
Vitor Pinheiro de Almeida

DSCEP: An Infrastructure for Decentralized
Semantic Complex Event Processing

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências–Informática.

Advisor: Prof. Markus Endler

Rio de Janeiro
September 2021

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Vitor Pinheiro de Almeida

DSCEP: An Infrastructure for Decentralized
Semantic Complex Event Processing

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências–Informática. Approved by the
Examination Committee:

Prof. Markus Endler
Advisor

Departamento de Informática – PUC-Rio

Prof. Edward Hermann Haeusler
Departamento de Informática – PUC-Rio

Profa. Noemi de La Rocque Rodriguez
Departamento de Informática – PUC-Rio

Prof. Francisco José da Silva e Silva
UFMA

Dr. Guilherme Augusto Ferreira Lima
IBM Research Brazil

Rio de Janeiro, September 17th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

All rights reserved.

Vitor Pinheiro de Almeida

Graduated in computer science by the Pontifícia Universidade
Católica do Rio de Janeiro.

Bibliographic data
Almeida,Vitor Pinheiro de

DSCEP: An Infrastructure for Decentralized Semantic
Complex Event Processing / Vitor Pinheiro de Almeida; advisor:
Markus Endler. – 2021.

86 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática, 2021.

Inclui bibliografia

1. Informática – Teses. 2. CEP Semântico. 3. Proces-
samento de Eventos Complexos. 4. Stream Reasoning. 5.
Processador de Stream RDF. 6. Infraestrutura Distribuída. I.
Endler, Markus. II. Pontifícia Universidade Católica do Rio de
Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

I dedicate this thesis to my parents and grandmother
and especially to my wife, she is the person who made possible the completion

of this work.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Acknowledgments

To my wife Roberta, who was by my side every time during the development of
this thesis. She is the person who made possible the completion of this work.

To my parents for their emotional and financial support and endless encourage-
ment.

To my grandmother, who is both an inspiration and a gift to me.

To my advisor Professor Markus Endler for the stimulus and partnership to
carry out this work.

To Professor Edward Hermann, Sukanya and Professor Kurt for the various
inputs and constructive conversations about this thesis.

To CNPq and PUC-Rio, for the aids granted, without which this work does
not could have been accomplished.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Abstract

Almeida,Vitor Pinheiro de; Endler, Markus (Advisor). DSCEP:
An Infrastructure for Decentralized Semantic Complex
Event Processing. Rio de Janeiro, 2021. 86p. Tese de Doutorado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Many applications require the processing of event streams from different
sources in combination with large amounts of background knowledge. Semantic
CEP is a paradigm explicitly designed for that. It extends complex event
processing (CEP) with RDF support and uses a network of operators to process
RDF streams combined with RDF knowledge bases. Another popular class of
systems designed for a similar purpose is the RDF stream processors (RSPs).
These are systems that extend SPARQL (the RDF query language) with stream
processing capabilities. Semantic CEP and RSPs have similar purposes but
focus on different things. The former focuses on scalability and distributed
processing, while the latter tends to focus on the intricacies of RDF stream
processing per se. In this thesis, we propose the use of RSP engines as building
blocks for Semantic CEP. We present an infrastructure, called DSCEP, that
allows the encapsulation of existing RSP engines into CEP-like operators so
that these can be seamlessly interconnected in a distributed, decentralized
operator network. DSCEP handles the hurdles of such interconnection, such
as reliable communication, stream aggregation and slicing, event identification
and time-stamping, etc., allowing users to concentrate on the queries. We also
discuss how DSCEP can be used to speed up monolithic SPARQL queries; by
splitting them into parallel subqueries that can be executed by the operator
network or even by splitting the input stream into multiple operators with the
same query running in parallel. Additionally, we evaluate the impact of the
knowledge base on the processing time of SPARQL continuous queries.

Keywords
Semantic CEP; Complex Event Processing; Stream Reasoning; RDF

Stream Processor; Distributed Infrastructure.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Resumo

Almeida,Vitor Pinheiro de; Endler, Markus.DSCEP: Uma Infres-
trutura Distribuída para Processamento de Eventos Com-
plexos Semânticos. Rio de Janeiro, 2021. 86p. Tese de Doutorado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Muitas aplicações necessitam do processamento de eventos de streeams de
fontes diferentes em combinação com grandes quantidades de dados de bases de
conhecimento. CEP Semântico é um paradigma especificamente designado
para isso, ele extende o processamento complexo de eventos (CEP) para
adicionar o suporte para a linguagem RDF e utiliza uma rede de operadores
para processar streams RDF em combinação com bases de conhecimento em
RDF. Outra classe popular de sistemas projetados para um proposito similar
são os processadores de stream RDF (RSPs). Estes são sistemas que extendem a
linguagem SPARQL (a linguaguem de query padrão para RDF) para adicionar
a capacidade de fazer queries em stream. CEP Semântico e RSPs possuem
propositos similares porém focam em objetivos diferentes. O CEP Semântico,
foca na scalabilidade e processamento distribuido enquanto os RSPs focam nos
desafios do processamento de streams RDF. Nesta tese, propomos o uso de
RSPs como unidades para processamento de streams RDF dentro do contexto
de CEP Semântico. Apresentamos uma infraestrutura, chamada DSCEP, que
permite o encapsulamento de RSPs existentes em operadores do estilo CEP,
de maneira que estes RSPs possam ser interconectados formando uma rede
de operadores distribuída e descentralizada. DSCEP lida com os desafios e
obstáculos desta interconexão, como comunicação confiável, divisão e agregação
de streams, identificação de eventos e time-stamping, etc., permitindo que os
usuários se concentrem nas consultas. Também discutimos nesta tese como o
DSCEP pode ser usado para diminuir o tempo de processamento de consultas
SPARQL monolíticas, seja dividindo-as em subconsultas e operando-as em
paralelo através do uso de operadores ou seja dividingo a stream de entrada
em multiplos operadores que possuem a mesma query e são executados em
paralelo. Além disso também é avaliado o impacto que a base de conhecimento
possui no tempo de processamento de queires contínuas.

Palavras-chave
CEP Semântico; Processamento de Eventos Complexos; Stream Reaso-

ning; Processador de Stream RDF; Infraestrutura Distribuída.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Table of contents

1 Introduction 14
1.1 Motivational Use Case for Semantic CEP 16
1.2 Research Questions and Contributions 16

2 Background 19
2.1 RDF, Reasoning, and Knowledge Bases 19
2.2 RDF Streams 20
2.3 RDF Stream Processing 22
2.3.1 Limitations of current RSP engines 23
2.4 Semantic CEP 24

3 Conceptual Architecture 28
3.1 Assumptions 28
3.2 Infrastructure Modules 28
3.2.1 Stream Generator 29
3.2.2 Operator 29
3.2.3 Client 31
3.3 Supported query parallelisms 31

4 Implementation 35
4.1 Apache Kafka and DSCEP 35
4.2 DSCEP Components 36
4.2.1 Publisher Component 36
4.2.2 Aggregator, RSP engine and Script Components 39
4.3 Configuring an example operator topology on DSCEP 42
4.4 DSCEP Implemented Operators 46

5 Evaluation 50
5.1 Input RDF Stream 50
5.2 Knowledge Base 51
5.3 Access Methods 51
5.4 Setup 52
5.5 Experiments 52

6 Discussion and Limitations 63
6.1 Remarks on dividing one query into multiple smaller queries 63
6.2 Remarks on dividing a knowledge base 65
6.3 Conclusion 67

7 Related Work 68

8 Conclusion 73

Bibliography 75

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

A Appendix 80
A.1 Queries 80

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

List of figures

Figure 2.1 Traditional CEP query combining data from the stream
with data on external databases. 25

Figure 2.2 SCEP query combining data from the stream with data
on an external KB. 26

Figure 3.1 An instance of the proposed infrastructure. 28
Figure 3.2 Stream Generator. 29
Figure 3.3 Operator module. 30
Figure 3.4 Client module. 31
Figure 3.5 Inter-query parallelism. 31
Figure 3.6 Intra-query parallelism. 34

Figure 4.1 Aggregator and Publisher communication. 39
Figure 4.2 First example operator topology. 43
Figure 4.3 Second example operator topology. 44
Figure 4.4 RSP:BasicProcessor Operator implementation. 46
Figure 4.5 RSP:CSPARQL Operator implementation. 47
Figure 4.6 RDFS model of an RDF-graph and one example of an

instance. 49

Figure 5.1 The parallelization of Q into six subqueries. 55
Figure 5.2 Average processing time per window with varying KBused

and KBtotal for Q1 and Q2. (a) Using the endpoint access method
for Q1 and Q2 with KBtotal fixed at 368M triples and KBused
with 103K vs 10K triples for Q1 and 29K vs 4K triples for
Q2. (b) Using the local access method for Q1 and Q2 with
KBused = KBtotal and 103K vs 10K triples for Q1 and 29K vs
4K triples for Q2. (c) Using the local access method for Q1 with
KBused fixed at 10K and KBtotal with 103K vs 10K triples, and
for Q2 with KBused fixed at 4K and KBtotal with 29K vs 4K
triples. The figures for KBused and KBtotal were divided by 1000
and rounded and the processing times are an average of 4 runs
with 1168 windows each; the y-axis is in log scale. 56

Figure 5.3 The parallelization of Q7 using one operator with multiple
RSP engines. 59

Figure 5.4 Average processing time per window with varying
RSPnumberand WINsizefor Q7. All processing times (for each
WINsize) are an average of 4 runs with 1000 windows each. 60

Figure 5.5 The parallelization of Q7 using one operator with multiple
RSP engines, each in a different machine. 62

Figure 6.1 Topology to execute the subqueries. 65
Figure 6.2 Knowledge base expressiveness levels [1]. 65
Figure 6.3 RDF graph model of the sensor data. 66

Figure 7.1 Calbimonte’s infrastructure. [2] 69

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Figure 7.2 Strider’s infrastructure. [3] 70
Figure 7.3 BigSR’s infrastructure. [4] 71

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

List of tables

Table 2.1 Semantic CEP requirements vs RSP engines. 27

Table 5.1 Processing time of Q vs Q1–Q6. 54
Table 5.2 Window distribution among RSP engines of each operator

(Percentage). 61

Table 7.1 Related work vs DSCEP. 72

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Por vezes sentimos que aquilo que fazemos não
é senão uma gota de água no mar. Mas o mar
seria menor se lhe faltasse uma gota.

Madre Teresa de Calcutá, 1910-1997.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

1
Introduction

Semantic complex event processing (Semantic CEP) is a form of event
stream processing that attempts to combine the generality and inference
capabilities of RDF and related Semantic Web technologies with the efficiency
and scalability of complex event processing (CEP).

