9 and a weight decay parameter of 5× 10−4. The following
is a list of attempts we have found to improve our results from
this baseline:
• Using larger backbone architectures;
• Pretraining strategies;
• Label smoothing (to some extent).
It is highly possible that our attempts failed due to incorrect

parameterization, and that a more careful parameter search
would improve our method. Nevertheless, we list our unsuc-
cessful attempts, that brought little to no improvement to the
model accuracy, below for completeness:
• Learning data augmentation strategies;

• Ensembling and test time augmentation;
• Conditioning the network on the country information;
• Conditioning the bounding box regression heads on class

information.

Fig. 2. F1-score obtained by different backbones. Larger backbones achieve
higher accuracies

Figure 2 to 4 show the improvements obtained using each
of our successful attempts. In Figure 2, we show the F1 score
obtained by our model using different backbones. Increasing
the bacbone model size significantly improved the results
compared to the baseline resnet-50, although diminishing
returns were observed aswe keep increasing the backbone size.

Fig. 3. F1-score obtained by different parametesr of label smoothing.

Figure 3 shows the results of our model for different label
smoothing parameters. We validate these results by running the
experiment on two different backbones: Resnet-18 and Resnet-
50. A similar trend is observed with a peak F1 score obtained
with a smoothing factor of 0.05.

Finally, Figure 4 shows the results obtained with different
backbone pre-training strategies. The baseline pretraining strt-
egy corresponds to using an ImageNet pretrained backbone
with randomly initialized Region Proposal Network, classi-
fication heads and regression heads. The Classification pre
training strategy consists in pretraining the backbone on a toy
classification problem created as follows: First we extract the



Fig. 4. F1-score obtained by different pretraining strategies.

inside of the damage bounding box and assign these images
the label given by the dataset. We then fine-tune an Imagenet-
pretrained backbone on this artificially created dataset. The
resulting model weights were used to initialize the backbone
of detection model for fine-tuning on the challenge task. The
Full strategy consisted in first training the detection model on
the full available dataset, including all available classes (D01,
D11, etc.). We then fine-tune the resulting model on the subset
of target classes for the challenge.

C. Error Analysis

(a) (b)

Fig. 5. Precision (a) and Recall (b) per class and countries

Figure 5 shows the precision and recall per country and
damage type. The first observation to be made is that the
accuracy is quite higher on images captured in Japan compared
to the ones from Czech and Indian. This difference in the
results corresponds well to the imbalance of the amount of
data available from the dataset, as shown in Figure 1.

Secondly, lateral and longitudinal cracks (classes D00 and
D10) tend to show lower accuracy than the other classes (D20
and D40). One notable exception is the low level of precision
and recall for the Czech dataset, which may be explained by
the low amount of available data for this class (cf. Figure 1).

Lastly, it is notable that the model could not correctly
detect a single D10 instance from the Indian datset. Similarly,
this may be explained by the remarkably low amount of
data available for this class. Indeed, our validation set only
contained 11 such instances.

Manual assessment of the network output revealed certain
interesting phenomena that seem characteristic to pavement

(a) (b)

Fig. 6. Illustrations of failure cases. Artifacts on the roads are mistaken for
damages

damage detection. In Figure 7 and 8 , we display images of the
validation set annotated with ground-truth labels in blue, and
model output in red. First, a number of road artifacts, including
water marks and shades, are mistaken for road damages, as
illustrated in Figure 6 .

(a) (b)

Fig. 7. Illustrations of failure cases. Vanilla NMS might not be best suited
for crack detection. (A) cluttered detections despite NMS performed with IOU
threshold of 0.5. (B) D20 detections encompass smaller defect detections

More interestingly, the overlap of detected damages suggest
a need for a better scheme than a vanilla Non-Maximum-
Suppression (NMS) scheme. Several interesting error cases
happened related to the detected damage overlap. Figure 7(a)
shows an example of cluttered detections. In this case, no pair
of bounding box overlaps with an IOU superior to 0.5. Due
to the very thin nature of cracks and to the coarse nature
of rectangle bounding boxes, such cluttered detections may
arise despite relatively low IOU thresholds. Secondly, alligator
cracks (D20) tend to cover wider areas than the other classes of
damages. Within these wider ranges, the model tends to assign
additional detections to subsets of these spaces. These kinds
of errors might be dealt with by hand-crafted rules excluding
detections contained within larger findings.

Finally, closely related to the phenomenon discussed above,
a frequent pattern of errors consisted in assigning either too
few or too many distinct detections to areas of neighboring
damages. Figure 8 illustrates such error cases. In Figure 8
(b), the ground-truth data assigns a single damage bounding
box to the area, whereas the model distinguishes between



(a) (b)

Fig. 8. Illustrations of failure cases. (a) Example of the model detecting
of one larger area of damage and (b) the ground truth annotation defining a
larger damaged area

different cracks of this area as different damages. In Figure 8
(a), the inverse situation happens in which our model assigns
a single damage to the wider damaged area, whereas ground-
truth annotations assign finer-grained detections. To our novice
eyes, and without knowledge of rules clearly defining the
separation between neighboring damages, both outputs seem
acceptable and the quantitative accuracy seems to be left to
the annotator’s appreciation.

III. DEPLOYMENT

A. Motivation and goals

In this section, we investigate the feasibility, and estimate
the difficulties of, extracting an accurate and exhaustive set
of geo-localized pavement defects of a target road network.
We ask ourselves the following questions: what engineering
challenges lie in-between running our model inference and
providing actionable insights to infrastructure managers? To
uncover these challenges, we set ourselves the following goals:
• To extract an exhaustive dataset of geo-localized pave-

ment damages on a given target road network;
• At minimum cost;
• To illustrate the usability of this dataset in developing

quantitative approaches to planning maintenance opera-
tions.

Realizing these goals requires answering the following
questions:
• How can one efficiently image a target road network in

its entirety?
• How can one deal with errors and uncertainty in the

model output?
• How can one minimize the cost of such endeavor?
We have made the following design decisions to address the

above questions:
• Centralize and optimize the image acquisition process.
• Provide a geo-localized interface to visualize the ex-

tracted damages, allowing users to manually assess and
correct the model errors.

• Rely exclusively on low-cost hardware, open data and
software.

B. Deployment process

Figure 9 illustrates the architecture of the proposed method.
First, the data acquisition phase generates a set of geo-
localized images of the given road network. We further subdi-
vide the task of data acquisition into the two sub-tasks of route
planning and image capture. Second, images are processed by
our model to extract geo-localized pavement damages. These
defects are then integrated to a GUI interface allowing the user
to browse his or her section of interest, assess the validity of
extracted damages and fix the potential model errors.

Fig. 9. Illustration of the proposed methodology

Finally, we propose a toy problem formulation expressing
the challenge of finding an optimal maintenance operation
as a constrained optimization problem over the extracted
dataset. This proposition is meant as an illustration of the idea
presented in the introduction: visual intelligence gathered at
scale using computer vision opens the way to new quantitative
approaches to solve existing problems.

The following sections describe the progresses made and
challenges encountered within each of these steps.

C. Route planning

Fig. 10. Directed graph extracted from OSM data representing our target road
network

The first step of our method consists in defining a route
for the vehicle to follow, spanning the entirety of the target
road network. To compute this route, we relied on Open Street
Map data [10], which we downloaded and preprocessed using
the OSMNX library [11]. The result of this preprocessing is a
directed graph G =

{
E, V

}
in which vertices vi ∈ V represent

road intersections, and edges ei ∈ E serve as roads between
these intersections. Each edge is annotated with a distance in
meters d(ei),∀ei ∈ E. The directed graph extracted for our
target road network is illustrated in Figure 10.



Given the extracted graph, our goal of finding a route to
efficiently image the road network in its entirety can be formu-
lated as follows: Find a path P =

(
e0 → e1 → ... → eN

)
of

minimal distance d(P ) =
∑

ej∈P d(ej) traversing the whole
set of edges so that E ⊂ P at least once. This problem
definition corresponds to the well-known Chinese Postman
Problem [15] which admits a fairly simple solution in two
steps: graph eulerization and Euler circuit generation.

For the eulerization step, we implemented the scheme
presented in [12], using the CVXPY library [13] to offload
calls to the ECOS [14] integer program solver. The resulting
eulerized graph has a total length of 28.0km, which represents
an addition of 6.9% or road navigation compared to the
original road network of 26.2 km.

For the Euler circuit generation, we implemented a variant
of the Fleury algorithm, augmented with a priority queue to
minimize the amount of U-turns and left turns in the generated
circuit.

We then converted the resulting circuit to a GPX navi-
gation file and uploaded it to a smartphone. We used the
OsmAnd open-source application to get real-time navigation
inctrustions.