In CEP [5, 6] a network of operators is used to search for patterns in
event streams. An event is a piece of structured data with a fixed interpretation.
Each operator in the CEP network takes (primitive) events as input, looks for
a given pattern, and produces new (complex) events as output if any matches
are found.

An example application of CEP is in the smart city scenario, where people
can be notified about when their buses will arrive at the bus station. The events,
in this case, are related to the user and to the buses containing a timestamp,
user location, bus location, and time for the bus to reach different locations.
For instance, a user may be interested to estimate how many minutes the bus
of line A will take to reach the user’s location. [7].

Contrast this with Semantic CEP. In Semantic CEP [8, 9, 10, 11], the
simple, structured events of traditional CEP are replaced by sets of RDF triples
(or RDF graphs), the event streams become RDF streams, and the search
patterns become RDF graph patterns. More fundamentally, in Semantic CEP,
there is the possibility of combining in the search pattern large amounts of
background knowledge stored in knowledge bases (KBs). This, together with
the ability to make inferences, enabled by ontologies and rules, opens up many
possibilities. For example, instead of considering only the user and bus line
locations to estimate when the next bus will arrive, the user might ask to
consider only buses that will not cross any street in which a dangerous event
has happened in the past 30 minutes. [10]. Listing 1.1 shows all data used to
answer the question; although the user and bus location pattern is still there
(line 2, 3, and 4), the other part of this query can only be solved by accessing
and combining background knowledge (lines 7, 8, 9 and 10) in meaningful,
semantically aware ways [12].

Listing 1.1: Smart city scenario example use case.
1 Event Stream :

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 1. Introduction 15

2 {(UserSilva , hasPosition , LocationA)}
3 {(BusLine10 , hasPosition , LocationB)
4 (BusLine10 , hasEstimateTimeToReachLocationA , 8mins)}
5

6 Knowledge Base:
7 {(BusLine10 , hasLocationInPath , LocationC)
8 (BusLine10 , hasEstimateTimeToReachLocationC , 20 mins)
9 (LocationC , hasDangerousEvent , DangerEventA)

10 (DangerEventA , hasOccurred , InLessThen30mins)}

A research effort closely related to Semantic CEP is Stream Reasoning
(also called Linked Stream Data [13] or Semantic Streams). Stream Reasoning
aims to enable the semantic processing of RDF streams in combination with
background knowledge. What distinguishes Stream Reasoning from Semantic
CEP is that Stream Reasoning tends to focus less on efficiency and scalability.
Most Stream Reasoning solutions extend SPARQL (the RDF query language)
to operate over RDF streams. These solutions, which we will call collectively
RDF Stream Processors (RSPs; [14]), include Streaming SPARQL [15], C-
SPARQL [16], SPARQLStream [17], EP-SPARQL [18], CQELS [19], and TEF-
SPARQL [20]. These are all standalone processing engines. They were designed
for main memory processing and offer little or no support for distributed,
decentralized processing.

This last remark is particularly important. Although there are other
solutions built specifically for Semantic CEP (solutions which do not rely on
RSP engines, such as SPASEQ [21]) these are neither as mature nor as popular
as the RSP engines, especially within the Semantic Web community.

One drawback of the RSP engines is that there is no uniform standard or
a set of requirements to follow to design and develop them. As a result, most
RSP engines do not need to generate an output ready to be consumed as input
by another RSP engine. Also, RSP engines do not need to offer support to
multiple input streams and are not required to provide window operators. These
engines differ concerning scalability, expressiveness, reasoning capabilities, and
the query language supported. Most RSP engines do not support RDF graph
streams, which are essential for enabling some use cases in which it is impossible
to represent an event using only a single RDF triple. RDF graphs are a set of
RDF triples that represents a single piece of information; these basic concepts
will be explained in detail later on in Chapter 2.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 1. Introduction 16

1.1
Motivational Use Case for Semantic CEP

Social-media analytics attempts to extract valuable information from
social media content. This information includes trending topics, real-time
ratings, and emotions, and can used to derive correlations between events which
at first might seem unrelated. This kind of analysis is essential to activities
such as decision-making and risk assessment and can be done in real-time or
over historic data. We argue here that Semantic CEP is better suited for this
kind of application than traditional RSP-based stream processing.

Consider an application that attempts to use Twitter and Tumblr1 posts
to correlate positive comments about a musical artist with television shows.
More specifically, we want to find posts that say something positive about a
musical artist while also mentioning in the same post a television show. This
query, call it Q, can help us identify, for instance, which television shows are
good publicity for a given artist.

First, note that we need to analyze two RDF streams simultaneously
(Twitter and Tumblr). So, we need the ability of processing multiple streams,
which is a basic requirement of Semantic CEP (but not supported by most
RSPs).

We assume that the two RDF streams were preprocessed and contain
triples resulting from sentiment analysis. If posts are represented as RDF graphs
then query Q can be implemented as a single query that operates over a stream
of posts (graphs). The support for a graph-based event model is another basic
requirement of Semantic CEP, and this ability greatly simplifies our job: as
we can be sure that the triples of a same graph will not be separated between
windows (when they are processed as batch windows). Again, some RSP do
not support a graph-based event model.

Finally, Semantic CEP provides access to a background KB as a basic
requirement (which is not the case for RSPs). This access is essential to answer
query Q, which uses the KB for determining whether a given resource is a
musical artist or a television show.

1.2
Research Questions and Contributions

Before this thesis, in past works of our research group, we were evaluating
with a more hands-on focus approach to the use of stream reasoning and
how the processing time behaves depending on the size and complexity of the
background knowledge base [22]. Our team concluded that reasoning using the

1Tumblr: https://www.tumblr.com

https://www.tumblr.com
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 1. Introduction 17

data stream with a background knowledge base is costly. Additionally, it was
clear that knowledge bases and RDF streams could enrich some use cases by
using the ability to make inferences enabled by ontologies and rules. Moreover,
the use of RDF is widely used in the literature for data integration purposes.
The work of Reis et al. [22] contributed to formulating part of the following
research questions and also is one of the motivations of this thesis.

The following are the research questions of the thesis:

RQ1 Is it possible to connect reasoning (using ontologies and logic rules) with
CEP? By doing so, we intent to reason with data both on the stream and
on the KB.

RQ2 Is it possible to connect different RSP engines to make them work on the
same operator network?

RQ3 Is it possible to make an RSP engine work as a SCEP engine? Maybe if
we develop an infrastructure able to work with different RSP engines, we
can approximate the RSP engine current model to the processing model
of Semantic CEP.

RQ4 What is the impact of including the knowledge base in the stream
processing in query processing time?

RQ5 What is the gain, in terms of query processing time, of dividing a
monolithic query into multiple smaller queries to be executed in an
operator network?

With this in mind, and with the goal of approximating the current RSP
engines to the processing model of Semantic CEP, we propose DSCEP [23]: a
software infrastructure for decentralized semantic complex event processing.
The DSCEP infrastructure allows the encapsulation of RSP engines into CEP-
like operators and permits these operators to be interconnected in a distributed,
decentralized operator network. The hurdles involved in such interconnection
(reliable communication, stream aggregation and slicing, event identification
and time-stamping, etc.) are handled by the DSCEP infrastructure allowing the
user to concentrate on the queries. Also, DSCEP may be used as a middleware
service for semantic processing on ContextNet (see [24]) as discussed on the
example above.

One interesting application of DSCEP, which we investigate in this thesis,
is the parallelization of monolithic RSP queries. In RDF stream processing, the
most expensive parts of queries are often those parts that access the external
KB. This problem is exacerbated when the KB is large, which is not uncommon.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 1. Introduction 18

DSCEP can be used to speed up such monolithic RSP queries by either breaking
them into subqueries that run in parallel and access only the relevant part of
the KB or by splitting the windows of the input stream to process them in
parallel.

The contributions of this thesis are the following:

1. A system model for decentralized Semantic CEP which enables the
construction of distributed Semantic CEP operator networks using
existing RSP engines.

2. An implementation of this model, called DSCEP, developed on top of
Apache Kafka (a distributed commit log which efficiently stores and
delivers data streams).

3. An implementation of an adaptation of a type of stream parallelization,
executed inside the operator, called Data-Parallel CEP [25]; which can
boost the overall performance and scalability of the infrastructure.

4. An experimental evaluation of DSCEP using a social-media analytics
scenario, which uses both C-SPARQL [16] and a custom implementation
of an RDF stream processor developed by this thesis as an RSP engine.
The experiments measure the speed up made possible by DSCEP when:
(a) breaking a monolithic query into a network of operators with each
operator accessing only a part of the original KB, and; (b) splitting the
windows of the input data stream and processing them in parallel.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

2
Background

2.1
RDF, Reasoning, and Knowledge Bases

Resource Description Framework (RDF) [26] is a graph-based framework
for stating facts about resources. In RDF, a fact is represented as a triple
(s, p, o) consisting of a subject s, a predicate p, and an object o. When we assert
an RDF triple we are saying informally that the relationship indicated by the
predicate holds between the resource denoted by the subject and the resource
or value denoted by the object [26].

In RDF, predicates and resources are defined using URIs (or, more
generally, IRIs). There are plenty of URIs with predefined meanings available
on the Web. These are called vocabularies and can be used to describe things
in different domains.

Here is an RDF document (in Turtle syntax [27]) describing a person:
1 @prefix ex: <http :// ex.org/> .
2 @prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
3 ex:Bob a foaf: Person .
4 ex:Bob foaf:name "Bob Brickley " .

The prefix declarations (lines 1 and 2) establish that ex and foaf will
be used as abbreviations for the corresponding URIs. The next two lines
describe one (s, p, o) triple each. The first triple (line 3) states that the resource
http://ex.org/Bob is a person (http://xmlns.com/foaf/0.1/Person) in
the sense defined by FOAF1, a vocabulary of people-related terms. And the
second triple (line 4) states that this person is called (again in the sense defined
by FOAF) “Bob Brickley”.

From this example, we can see that the “no fixed schema” nature of RDF
gives it a great flexibility, especially for representing and connecting pieces of
knowledge. For instance, it is straightforward to add to the previous document
more triples which further describe http://ex.org/Bob using FOAF or other
vocabularies, or to use this resource as the target of relationships with other
persons or things.