Although this approach allowed for an effective road net-
work navigation, several concerns remain: One issue, for
example, was the imaging of multi-lane streets: our setup
currently only allows the imaging of a single lane. Integrating
lane information to the real-time navigation system would
be quite challenging. Another limitation of our approach is
that it assumes a constant driving speed on all roads and
intersections, and ignores traffic conditions and traffic signals
completely (traffic lights, stop signs, pedestrians, etc.). Relying
on specialized navigation software would probably improve
the navigation efficiency, but no open solution fitting our needs
was found.

D. Image Capture

Bearing our goal of a modest acquisition cost in mind, we
used a RaspBerry Pi 4 as a computing platform, controlling
a PiCamera HQ camera for image capture. We connected a
500GB external SSD storage to store the captured images and
a GPS receiver for geo-localization. For reasons of simplicity
and practicability, a personal scooter was employed as the
driving vehicle whereby the camera was fixed to the front
end through an articulated arm. The entire setup was created
under $200.

Each picture was taken with a resolution of 2032 by 1520
pixels at a recording frame rate of 10 images per second.
Given the maximum speed limit of 40 km/h on the target road
network, at least one photo was taken every 1.5 meters. With
these specifications, our setup would allow for a continuous
recording around 385.000 images during a time window of
more than 10 hours before exceeding the capacity of the hard
drive.

Each recorded image was indexed by the time stamp of its
capture. The GPS receiver generates a set of coordinates simi-
larly indexed by the time stamp of their reception. Images were

then mapped to a unique coordinate by linearly interpolating
their time stamp against the GPS time stamp series.

Finally, we associate each image to an edge in the road
network graph. We do so by computing the distance between
the image coordinates to each of the network edges. For
simplicity, and given the short distances considered, the point
to segment distances was computed under a planar assumption.

Fig. 11. Illustration of the noise in image captures. (left) Illumination noise.
(center) Sharp corners yield walls and sidewalks captures. (right) Motion blur.

A few hurdles we encountered while capturing the images
are worth mentioning. The most problematic one was the
vibrations transmitted from the vehicle to the camera. As
a result, several pictures suffer a significant motion blur, as
illustrated in Figure 11. Second, illumination variations also
affected the quality of the captured images. In particular,
moving from shaded areas to high illumination areas, the
camera processing pipeline had trouble adjusting to the new
illumination of the environment. These problems deserve
attention and might be fixed by a better calibration of the
camera. Finally, as the target road network consists mostly of
small roads, several sharp corner turns were made. In these
cases, the camera setup ended up capturing mostly walls and
sidewalks, as illustrated in Figure 11. Such captures should
be filtered to avoid detecting wall cracks or other undesired
artifacts.

E. Inference

Once the geo-localized images acquired, we fed them to
the model described in Section 2 to extract a (possibly empty)
set of damages identified by the output label of the damage
l, its location within the image as a bounding box b, and a
confidence score s ranging from 0 to 1. We then associate
to each extracted defects the geo-localization of their origin
image.

This approach raises two (currently unsolved) problems:
First, the geo-localization of the damages does not correspond
to their actual coordinates, but to the coordinates of a point
of view from which they are visible. This may result in
detected damages to be assigned to the wrong edge of the
network. Several solutions to this problem may be considered:
One might either refine the geo-localization by combining the
GPS information with the content of the image. However, this
would be non-trivial to realize. Alternatively, one might design
a capture setting with a narrower field of view (e.g., a top down
point of view) and higher frame rates. This would probably
necessitate a new dataset adapted to this point of view.



(a) (b)

Fig. 12. Illustration of duplicate detections

(a) (b)

Fig. 13. Illustration of domain shift complications (a) poor generalization to
new pavement types (b) dead leaves are detected as damages, showing that
different seasonal features may impact generalization.

Second, many damages are visible from different images,
leading to duplicate detections of the same damage. We
distinguish two kinds of duplicates:

Some duplicates are due to the immobility of the data
capture at a given time (due to traffic lights, stops, or turns).
To deal with these duplicates, we sub-sampled the set of target
images using their coordinates, selecting only one image every
ten meters. A Gaussian smoothing of the GPS time series was
performed before subsampling in order to smooth the GPS
noise.

Other duplicates correspond to the same location being
imaged from different directions or intersection ways. These
instances are harder to deal with and have not yet been dealt
with at the time of this writing. Figure 12 illustrates one
instance of such duplicate detection.

Other failure cases that may be attributed to domain shift are
illustrated in Figure 13. Notably, we notice a kind of pavement
that triggers the model to systematically detect non-existing
alligator cracks (Figure 13 (a)), and several dead leaves being
mistaken by our model for pothole-kind of damages (Figure
13 (b)).

F. Graphical User Interface

Figure 14 and 15 show snapshots of our proposed GUI. The
first interface, represented in Figure 14, lets users interactively
browse a map of the network, displaying road edges in a
color scale representing the extracted damage severities. In
its current state, the damage severity scale represents the sum
of detected damage probabilities per unit of distance on the
edge. However, more pertinent measures of road conditions
should be considered for practical applications.

Fig. 14. GUI Illustration: road segment visualization

Fig. 15. GUI Illustration: Manual inspection of extracted damages

Figure 15 shows the second interface, displaying extracted
damages as geo-localized points on the map. Selecting a point
on the map displays the associated image. This interface is
intended to let users manually verify and correct the extracted
damages.

G. Action plan optimization

In this section, we propose a toy optimization problem
simulating the task of planning for optimal maintenance opera-
tions. This toy problem is meant as an example of quantitative
approaches enabled by the large-scale extraction of visual
information to illustrate the idea presented in the introduction,
rather than an attempt to tackle an actually practical use-
case. Practical use-cases would require much more complex
constraint and objective definitions.

Let us define a cost function c(e) over a single edge e ∈ E
of the road network as the sum of the damage probabilites
extracted along this edge. In addition, each edge e is associated
a time t(e), modeling the time required by a maintenance
operation on this edge. We augment the graph by inserting
duplicate edges e′ for all edges e ∈ E of the graph. Duplicate
edges are annotated with a time t(e′) = s × d(e) and cost
c(e′) = 0 to represent the action of traversing the edge without
maintenance. Here s represent a navigation speed constant
converting distances to times.

Finally, we define a maintenance plan as a path P ∈ Eaug

starting from a root node u0 ∈ V in this augmenting graph.
This path is intended to represent a daily maintenance deploy-
ment from an agent based at root node u0, traversing the road
network graph, selectively maintaining a subset of the edges
traversed. We define a path cost c(P ) and time t(P ) as the
sum of the respective values of its edges:



c(P ) =
∑
e∈P

c(e)

t(P ) =
∑
e∈P

t(e)
(1)

Given the above definitions, the problem of finding an
optimal maintenance operation under a given time budget T
can be formulated as follows: Find a path P ∈ Eaug with
maximal cost c(P ), under the constraint that t(P ) < T , and
that none of the original network edges from E can be crossed
more than once (i.e., the agent can only fix a road segment
once).

For small enough networks, simple procedural solutions can
be implemented. To deal with larger networks, or integrate
more realistic constraints, more advanced solutions would
need to be considered.

H. Limitation and Future Work

Much work remains to be done in order to propose a
practically useful system. In this subsection, we detail the most
important limitations of the presented work.

1) Current implementation limitations: We see two major
shortcomings of the proposed approach in its current form.
First, the captured images contain a lot of noise, due to motion
blur and illuminations. Although we have not quantified drops
in accuracy due to this noise, we suspect this has an important
impact on the completeness of the extracted road damages.
This also negatively affects the GUI experience. Better imag-
ing could be achieved with better handling of the vehicle
vibrations and better calibration of the camera. Second, we
have not yet dealt with the problem of duplicate detections of
damages. Future work should focus on this important problem.

2) Current design limitations: The current design of the
proposed approach has several important flaws. First, the
severity of the extracted damages is not assessed. We have
relied on the detection score of the detection outputs to assess
the importance of the detected damages. We believe this to be
an important shortcoming of the current system as we expect
damage severity to be one of the most important insight to
drive subsequent maintenance operation decisions. Assessing
damage severity might be done by integration of such tech-
niques as crack segmentation [3] or pothole classification [4].
Finally, our current approach does not quantify, nor deal with
the uncertainty in the geo-localization of the damages. Most
notably, the current geo-localization of the extracted damages
does not reflect their true position, but rather the position of
a point of view from which the damages are visible. This
leads, in some cases, to damages being associated to the wrong
segment of the road network. At the time of this writing, no
viable solution to this problem has been considered.

IV. CONCLUSION

The recent success of computer vision is enabling the au-
tomation of previously impossible visual tasks. One sector of
activity where this automation is set to have a profound impact
is infrastructure management where continuous monitoring of

large-scale infrastructures is required. Building on excellent
prior works [1], [2] in this direction, this paper has detailed
our solution to the Global Road Damage Detection Challenge
2020, as well as our efforts to deploy the resulting model into
a functional service aiming to assist infrastructure managers.
In our efforts, we point out several challenges related to
deployment.
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