1FOAF: http://www.foaf-project.org/

http://ex.org/Bob
http://xmlns.com/foaf/0.1/Person
http://ex.org/Bob
http://www.foaf-project.org/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 20

Another important feature of RDF is its well-defined semantics [28]. RDF
semantics comes with an associated notion of entailment which enables the
derivation of new triples from previously stated triples (an ability which is
sometimes referred to as reasoning). The reasoning process in RDF is governed
by the use of user-defined theories of domain knowledge, called ontologies. An
ontology is essentially a set of statements describing the concepts and relations
of a particular domain. Ontologies are expressed in ontology languages, such
as RDFS [29] and OWL [30, 31], and are encoded in RDF. For our purposes,
a knowledge base (KB) is a set of statements (triples) possibly describing
ontologies.

The statements in an ontology can be partitioned into two groups: TBox
and ABox. The TBox contains general statements that apply to all individuals,
such as “every person is an animal”, “every animal is either dead or alive”, etc.,
while the ABox contains statements about specific individuals, such as “Bob
is a person”. Reasoning is the process of validating the ABox with the TBox
and of making implicit statements explicit. So, for example, from the TBox
statements “every person is an animal” and “every animal is either dead or
alive”, we can infer “every person is either dead or alive”. This combined with
the ABox statement “Bob is a person”, gives us “Bob is either dead or alive”,
a previously implicit statement which now can be used in further inferences
with other TBox and ABox statements.

2.2
RDF Streams

In Semantic CEP and Stream Reasoning, we deal with not only with static
RDF documents but also with RDF streams. An RDF stream is a stream of
(s, p, o) triples where each triple is associated with a timestamp. RDF streams
are commonly used for building streams of knowledge graphs, facilitating the
connection between the data on the stream and the knowledge base by using
interlinked and interoperable information structures. For instance, RDF streams
can be used on the data flow from social media input from all its users or even
to represent semantic sensor data gathered from sensors in IoT applications.

There are two ways of identifying events in RDF streams. The first way
is to consider each triple in the stream a distinct event—each triple is treated
as a self-contained unit which can be interpreted independently of the other
RDF triples in the stream.

Consider the following RDF stream:

Listing 2.1: An example of an RDF triple stream.
1 (ex:Bob ,ex:tweetAbout ,dbp: Demi_Lovato) 1000

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 21

2 (ex:Kirk ,ex:tweetAbout ,dbp: Democracy) 2000
3 (ex:John ,ex:tweetAbout ,dbp: Ketchup) 3000

Here each line represents an (s, p, o) triple with an associated timestamp
in milliseconds. The prefix dbp stands for http://dbpedia.org/resource/
(DBpedia is a knowledge base extracted from Wikipedia). The first triple
(line 1) states that Bob (ex:Bob) posted a tweet about Demi Lovato (dbp:

Demi_Lovato) and that this occurred with a time offset of 1000ms. The second
triple (line 2) states Kirk tweeted about Democracy at 2000ms, and the third
triple (line 3) states that John tweeted about Ketchup at 3000ms. Each of these
events expresses a complete fact which can be interpreted independently of the
other events in the stream.

The second way of identifying events in an RDF stream is to consider as
distinct events not the individual RDF triples but whole RDF graphs. That is,
the RDF stream is treated as a stream of RDF graphs. An RDF graph [32] is a
set of RDF triples, where the vertices are the subjects and objects and the edges
labeled by properties and connect subjects with objects. Additionally, RDF
graphs can contain blank nodes which are vertices without any information
itself and they can be either a subject or an object vertice. Blank nodes are
often used to describe multi-component structures, like RDF containers, putting
them together by connecting to the same blank node.

Listing 2.2 is an example of a single event in an RDF graph stream:

Listing 2.2: A single event in an RDF graph stream.
1 (_:t8bfc2f68 ,rdf:type ,sioc:post) 1000
2 (_:t8bfc2f68 ,dc:created ,
3 "2013 -02 -02 T02 :32:56"^^ xsd: dateTime) 1000
4 (_:t8bfc2f68 ,sioc:id ,"8 bfca2f68 ") 1000
5 (_:t8bfc2f68 , schema :mentions ,_: e8bfc68_1) 1000
6 (_:e8bfc68_1 ,rdf:type ,nee: Entity) 1000
7 (_:e8bfc68_1 ,nee:detectedAs ,"ed sheeran ") 1000
8 (_:e8bfc68_1 ,nee: hasMatchedURI ,dbp: Ed_Sheeran) 1000

These eight triples form an RDF graph which represents a single tweet.
The vertices _:t8bfc2f68 and _:e8bfc68_1 are blank nodes, used to group parts
of information about a tweet. Each triple conveys only part of the information
in the tweet. The first triple (line 1) states that the resource being described
(_:t8bfc2f68) is a post (sioc:post), the second triple (lines 2–3) states that
this resource was created on February 2nd, 2013, at 02:32:56, and so on. Note
that the timestamps of the triples are all equal (1000ms). The rationale for
this is that the temporal order of the triples within the graph is irrelevant.
Timestamps are only meaningful for events, which in this case consist of whole
graphs.

http://dbpedia.org/resource/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 22

2.3
RDF Stream Processing

RDF Stream Processing (RSP) [14, 33] engines are SPARQL-based
systems for processing RDF streams. SPARQL is the query language of RDF.
Most RSP engines extend the SPARQL language with specialized constructs
for continuous queries over RDF streams [34]. As examples of RSP engines
we can cite Streaming SPARQL [15], C-SPARQL [16], SPARQLStream [17],
EP-SPARQL [18], CQELS [19], and TEF-SPARQL [20].

Here is a query in the SPARQL dialect of C-SPARQL [16]:
1 REGISTER QUERY TweetStream AS
2 SELECT { ?user ? gender }
3 FROM STREAM <http :// ex.org/Tweets > [RANGE TRIPLES 3]
4 FROM <file :/// Person -KB.rdf >
5 WHERE { ?user ex: tweetAbout ?x .
6 ?x rdf:type foaf: Person .
7 ?x foaf: gender ? gender . }

This query operates over a stream of triples describing tweets (lines 1
and 3). The stream is assumed to be in the same format as the first RDF
stream listed in Listing 4.1, i.e., each triple determines a new event. The query
continuously reads windows of three triples from the stream (line 3), extends
each window with the triples in the external KB (line 4; which in this case
is a KB describing persons) and selects from each extended window all pairs
(user , gender) where user tweeted about a person with gender (lines 5–7). That
is, it selects all ?user and ?gender such that there is in the extended window:

(i) a triple relating a subject ?user via predicate ex:tweeted to some resource
?x;

(ii) a triple relating ?x via rdf:type to foaf:Person;

(iii) a triple relating ?x via foaf:gender to ?gender.

If we apply this query to the RDF stream listed in Listing 4.1 we will get
the pair: (ex:Bob, "male"). The above query uses count-based windows (it slices
the stream into windows of a fixed size).

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 23

2.3.1
Limitations of current RSP engines

Most RSP engines support count-based windows, which divide the stream
based on a specific number of RDF triples or RDF graphs; time-based windows,
which use the timestamp of events to slice the stream and; sliding windows
which can be applied both to count-based or time-based windows. What most
of these engines do not support are streams of RDF graphs, such as the second
RDF stream listed in Listing 2.2.

In Chapter 3, we will see that DSCEP, the Semantic CEP infrastructure
we propose, can be used to overcome this and other limitations of RSPs. In
particular, DSCEP handles window slicing and event delimitation so that
windows and events are specified using the chosen RSP engine query language
and published into the DSCEP infrastructure to enable another RSP engine to
read and process them. DSCEP also handles input stream aggregation since
some RSPs cannot process more than one input stream at a time.

Two other drawbacks of RSPs which are addressed by DSCEP are their
poor compositionality and their lack of support for partitioning the external
KB. These two problems are somewhat related. By poor compositionality we
mean that it is hard to use the results of a query as input for another query;
and it is even harder if the two queries run on different RSPs—an issue that
arises from the lack of standardization surrounding the topic of RDF streams
[35]. In C-SPARQL, for instance, every successful query triggers a user callback
which is the sole responsible for handling the query results. As we will see,
DSCEP provides a clean interface for connecting operators (RSPs) with an
appropriate implementation for the result callback in the case of C-SPARQL.

The lack of support for KB partitioning in RSPs is related to the problem
of query compositionality. If one can decompose a complex query into more
basic, elementary queries, then one should also be able (in some cases) to
decompose a large KB into smaller KBs to be used by each of the smaller
queries. This issue is particularly troublesome in C-SPARQL. To combine the
triples within the current window with the triples from the KB, the C-SPARQL
engine simply adds all triples of the KB to the window, producing an “extended
window”. If the KB is too large this method becomes impractical. We will
return to the topic of KB partitioning later.

Regarding the RSP engine, there are some key issues to be addressed.
One of them is the availability of these RDF streams. There is no uniform
standard to follow in order to design a RSP engine. Current standards apply

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 24

to RDF data exchange and are produced by the Semantic Web’s community23.
RSP engines normally benefit with that by being able to use these standards,
but so far, there are only few adoptions. As a result, most RSP engines do not
need to generate an output ready to be consumed as input by another RSP
engine.

Moreover, RSP engines do not need to offer support for multiple input
streams and are not required to provide window operators. These engines
differ concerning scalability, expressiveness, reasoning capabilities, and the
query language supported. For instance, CSPARQL [16] and CQELS [19]
support count-based and time-based windows over RDF triple streams while EP-
SPARQL [18] supports only temporal operators as part of the query language.
These differences make it challenging to make them work together by connecting
them.

Although one of the advantages of the RDF data model is to enable
reasoning, RSP engines are not required to provide full reasoning capabilities.
For example, some RSP engines do not allow the use of a background knowledge
base, limiting the reasoning only for the query level [3]. Others even define
a subset of the SPARQL language to be allowed to avoid certain SPARQL
operations that are difficult to accomplish in a scalable way.

2.4
Semantic CEP

Semantic CEP [8, 9, 10, 11] attempts to combine semantic technologies
(RDF, ontologies, KBs, etc.) with complex event processing. In CEP [5] events
streams are processed while they traverse an operator network. CEP engines,
different from RSP engines, are commonly used in a distributed way and are
often highly parallelized [25].

Ideally, a Semantic CEP solution should preserve the fundamental
characteristics of the CEP paradigm while being compatible with existing
RSP and other stream reasoning solutions. This brings a set of requirements
which can be summarized as follows [21]:

(i) Streams are sequences of RDF triples annotated with a timestamp, with
observed events being described either by individual triples or by whole
graphs;

(ii) It must be possible to combine RDF streams with background knowledge
residing in external KBs;

2W3C - Semantic Web: https://www.w3.org/standards/semanticweb/
3RSP Group: https://www.w3.org/community/rsp/

https://www.w3.org/standards/semanticweb/
https://www.w3.org/community/rsp/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 25

(iii) Multiple RDF streams can be processed at once using different stream
aggregation and window partitioning strategies;

(iv) Processing can be done in a compositional manner (i.e., the output of an
operator should be ready to be used as input for another operator in the
network).

Note that the requirement (iv) listed above does not imply that SCEP engines
must provide a distributed infrastructure to connect multiple operators. It
simply says that the output generated by the SCEP engine should be a dataset
represented in RDF and timestamped, which is ready to be consumed by
another SCEP instance.

In traditional CEP, one can also combine data from the stream with
data residing on external databases, figure 2.1 illustrates this process. It shows
that in order to build a pattern which combines data from the stream with an
external database, there must exist two queries, one with a pattern to match
the data on the stream, and another with a pattern to match the data on
the database. That’s because it is only possible to query the database during
the callback, which is triggered when the events in the window match the
pattern expressed in the continuous query. Another problem of doing this type
of query using CEP is that the stream and the database can be represented
using different languages and schemas. Most of the cases it is required to write
two queries using two different languages, one to find a pattern on the stream
and another to find a pattern on the external database.

Figure 2.1: Traditional CEP query combining data from the stream with data
on external databases.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 26

When using an SCEP engine, the combination of data from the stream
with an external KB becomes a simpler task, figure 2.2 illustrates this process.
The data on the stream and on the external KB are both represented using
RDF, enabling the possibility of writing one single query that can access both
the data on the stream and on the external KB at the same time. The drawback
is that combining the stream with the KB often causes an increase on processing
time due to the insertion of the KB within the stream processing.

Figure 2.2: SCEP query combining data from the stream with data on an
external KB.

Table 2.1 compares some popular RSP engines [34] in light of these
four Semantic CEP requirements. The table shows that only SPAseq can be
considered a Semantic CEP solution, because it covers all requirements. That
said, all listed RSP engines can be used as building blocks for Semantic CEP, and
this is precisely the goal of DSCEP, the infrastructure we propose in this thesis.
It is important to say that all RSP engines and even SPAseq are standalone
engines, they don’t provide an infrastructure for distributed processing and to
build operator networks. Therefore, in order to connect multiple instances of
RSP engines, am distributed infrastructure is still required.

Although all RSP engines listed have problems with scalability in regards
to the KB size, or to the complexity of the query, or even because of the
high throughput of incoming events, parallelization can be used to reduce the
processing time of a query. Additionally, an infrastructure can provide features
to approximate current RSP solutions to the processing model of SCEP engines.
For example, by offering window management capabilities, support to multiple
streams, and support for streams of RDF-graphs.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 2. Background 27

Table 2.1: Semantic CEP requirements vs RSP engines.
C
Q
EL

S

[19] C
-S
PA

RQ
L

[16] EP
-S
PA

RQ
L

[18] SP
A
RQ

L S
tr

ea
m

[17] SP
A

se
q

[21]
RDF stream: triples/graphs +/− +/− +/− +/− +/+
External KB access + + + + +
Multiple streams (aggregation) + + − + +
Windows: count-based / time-based +/+ +/+ −/− −/+ +/+
Compositional IO − − − − +

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

3
Conceptual Architecture

We now present the conceptual architecture of our decentralized infrastruc-
ture for Semantic CEP. The infrastructure enables the distributed processing
of RDF streams using a network of operators.

3.1
Assumptions

These assumptions were created to simplify the discussion and help us to
focus more on the main problem of the thesis. They are also reasonable because
each one of them address different layers of the system.

In the description of the infrastructure, we assume that:

(i) the events sent through the infrastructure always reach their destination;

(ii) the machines and the software that runs the infrastructure do not fail;

(iii) timestamps increase monotonically (an operator cannot receive an event
with a timestamp older than the last event received).

3.2
Infrastructure Modules

The infrastructure is built up from three kinds of modules (see Figure 3.1):
Stream Generator, Operator, and Client. Multiple instances of the modules
can occur in an instantiation of the infrastructure. The instances execute
independently and asynchronously to each other; they can run on different
machines and communicate through the publish-subscribe paradigm [36].

Stream
Generator

ClientOperator

Operator

Operator

Figure 3.1: An instance of the proposed infrastructure.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 29

The internal structure of each of the three kinds of modules is described
in the following subsections.

3.2.1
Stream Generator

The Stream Generator, Figure 3.2, generates an RDF stream. It has a
Script component that contains the generation logic and a Publisher component
that publishes the events generated by the Script. The Publisher can be
configured to operate in triple-mode or graph-mode. In triple-mode, each triple
fed by the Script delimits a new event in the stream; in graph-mode, events
are represented by graphs (sets of triples). When in graph mode, the Publisher
ensures that all triples in the same graph have the same timestamp. The KB
in figure 3.2 is not part of the infrastructure; it illustrates an external database
that the Script component can use in order to generate a data stream.

Script

KB

Publisher

Figure 3.2: Stream Generator.

3.2.2
Operator

The Operator, Figure 3.3, is the processing element of the network. It takes
as input RDF streams, processes them, and generates resulting output streams.
An Operator consists of an Aggregator component, a KB component, and n

pairs of RSP engine and Publisher components. The Aggregator aggregates
the incoming streams: it takes RDF streams from other Operators or Stream
Generators and merges them into a single aggregated stream. The Aggregator
continually slices the aggregated stream into windows and feeds these windows
to the attached RSP engines. It ensures that the events in the aggregated
stream are sorted by timestamp. These can be instances of the same RSP
engine or different RSP engines.

The Aggregator can send windows in parallel to the attached RSP engines,
enabling a type of processing called Data-Parallel CEP [25], which can boost
the overall performance and scalability of the infrastructure. Note that all
attached RSP engines must be configured to receive the same window size and
type to enable the Aggregator to divide the windows it creates among the RSP

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 30

Aggregator

RSP engine

KB

Publisher

... ...

Figure 3.3: Operator module.

engines. The user configures the precise way that the Aggregator will make the
window division. Hence, since the Aggregator handles stream aggregation and
window partitioning on behalf of operators, RSP engines that do not support
specific aggregation/partitioning strategies can be seamlessly integrated into
the infrastructure.

In Figure 3.3, each RSP engine processes the windows it gets from the
Aggregator (possibly using data from external KBs) and produces related events
which its associated Publisher sends. It is the same kind of Publisher component
used in the Stream Generator module, Figure 3.2. As before, the Publisher
ensures that each outgoing RDF triple has a timestamp and can operate in
triple-mode or graph mode. It is worth mentioning that in this infrastructure,
the streams generated by a Publisher are always received by an Aggregator.

It is also important to say that our implementation of the Data-parallel
CEP paradigm [25] does not include the sequencer. The sequencer is a
component of the Data-parallel CEP responsible for coordinating the events
detected by the publishers. Since the events are detected in parallel, some
inconsistency may appear on the correct sequence of the detected events.
For example, let us say windows A and B will be processed in parallel, and
window B has a timestamp older than window A. Also, event A will be detected
on window A, and event B will be detected on window B. In theory, since
window A occurs before window B, event A should also occur before event B.
However, in this case, event A may be generated after event B since there is
no synchronization (in terms of time) among all RSP engines instances. Thus
event A will have a timestamp older than event B’s timestamp. This event
sequence problem should be evaluated depending on the use case. There are
use cases in which this sequence problem would not be an issue, but there are
use cases that the ordering of the detected event is essential.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 31

3.2.3
Client

The last module of the infrastructure is the Client, Figure 3.4. The Client
delivers events to end-users. It consists of an Aggregator component (of the
same kind used in the Operator) and one or more Scripts. As before, the
Aggregator merges multiple input RDF streams into an aggregated stream;
this stream is then sliced into windows which are finally passed to the Scripts
containing the end-user logic.

Aggregator
Script

...

Figure 3.4: Client module.

3.3
Supported query parallelisms

The proposed infrastructure enables two kinds of query parallelism: inter-
query and intra-query. It enables inter-query parallelism because different
queries can be executed in parallel by different operators, each running its set
of RSP engines. Figure 3.5 illustrates the inter-query parallelism, where Query1
is split into three parts that can be parallelized.

Stream
Generator Client

Operator1

Operator2

Operator3

Query1
Part A

Query1
Part B

Query1
Part C

Figure 3.5: Inter-query parallelism.

Note that for the inter-query parallelism to be possible, the query must
be split into subqueries (parts) which can be executed in parallel. To divide

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 32

a query into multiple subqueires is not a simple task and requieres a more
complex discussion, in chapter 6 we discuss its limitations and difficulties.

Listing 3.1 is an example of query that can be dividable into three parallel
parts and one additional query responsible to join the results. Instead of
retrieving all three properties of an instance of MusicalArtist and filtering them
using only one query, it is possible to separate the query into three parts in
which each of them will retrieve one property and apply a filter.

Part A of the query (listing 3.2) retrieve the genre of the instances
of MusicalArtist class if the genre is either Alternative_rock, Pop_music
or Rock_music. Part B (listing 3.3) retrieve the names of the instances of
MusicalArtist that starts with the letter ’A’, and part B retrieves all abstracts
of the instances of MusicalArtist that are written in english.

Listing 3.1: Divideble SPARQL query example.
1 PREFIX dbo: <http :// dbpedia .org/ ontology />
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
4 PREFIX dbr: <http :// dbpedia .org/ resource />
5 select ? concept ?genre ?name ? abstract
6 where
7 {
8 ? concept rdf:type dbo: MusicalArtist .
9 ? concept dbo:genre ?genre .

10 ? concept foaf:name ?name .
11 ? concept dbo: abstract ? abstract
12 FILTER (? genre IN (dbr: Alternative_rock , dbr:Pop_music , dbr:

Rock_music))
13 FILTER (REGEX(?name , "^A"))
14 FILTER (lang(? abstract) = ’en ’)
15 }

Listing 3.2: Divideble SPARQL query example: Part A.
1 PREFIX dbo: <http :// dbpedia .org/ ontology />
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
4 select ? concept ?genre
5 where
6 {
7 ? concept rdf:type dbo: MusicalArtist .
8 ? concept dbo:genre ?genre .
9 FILTER (? genre IN (dbr: Alternative_rock , dbr:Pop_music , dbr:

Rock_music))
10 }

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 33

Listing 3.3: Divideble SPARQL query example: Part B.
1 PREFIX dbo: <http :// dbpedia .org/ ontology />
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
4 select ? concept ?name
5 where
6 {
7 ? concept rdf:type dbo: MusicalArtist .
8 ? concept foaf:name ?name .
9 FILTER (REGEX(?name , "^A"))

10 }

Listing 3.4: Divideble SPARQL query example: Part C.
1 PREFIX dbo: <http :// dbpedia .org/ ontology />
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
4 select ? concept ? abstract
5 where
6 {
7 ? concept rdf:type dbo: MusicalArtist .
8 ? concept dbo: abstract ? abstract .
9 FILTER (lang(? abstract) = ’en ’)

10 }

The proposed infrastructure also enables intra-query parallelism (Figure
3.6), which can be done by instantiating multiple RSP engines running the same
query into one Operator. All RSP engines are connected to one Aggregator,
which splits the windows of the same RDF stream among the RSP engines. To
split the windows among different RSP engines is a natural way to parallelize
the processing of a query in the context of RDF streams. Since RDF stream
processing requires splitting the stream into windows, intra-query parallelism
can be applied to all queries. Every RSP engine instantiated into the Operator
will receive different windows of the same stream.

Finally, when the subqueries execute in different operators, we get what
is called inter-operator parallelism: every subquery gets the same data stream
but executes in different operators. When subqueries are executed within
an operator by multiple RSP instances, we get what is called intra-operator
parallelism: every subquery receives different windows of the same stream.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 3. Conceptual Architecture 34

Aggregator

RSP engine N

KB

Publisher

...

Query1

Query1

...

RSP engine1
Operator

Figure 3.6: Intra-query parallelism.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

4
Implementation

In the implementation of DSCEP, we use Apache Kafka1 for module
communication.

4.1
Apache Kafka and DSCEP

Kafka is a fault-tolerant distributed event streaming platform that enables
users to publish and subscribe to data streams. DSCEP is written in Java
and uses two different Kafka APIs: Producer API and Consumer API. The
Producer API allows the user application to publish a data stream to one or
more Kafka topics. In contrast, the Consumer API allows the user application
to subscribe to a Kafka topic to receive a data stream.

Kafka Topics are a logical category of messages; they represent a stream of
the same data type. In order to receive a specific type of stream, a data stream
Kafka consumer must subscribe to the topic in which the data stream is being
published. Topics can also be divided into partitions to enhance scalability.
Partition is analogous to shard in databases and is the core concept behind
Kafka’s scaling capabilities. Partitions can divide a data stream of a topic into
multiple different and smaller data streams, equal to the number of partitions
created. By using partitions, it is possible to have multiple Kafka consumers
reading from the same Kafka topic simultaneously. Each consumer will read
data from a different partition of the topic. This aspect enchants scalability
because it is possible to divide the same data stream into smaller streams
and have each of these smaller data streams consumed by a different Kafka
consumer.

The Producer is the Kafka client that publishers messages to a topic.
Moreover, one of the Producer’s responsibilities is to decide which partition
to send the messages to. DSCEP used the default configuration provided by
Apache Kafka. DSCEP allows Kafka to decide which partition to send the data.
Kafka has a logic that tries to balance the total number of messages on all
partitions.

1Apache Kafka: https://kafka.apache.org/

https://kafka.apache.org/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 36

The last central aspect of Kafka is the consumer. A consumer reads
messages from the topic’s partitions in the same order in which the messages
arrive. The topic also works as a data store that can persist data for a pre-
configured period. Thus, if a consumer needs to go back and read older messages
at any point in time, it can do so by resetting the offset position. DSCEP uses
the default period for persisting messages on topics.

Consumers can also work together by using the concept of consumer
groups. A consumer group is a set of consumers that read messages from a
topic. If two different topics are from different consumer groups, they will
receive all messages from the topic. If two consumers must receive all messages
from the data stream, they must be from different consumer groups. On the
other hand, if two consumers must divide the load of processing the data
stream of a topic, they must be from the same consumer group. By setting two
consumers to the same consumer group, they will receive different messages
from the same data stream on the topic, enabling the processing of messages
of the same data stream in parallel.

Section 4.2 explains in detail how each component of DSCEP was
implemented and how Kafka is used to enable them to interact with each
other. Finally, section 4.3 contains two different examples of how to configure
the DSCEP infrastructure for two different operator topologies.

4.2
DSCEP Components

The implementation of each DSCEP module (Stream Generator, Operator,
and Client) can use up to four different components: Publisher, Aggregator,
RSP engine, and Script.

4.2.1
Publisher Component

The Publisher component of DSCEP’s Stream Generator and Operator
modules, Figures 3.2 and 3.3, uses Kafka’s Producer API. More specifically,
each Publisher is a Kafka producer, which the user must create to publish a
data stream to one or more Kafka topics. The user specifies these Kafka topics
through the DSCEP’s configuration file, and they identify to which SCEP
operator the message will be delivered.

In the Stream Generator module, the Publisher is responsible for receiving
the stream produced by the Script component and for publishing it on a Kafka
topic. The user’s Script and Publisher can be created using any programming
language that supports Kafka.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 37

Additionally, the user has to create a name for the Kafka topic and use
one of the message formats supported by DSCEP.

Currently, DSCEP supports two message formats: RDF-triple and RDF-
graph. The RDF-triple format is used for RDF triple streams, and the RDF-
graph format is used for RDF graph streams. Messages are written in JSON.

One advantage of implementing the Publisher component using Java is
that it is possible to extend the DSCEP’s data model representation, written
with Java classes, to facilitate the creation of a class that can generate the
JSON messages.

Here is an example message in the RDF-triple format:

Listing 4.1: An example message in the RDF-triple format.
{"ID": " Window1 ",
" Producer ": " StreamGenerator_1 ",

" isRDFgraph ": "false",
" Triples ": [{

" Subject ": "http :// ex.org/Bob",
" Predicate ": "http :// ex.org/ tweetAbout ",
" Object ": "http :// dbpedia .org/ resource / Demi_Lovato ",
" Timestamp ": 1000}]}

The “ID” attribute provides a unique identification for the message among
all the windows of the same RDF stream. For each window that a “Producer”
sends, the producer will generate a unique window “ID” that distinguishes
the window from all the previous windows sent by the producer of that RDF
stream. The “Producer” attribute identifies the message publisher, and the
“isRDFGraph” attribute distinguishes between RDF-triple and RDF-graph
messages. The “Triples” attribute carries the payload. If the message is in
RDF-triple format (i.e., if “isRDFGraph” is false), its payload is a list of
timestamped RDF triples. Otherwise, the payload is a list of RDF graphs,
where each graph is a list of timestamped triples. The attributes “ID” and
“Producer” are automatically generated by the DSCEP’s Publisher component.

Messages in the RDF-graph format have the same initial (header)
attributes, but the “Triples” attribute contains a list of RDF-graphs (sets
of triples), and the “isRDFGraph” attribute is set to true. Here is an example:

Listing 4.2: An example message in the RDF-graph format.
{"ID": " Window1 ",

" Producer ": " StreamGenerator_2 ",
" isRDFgraph ": "true",
" Triples ": [

[{
" Subject ": " _node0 ",

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 38

" Predicate ": "rdf:type",
" Object ": "sioc:post",
" Timestamp ": 1000

},
{

" Subject ": " _node0 ",
" Predicate ": " schema : mentions ",
" Object ": " _node1 ",
" Timestamp ": 1000

},
{

" Subject ": " _node1 ",
" Predicate ": "nee: hasMatchedURI ",
" Object ": "dbp: Greyson_Chance ",
" Timestamp ": 1000

}],
[{

" Subject ": " _node2 ",
" Predicate ": "rdf:type",
" Object ": "sioc:post",
" Timestamp ": 1050

},
{

" Subject ": " _node2 ",
" Predicate ": " schema : mentions ",
" Object ": " _node3 ",
" Timestamp ": 1050

},
{

" Subject ": " _node3 ",
" Predicate ": "nee: hasMatchedURI ",
" Object ": "dbp: Ed_Sheeran ",
" Timestamp ": 1050

}]
]}

This message has two RDF-graphs represented on it; each RDF-graph
has three triples and represents a single tweet with its timestamp. Each triple
of an RDF graph conveys only part of the information in the tweet and has
the same timestamp. The RDF graph containing triples with the timestamp
equal to 1000ms represents information about a tweet that mentions the entity
dbp:Greyson_Chance; the other RDF graph with a timestamp equal to 1050ms
represents information about a tweet that mentions the entity dbp:Ed_Sheeran.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 39

4.2.2
Aggregator, RSP engine and Script Components

The Aggregator, RSP engine, and Script components of DSCEP’s
Operator and Client modules, Figures 3.3 and 3.4, use Kafka’s Consumer
API. All RSP engines of the same Operator are in the same Kafka consumer
group. So, each event received by an operator is processed exactly once by
one of its RSP engines. Kafka’s parallel processing semantics guarantees that
a consumer does not get an event that another consumer in the same group
has already processed. Similarly, all Scripts of the same Client are in the same
consumer group.

Figure 4.1 illustrates how the Aggregator and Publisher modules are
connected. An Aggregator subscribes to one or more Publisher topics. Within
this infrastructure, the only component that can read data produced by a
Publisher is the Aggregator. It consumes messages from these Publisher’ topics,
aggregates them, and splits the aggregated message stream into windows. The
Aggregator has a mapping table that tells which RSP engine each received RDF
stream should be sent. The windows produced by an Aggregator are published
to the corresponding topic to which the RSP engines subscribe.

Kafka
Topic

Publisher Aggregator

Stream Generator 1
ID: SG1

Script RSP engine
Query 1

Kafka
Topic

Query1_inputTopic

Kafka
Topic

Query1_outputTopic

Publisher

SG1 -> Query1
Mapping

Operator 1

subscribed to
publish to

Figure 4.1: Aggregator and Publisher communication.

All groups of windows published by an Aggregator have the same JSON
format as those published by the Publisher component. The Aggregator just
ensures that the number of events on the window is according to the window
size configured by the user. The subscription of Aggregators to Publisher
topics, RSP engines to Aggregator topics, window size, etc., are done via a
configuration file. The subscription is dynamic and allows us to attach new
modules (Stream Generators, Operators, and Clients) to the system on the fly.
The only drawback is that newly attached modules do not receive past events,
as DSCEP does not persist past events.

Here is an example of the configuration file.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 40

Listing 4.3: An example of the configuration file.
1 id = 1
2 queryIDs = 1, 2, 14
3 query1_inputStreamTopics = IS1
4 query1_inputTopic = Q1I
5 query1_outputTopic = Q1O
6 query1_windowInfo = [RANGE TRIPLES 2000]
7

8 query2_inputStreamTopics = IS1
9 query2_inputTopic = Q2I

10 query2_outputTopic = Q2O
11 query2_windowInfo = [RANGE TRIPLES 2000]
12

13 query14_inputStreamTopics = IS1
14 query14_inputTopic = Q14I
15 query14_outputTopic = Q14O
16 query14_windowInfo = [RANGE TRIPLES 2000]

The configuration file is a .properties file; which is recognized by the
class java.util.Properties, entries in this file are written in a single line. The
id attribute (line 1) provides a unique identification of the operator where
the aggregator is running. The queryIDs attribute (line 2) is a list of query
identifiers representing the queries that this operator will execute. For each
query executed by the operator, there will be four different attributes, each of
them with its respective ID value.

– query{ID}_inputStreamTopics: Contains a list of Kafka topics in which the
query with the number ID must be subscribed. This attribute define all
input streams for this query.

– query{ID}_inputTopic: The kafka topic name that the query with number
ID is subscribed to.

– query{ID}_outputTopic: The kafka topic name that the query with number
ID will publish the output stream.

– query{ID}_windowInfo: This attribute details to the aggregator how to
create the windows for the query with number ID. [RANGE TRIPLES 2000]

means that it the query will receive windows of 2000 triples each.

Finally, an RSP engine of an Operator can connect to one or more external
KBs. These KBs are considered external resources and are not managed by
DSCEP—currently, the system has no built-in database manager and cannot
split KBs automatically. A built-in database in DSCEP would be an addition
because RSP engines could have the option to use it in order to manipulate
the RDF triples from the stream windows and process them. To split KBs

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 41

automatically based on a query is sure a helpful feature to offer, but it is yet
an open research problem; we discuss some challenges and limitations of it in
chapter 6.

4.2.2.1
Aggregator’s window management

In the aggregator’s current implementation, the only available type of
window is the count window. The RDF stream is divided by the Aggregator
into a specific number of triples defined by the user. In the window creation
process, if the RDF stream is in the RDF-graph format, the aggregator ensures
that every RDF-graph fits on the window size. For example, if the window size
is 2000 RDF triples and there is not enough space to add another RDF-graph
to this window, the Aggregator will leave the next RDF-graph to the next
window.

The RSP engine component of DSCEP was built to accept different
implementations of RDF stream processors. Some of them work with RDF
triple streams and only process the window when the number of RDF triples
that arrived to be processed is equal to the window size. Thus, building windows
with a size less than its configured size to be processed by some specific RSP
engine was a challenge.

To ensure that the Aggregator can work with any RDF stream processor
and process windows with fewer triples than the expected/configured size, the
Aggregator adds dummy triples to the window to match the total size expected
by the RSP engine and guarantees that the RSP engine will not split the
RDF-graphs. The dummy triple is necessary even for the RSP engines that
process windows with less than the window size, but wait some time period
until they start to process the window content. That is because the next RDF
triples that will arrive will belong to another graph, and the following graph will
not fit on the current window. These dummy triples added by the Aggregator
to complete the window size are meaningless. They all have the same subject,
predicate, and object. The dummy triple is (ex:sss, ex:ppp, ex:ooo).

Note that there is a problem with estimating the window size for RDF
graph streams. If the user configures a window size smaller than the size of at
least one RDF graph of the stream, the aggregator will not be able to send
this RDF graph to be processed because triples of an RDF graph cannot be
separated. An optimal solution for handling this would be to estimate the
size of the window based on the input RDF graph stream and dynamically
adjust the window size processed by the RDF stream processor. However, most
RDF stream processors do not have support for adjusting the window size of a

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 42

query on-demand. The only way to do this is if DSCEP does not accept any
third-party RDF stream processors and uses one implemented exclusively for
DSCEP that accepts the window size change on demand.

Thus, to work with RDF stream processors that do not change window
size on demand, the system would have to estimate the window size before
the processing starts. To estimate the window size is a challenge because it
requires the pre-processing of all RDF graphs of the stream that theoretically
has infinite size.

Since DSCEP was created to allow different RDF stream processors
implementations, we could not automatically estimate the window size. For
these cases of RDF graph streams, to ensure that all RDF graphs will not be
divided, the Aggregator discards all RDF graphs that do not fit on the window
and tells the user via the log file that a specific RDF graph got discarded.

It is important to say that sometimes using count windows can be difficult
depending on the problem, and using other types of windows (e.g., time-window)
could be more helpful. That is one reason for the existence of different types
of windows, to enable modeling different types of problems. For example,
estimating the window size on RDF graph streams could be avoided if the user
can model it with time windows. Since all triples inside an RDF graph have
the same timestamp, it would force all triples of the same RDF graph not to
get split, possibly, making the time window more suitable for adapting an RDF
stream processor that only works with triple streams to also work with RDF
graphs streams.

Currently, the aggregator is not implemented to work with time windows.
The implementation of time windows was not required to evaluate and study
our research questions; therefore, we chose not to implement it to focus on the
main aspects of the research.

4.3
Configuring an example operator topology on DSCEP

To give a more concrete example of how to configure an operator topology
on DSCEP, we give an example of two different operator topologies in this
section. The first topology is presented in Figure 4.2 and consists of three
operators, one stream generator, and one client module to consume the result
stream. Additionally, the following are the Kafka topic names for each module
and query:

– Stream Generator: Writes its output stream on the Kafka topic named
IS1.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 43

– Query 1: Receives its input stream on the Kafka topic Q1I and produces
its output stream on the Kafka topic Q1O.

– Query 2: Receives its input stream on the Kafka topic Q2I and produces
its output stream on the Kafka topic Q2O.

– Query 3: Receives its input stream on the Kafka topic Q3I and produces
its output stream on the Kafka topic Q3O.

– Query 4: Receives its input stream on the Kafka topic Q4I and produces
its output stream on the Kafka topic Q4O.

Note that these Kafka topic names are user-created since the user can
create stream generators, RSP engines to process the RDF streams, and clients
to consume RDF streams.

Stream
Generator

Client

Operator 1

Query1

Operator 2

Query2 Operator 3

Query3
Query4

Aggregator
RSP engine 2

KB

Publisher

Query3

Query4

RSP engine1

Operator 3

Aggregator
KB

Publisher

Query2

RSP engine1

Operator 2

Aggregator
KB

Publisher

Query1

RSP engine1

Operator 1

Figure 4.2: First example operator topology.

Operator 1 has one query, which is Query 1, that receives its input stream
from the Stream Generator. Query 1 works with a count window, and each
window has 2000 triples. Below is the configuration file for the Aggregator of
Operator 1:

Listing 4.4: Configuration file for the Aggregator of Operator 1 - First topology.
1 id = 1
2 queryIDs = 1
3 query1_inputStreamTopics = IS1
4 query1_inputTopic = Q1I
5 query1_outputTopic = Q1O
6 query1_windowInfo = [RANGE TRIPLES 2000]

Operator 2 is similar to Operator 1 and has one query, named Query 2,
which receives its input stream from the Stream Generator. Query 1 works with

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 44

a count window, and each window has 1500 triples. Here is the configuration
file for the aggregator of Operator 2:

Listing 4.5: Configuration file for the Aggregator of Operator 2 - First topology.
1 id = 2
2 queryIDs = 2
3 query2_inputStreamTopics = IS1
4 query2_inputTopic = Q2I
5 query2_outputTopic = Q2O
6 query2_windowInfo = [RANGE TRIPLES 1500]

Stream
Generator

Client

Operator 1

Query1

Operator 2

Query2

Aggregator
KB

Publisher

Query2

RSP engine1

Operator 2

Aggregator
KB

Publisher

Query1

RSP engine1

Operator 1

Aggregator
KB

Publisher

Query4

RSP engine1

Operator 4

Aggregator
KB

Publisher

Query3

RSP engine1

Operator 3

Operator 4

Query4

Operator 3

Query3

Figure 4.3: Second example operator topology.

Finally, Operator 3 has two different queries (Query 3 and Query 4)
and receives two different input streams, Query 1 produces one, and Query 2
produces the other. Query 3 works with a count-window, and each window has
1000 triples, and Query 4 works with a count-window, and each has 500 triples.
Here is the configuration file for the aggregator of Operator 3:

Listing 4.6: Configuration file for the Aggregator of Operator 3 - First topology.
1 id = 3
2 queryIDs = 3, 4
3 query3_inputStreamTopics = Q1O , Q2O
4 query3_inputTopic = Q3I
5 query3_outputTopic = Q3O
6 query3_windowInfo = [RANGE TRIPLES 1000]
7

8 query4_inputStreamTopics = Q1O , Q2O
9 query4_inputTopic = Q4I

10 query4_outputTopic = Q4O
11 query4_windowInfo = [RANGE TRIPLES 500]

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 45

The second operator topology is presented in Figure 4.3 and consists
of one stream generator, one client and four operators, one for each different
query.

The difference between the second topology when compared to the first
topology is that now query 3 and query 4 are not on the same operator; they
are on Operator 3 and Operator 4, respectively. Consequently, there will now
be four configuration files, as each operator needs one. The configuration file
for Operator 1 and Operator 2 remains the same because they have the same
queries and the same window configuration.

Here is the configuration file for Operator 3 for this second topology:

Listing 4.7: Configuration file for the Aggregator of Operator 3 - Second
topology.

1 id = 3
2 queryIDs = 3
3 query3_inputStreamTopics = Q2O
4 query3_inputTopic = Q3I
5 query3_outputTopic = Q3O
6 query3_windowInfo = [RANGE TRIPLES 1000]

The difference is that query 4 is now located on Operator 4, and because
of that, it does not appear on Operator 3’s configuration file. All information
of query 3 from the first example topology stays the same. Finally, this is the
configuration file of Operator 4 of the second topology:

Listing 4.8: Configuration file for the Aggregator of Operator 4 - Second
topology.

1 id = 4
2 queryIDs = 4
3 query4_inputStreamTopics = Q1O
4 query4_inputTopic = Q4I
5 query4_outputTopic = Q4O
6 query4_windowInfo = [RANGE TRIPLES 500]

Note that the second topology has only one query per operator and one
Aggregator per query.

Besides configuring the Aggregator, the user:

1. writes the stream generation logic and publishes it using the DSCEP’s
JSON format for RDF-triples or RDF-graphs.

2. writes the Client module’s Script component with the logic for consuming
the final RDF stream.

3. writes the RSP engine logic, which contains the queries, to process each
input RDF stream.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 46

There are some already implemented Operator modules for DSCEP which
the user can choose to use. In the next section, each of these Operators is
presented.

4.4
DSCEP Implemented Operators

There are two different implemented operators in DSCEP; both are
written in Java. One of them is an Operator which uses the C-SPARQL RDF
stream processor [16] version 0.9.72, which we call by RSP:CSPARQL Operator.
The other implemented operator uses an RDF stream processor implementation
produced in the course of this research, which we call RSP:BasicProcessor
Operator.

Both RDF stream processor logics, for RSP:CSPARQL Operator and
RSP:BasicProcessor Operator were written in the RSP engine component of
the Operator’s module.

The RSP:BasicProcessor Operator uses the Apache Jena library ver-
sion 4.1.0 to query and handle RDF data. Figure 4.4 illustrates how the
RSP:BasicProcessor Operator is implemented.

W5 W4 W3 W2

RDF stream divided into
windows

RDF:BasicProcessor Operator

Aggregator

RSP engine: BasicProcessor

In memory RDF
graph

KB

W1
KB

Publisher

SPARQL
Jena engine

Input RDF
stream

Output RDF
stream

Figure 4.4: RSP:BasicProcessor Operator implementation.

First, as required to all operators, the Aggregator is configured for window
management and splits the RDF data stream into windows with pre-determined
size by the user. For every window that arrives in the RSP engine component
(represented in blue on figure 4.4), we insert the window triples with all KB
triples using the RDF API of Jena3 into an RDF graph in memory. We query
this RDF graph using Jena ARQ4 SPARQL and retrieve the result of the query.
After the result is obtained, the window is deleted from the RDF graph built-in
memory so as to prepare the RSP engine for the next window to arrive. This

2C-SPARQL: http://streamreasoning.org/resources/c-sparql
3Jena’s RDF API: https://jena.apache.org/documentation/rdf/index.html
4ARQ (SPARQL): https://jena.apache.org/documentation/query/index.html

http://streamreasoning.org/resources/c-sparql
https://jena.apache.org/documentation/rdf/index.html
https://jena.apache.org/documentation/query/index.html
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 47

step is repeated for each window to be processed. All query results are sent to
the Publisher component, which publishes those results in the corresponding
Kafka topic.

W5 W4 W3 W2

RDF stream divided into
windows

RDF:CSPARQL Operator

Aggregator

RSP engine: CSPARQL

KB

Publisher

CSPARQL
engine

Input RDF
stream

Output RDF
stream

Figure 4.5: RSP:CSPARQL Operator implementation.

Figure 4.5 illustrates how the RSP:CSPARQL Operator was implemented.
The difference between the RSP:CSPARQL Operator implementation and the
RSP:BasicProcessor Operator is the content of the RSP:engine component. For
the RSP:CSPARQL Operator we wrote the code to process the input stream
using CSPARQL[16].

Listing 4.9 shows all the parameters that can be passed to both operators,
by using an input file called operatorInput.properties:

Listing 4.9: operatorInput.properties file.
1 query = "..." # continuous query used by the operator on the input stream
2 idProperty = "sioc:id"
3 graphQuery = "..." # query that retrives the RDF-graph with the idProperty

Line 1 contains the query that the operator will apply to the input stream.
The file operatorInput.properties is the same for both implemented operators,
RSP:BasicProcessor Operator and RSP:CSPARQL Operator. The difference is
that for the RSP:CSPARQL Operator, the query attribute must contain a query
written in the CSPARQL language, and for the RSP:BasicProcessor Operator,
the query attribute must contain a query written in the SPARQL language.

In order to give one example on how to use the RSP:CSPARQL Operator,
listing 4.10 shows one CSPARQL example query that the user can give as
input:

Listing 4.10: CSPARQL example query.
1 REGISTER STREAM TweetStream AS
2 PREFIX . . .

3 CONSTRUCT {
4 ?tweet sioc:id ?id .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 48

5 ?tweet schema : mentions ? entity .
6 ? entity nee: hasMatchedURI ? artistURI .
7 ? artistURI rdf:type dbo: MusicalArtist .
8 }
9 FROM STREAM <.../Tweets> [RANGE TRIPLES 2000]

10 FROM <.../KB.rdf> # (The local Knowledge Base to access.)
11 WHERE {
12 ?tweet rdf:type sioc:Post .
13 ?tweet sioc:id ?id .
14 ?tweet schema : mentions ? entity .
15 ? entity nee: hasMatchedURI ? artistURI .
16 ? artistURI rdf:type dbo: MusicalArtist .
17 }

This CSPARQL query will match every tweet post that mentions a
dbo:MusicalArtist. In line 9 one can see the definition of the window type
(which is count-window) and its size (2000 triples per window). This information
must also be in the configuration file of the Operator because the aggregator is
the element responsible for window partitioning within DSCEP.

Besides the query, if the stream’s events are RDF-graphs, the user must
provide two additional parameters. These are the parameters described on
line 2 and line 3 of the operatorInput.properties file showed above in listing 4.9.

1. Parameter idProperty: The RDF property which identifies the RDF-graph.
This information is used by a SPARQL query which will retrieve all RDF-
graphs identifiers from a given set of triples.

2. Parameter graphQuery: A SPARQL query capable of retrieving all triples of
a RDF graph. This query uses the idProperty to identify each RDF-graph.

For example, let us consider that the user has an RDF-graph stream with
events that use the RDFS model described in Figure 4.6.

All RDF-graphs of this stream are identified by the property (sioc:id),
thus this RDF property must be the value of the parameter idProperty of the
operatorInput.properties file. The graphQuery parameter is the SPARQL query
capable of retrieving all triples of an RDF-graph given its identifier. Listing
4.11 is an example for the graphQuery parameter:

Listing 4.11: Example SPARQL query for the graphQuery parameter.
1 REGISTER STREAM TweetStream AS
2 PREFIX . . .

3 CONSTRUCT {
4 ?tweet sioc:id ?id .
5 ?tweet schema : mentions ? entity .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 4. Implementation 49

6 ? entity nee: hasMatchedURI ? artistURI .
7 ? artistURI rdf:type dbo: MusicalArtist .
8 }
9 FROM STREAM <.../Tweets> [RANGE TRIPLES 2000]

10 FROM <.../KB.rdf> # (Only for local access.)
11 WHERE {
12 ?tweet rdf:type sioc:Post .
13 ?tweet sioc:id ?id .
14 ?tweet schema : mentions ? entity .
15 ? entity nee: hasMatchedURI ? artistURI .
16 ? artistURI rdf:type dbo: MusicalArtist . # (triple accessed on the KB.)
17 }

sioc:id

schema:mentions

sioc:Post

rdfs:Literal

nee:hasMatchedURInee:Entity rdfs:Resource

RDF/S Model:

rdf:type

schema:mentions

sioc:id

_:tweet1

sioc:Post

rdf:type

_:ent1

nee:Entity

"96651212"

dbp:Ed_Sheerannee:hasMatchedURI

Instantiation example:

Figure 4.6: RDFS model of an RDF-graph and one example of an instance.

DSCEP with these two parameters (idProperty and graphQuery), can
identify all RDF-graphs contained on a set of triples. Note that this implies all
RDF-graphs must have at least one triple that can identify the whole graph.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

5
Evaluation

To evaluate DSCEP, we prepared three different experiments. The first
experiment is focused on comparing the processing time of a single and complex
query (Q) deploying and executing it in two modes: first as a monolithically,
second as dividing this same query into six smaller queries (Q1-Q6) and
executing it with DSCEP using a network of operators that when combined
produce the same results of query Q. The second experiment is focused on
measuring the impact of varying the total KB size versus search-space size in
subqueries Q1 and Q2. Q1 and Q2 are queries that combine data from the
stream with data on a knowledge base. Furthermore, the third experiment is
focused on evaluating the intra-operator parallelism and check whether and in
which conditions the intra-operator parallelism can decrease query processing
time.

5.1
Input RDF Stream

For the evaluation of DSCEP, we used the TweetsKB [37], a RDF dataset
containing anonymized and annotated tweets (Tweeter posts). We took a subset
corresponding to one month of tweets (February 2013)1 and transformed it into
a stream by grouping the triples of each tweet into an RDF graph. Each graph
is timestamped with the date and time of the tweet’s creation. The resulting
RDF stream consisted of approximately 60,000 tweets (graphs) or 2.3 million
triples.

Among other things, each tweet in the resulting stream contains:

(i) an id which uniquely identifies it;

(ii) references to entities which it mentions;

(iii) a sentiment analysis score which is a numeric value in the interval [-5.0,5.0]
(from bad to good);

(iv) likes and shares counts counting the number of times the tweet received
like and was shared.

1TweetsKB: urlhttps://data.gesis.org/tweetskb/

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 51

5.2
Knowledge Base

As the background knowledge, we used DBpedia, an RDF knowledge base
extracted from Wikipedia. The version we used has approximately 368 million
triples and was extracted from DBpedia’s public SPARQL endpoint in June
2019. We chose DBpedia because TweetsKB uses it to annotate the tweets (the
entities referred to in tweets are DBpedia resources).

In the experiments, when we refer to the total KB size (KBtotal) we mean
the total number of triples in the KB. Moreover, when we refer to the search-
space size (KBused) we mean the number of triples that actually need to be
considered to answer a given query. For instance, to answer the query “select
all musical artists born before 1975”, the evaluator only needs to consider the
103,075 triples comprising the musical artist subgraph of DBpedia (and not
the whole DBpedia).

It is important to take into account that the KB used in the experiment is
lightweight, containing a flat data model which makes less complex the process
of KB partitioning. One may ask why to use the RDF format for flat data
models when it is possible to use the relational model, which is proven to be
much faster. The RDF format does not only have the advantage of providing
reasoning/inferences, it is also widely used in the literature as a neutral format
to integrate different data sources [38, 39].

5.3
Access Methods

We compared two different methods for accessing the KB. In the local
access method (KBLOCAL), the KB is passed to C-SPARQL (the RSP engine we
used in the experiments) as an RDF file using the FROM directive of SPARQL.
This causes C-SPARQL to fill up every window with all triples in the KB, which
is simply impractical when the KB is the whole DBpedia. Hence, to be able to
run the experiments, specifically when using the local access method, we used
a reduced KB containing only the musical artist and television show subgraphs
of DBpedia. This reduced KB contained 132,489 triples (approximately 0.03%
of DBpedia).

The second method we used for accessing the KB is the endpoint access
method (KBGLOBAL). In this method, the KB containing the whole DBpedia is
kept in a triplestore (RDF database) which is accessed by C-SPARQL using
the SERVICE directive of SPARQL. Using this method, we can make C-SPARQL
access the desired subgraphs of DBpedia on the fly, without adding the whole

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 52

KB to every window–although the subgraphs resulting from the SERVICE call
are still added to every window.

5.4
Setup

For experiments 1 and 2, we deployed DSCEP on a machine with 512 GB
of RAM and two AMD EPYC 7451 processors, each with 24 cores, 2.3 GHz,
and 64 MB of cache. For the communication infrastructure, we used Apache
Kafka version 2.0 and Zookeeper2. We used Docker3 to run the DSCEP modules
(one module per Docker container). Moreover, we used the Virtuoso4 triplestore
to run our own DBpedia endpoint in a separate Docker container.

Also, for experiments 1 and 2, as RDF stream processor, we used C-
SPARQL [16] version 0.9.75 with one C-SPARQL instance per DSCEP operator.
We configured C-SPARQL to use count-based windows (with 1000 triples per
window) in the experiments and delegated to DSCEP the responsibility of
slicing” (cutting) the graphs and creating windows from these slices. With this
setup, DSCEP ensures that triples from one single graph do not end up in
different C-SPARQL window.

5.5
Experiments

First experiment

We considered a complex C-SPARQL query Q and compared its evaluation
using a single operator versus the evaluation of smaller queries Q1–Q6 by a
network of operators that, when combined, produced the same result as query
Q. The goal here was to show that we can reduce the overall processing time
of a complex query by splitting it into smaller, simpler queries, using DSCEP
to coordinate their execution and combine their results.

The general structure of query Q is shown below, and its complete version
can be found in Appendix A.1.

1 REGISTER STREAM TweetStream AS
2 PREFIX . . .

3 # Get all tweets mentioning both musical artists and TV shows
4 # plus the aggregated sentiment scores, likes, and shares.
5 CONSTRUCT { . . . }

2Apache Zookeeper: https://zookeeper.apache.org/
3Docker: https://www.docker.com/
4Virtuoso: https://virtuoso.openlinksw.com/
5C-SPARQL: http://streamreasoning.org/resources/c-sparql

https://zookeeper.apache.org/
https://www.docker.com/
https://virtuoso.openlinksw.com/
http://streamreasoning.org/resources/c-sparql
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 53

6 FROM STREAM <.../Tweets> [RANGE TRIPLES 1000]
7 FROM <.../KB.rdf> # (Only for local access.)
8 WHERE {
9 # Q1: Get all tweets mentioning a musical artist.

10 ...
11 # Q2: Get all tweets mentioning a TV show.
12 ...
13 # Q3: Aggregate sentiment score of musical artists.
14 { SELECT ? artistURI (count (? posNum) as ? cntPositive)
15 WHERE {...} GROUP BY ? artistURI }
16 { SELECT ? artistURI (count (? negNum) as ? cntNegative)
17 WHERE {...} GROUP BY ? artistURI }
18

19 # Q4: Aggregate likes/shares of musical artists.
20 { SELECT ? artistURI (count (? likeNum) as ? cntLikes)
21 WHERE {...} GROUP BY ? artistURI }
22 { SELECT ? artistURI (count (? shareNum) as ? cntShares)
23 WHERE {...} GROUP BY ? artistURI }
24

25 # Q5: Aggregate sentiment score of TV shows.
26 { SELECT ? tvshowURI (count (? posNum) as ? cntPositive)
27 WHERE {...} GROUP BY ? tvshowURI }
28 { SELECT ? tvshowURI (count (? negNum) as ? cntNegative)
29 WHERE {...} GROUP BY ? tvshowURI }
30

31 # Q6: Aggregate likes/shares of TV shows.
32 { SELECT ? tvshowURI (count (? likeNum) as ? cntLikes)
33 WHERE {...} GROUP BY ? tvshowURI }
34 { SELECT ? tvshowURI (count (? shareNum) as ? cntShares)
35 WHERE {...} GROUP BY ? tvshowURI }}

Query Q is a construct query (line 5). Its result is a new RDF graph
containing all tweets from the input stream that mention either a musical
artist (line 10) or a TV show (line 12) and also some aggregated statistics: the
sentiment score and like and share counts associated with each musical artist
(lines 14–17 and 20–23) and TV show (lines 26–29 and 32–35) mentioned in all
such tweets. The query uses the external KB to determine whether a resource
mentioned by a tweet is a musical artist or TV show (line 7).

Note that the goal of query Q is to produce an RDF graph that can be
used for further analyses correlating tweets that mention musical artists and
TV shows. For instance, the result can be used to determine which TV shows
are good publicity for a given musical artist or which musical artists might be
bad guests for a given type of TV show.

We executed query Q in DSCEP using a single stream generator and a
single C-SPARQL operator. The results for this configuration are shown in

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 54

Table 5.1 under the label Q. Using the local access method (KBLOCAL), the KB
contains only the subgraphs for musical artists and TV shows; hence KBtotal is
132,489 and every one of these triples is considered by Q, and so KBused is also
132,489. Using the endpoint access method (KBGLOBAL), the KB contains the
whole DBpedia (hence KBtotal is 368,720,213 triples) but KBused is still 132,489
because only the musical artist and TV show subgraphs are considered. The
processing time per window was on average 117s for KBLOCAL and 104.3s for
KBGLOBAL.

Table 5.1: Processing time of Q vs Q1–Q6.
Q Q1–Q6

KBLOCAL KBGLOBAL KBLOCAL KBGLOBAL

KBtotal(number of triples) 132,489 368,720,213 132,489 368,720,213
KBused(number of triples) 132,489 132,489 132,489 132,489
Processing time (seconds)* 117 104.3 84.6 81.3
*Seconds per window; average of 10 runs with 1168 windows per run.

To parallelize Q, we divided it into six subqueries Q1–Q6, corresponding
to the marked regions in the previous listing for Q, and constructed a network
of C-SPARQL operators in DSCEP to coordinate their execution. The layout
of this network is depicted in Figure 5.1. Each subquery runs in a separate
operator with one Docker container per operator. Subqueries Q1 and Q2 get all
tweets that mention some musical artist and some TV show, respectively. These
are the only subqueries that access the KB. Subqueries Q3 and Q4 aggregate
the sentiment score and like and share counts for the musical artists mentioned
in the tweets selected by Q1, while subqueries Q5 and Q6 do the same thing
for the tweets mentioning TV shows selected by Q2. The combined outputs of
Q3–Q6 are delivered to the client module (in yellow) and comprise the resulting
graph, identical to the graph produced by Q. All subqueries run in parallel.

The results for Q1–Q6 are shown in Table 5.1. As expected, the total KB
size (KBtotal) and the search-space size (KBused) are the same as those for Q

in both access methods. The processing time using local KB access (KBLOCAL)
was 29% smaller for Q1–Q6 (84.6s per window) when compared with Q (117s
per window). With endpoint access (KBGLOBAL), the reduction was 23% (from
104.3s for Q to 81.3 for Q1–Q6).

In both cases, the bulk of the processing time was spent in the subqueries
Q1 and Q2, which are the only subqueries that access the KB. For instance, the
time of 84.6s per window with local KB access is dominated by Q1 alone—query
Q2 took 26.65s per window, while all of the remaining subqueries took less than

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 55

Stream
Generator

Client

Operator 1

Query1

Operator 2

Query2

Operator 6

Query6

KB
Operator 4

Query4

Operator 3

Query3

Operator 5

Query5

Figure 5.1: The parallelization of Q into six subqueries.

40ms per window. Since all queries run in parallel, it is Q1 that determines the
average processing time per window of the network.

This first experiment demonstrates that dividing a query into parallel
subqueries can reduce overall processing time. It also indicates that KB access
is costly. The following experiment assesses this cost.

Second experiment

We measured the impact of varying the total KB size (KBtotal) versus
search-space size (KBused) in subqueries Q1 and Q2 of the first experiment. The
goal here was twofold. First, we wanted to assess the contribution of the search-
space size to the overall processing time of the queries. As expected, it takes
more time to traverse a more extensive search space. The second and possibly
more interesting goal was to highlight that some RSP engines (including C-
SPARQL) are highly sensitive to noise (defined as irrelevant or meaningless
data [40]) in the KB. In other words, we can degrade their performance by
simply growing KBtotal while keeping KBused fixed. Hence, the ability to control
which parts of the KB are accessed by a given query is crucial for obtaining a
good performance.

We considered three situations, (a), (b), and (c). The results for each of
these are given in Figure 5.2.

In (a), we used the endpoint access method and evaluated queries Q1 and
Q2 over a KB consisting of the whole DBpedia. So KBtotal was fixed and equal
to approximately 368 million triples. We tweaked Q1 and Q2 to determine how
variations in the search-space size (KBused) affected the queries. It took Q1 on
average 81.3s to process each window in a search-space containing the whole

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 56

Se
co

nd
s

pe
r

w
in

do
w

1

10

100 81.3

8.4 9.5

1.5

84.6

8.5 9.9

2.8

11.1
8.5

4.0
2.8

KBGLOBAL KBLOCAL

Q1

103K / 10K

Q2

29K / 4K

Q1

103K / 10K

Q2

29K / 4K

Q1

103K / 10K

Q2

29K / 4K

(a)
KBused: varies
KBtotal: 368M

(b)
KBused = KBtotal

(c)
KBtotal: varies
KBused(Q1): 10K
KBused(Q2): 4K

Figure 5.2: Average processing time per window with varying KBused and KBtotal
for Q1 and Q2. (a) Using the endpoint access method for Q1 and Q2 with
KBtotal fixed at 368M triples and KBused with 103K vs 10K triples for Q1 and
29K vs 4K triples for Q2. (b) Using the local access method for Q1 and Q2
with KBused = KBtotal and 103K vs 10K triples for Q1 and 29K vs 4K triples
for Q2. (c) Using the local access method for Q1 with KBused fixed at 10K
and KBtotal with 103K vs 10K triples, and for Q2 with KBused fixed at 4K and
KBtotal with 29K vs 4K triples. The figures for KBused and KBtotal were divided
by 1000 and rounded and the processing times are an average of 4 runs with
1168 windows each; the y-axis is in log scale.

musical artist subgraph of DBpedia (KBused = 103K). When we divided this
search space roughly by ten (KBused = 10K), it took Q1 ten times less time
(8.4s) to process each window on average. Similar behavior was observed for Q2

as depicted in Figure 5.2(a). These results indicate that restricting the parts of
the KB that are accessed by a given query (i.e., reducing its search space) can
achieve a significant speedup in processing time.

In (b), we used the local access method with a search-space consisting of
the whole KB, i.e., KBused = KBtotal, and we varied both KBused and KBtotal

together. The results of (b) were similar to those of (a). Query Q1 took 84.6s
per window with a search-space and KB size of 103K triples, and 8.5s per
window with a search-space and KB with one-tenth of that size (10K triples).
Query Q2 behaved similarly, as shown by Figure 5.2(b). These results, together
with those of (a) highlight the direct relation (in the two cases almost linear)
between search-space size and processing time.

In (c), we used the local access method, and we kept the search-space
size fixed (10K for Q1 and 4K for Q2) while considering increasing KB sizes.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 57

Query Q1 took 11.1s per window on average with a KB containing 103K triples
and 8.5s per window on average with a KB containing 10K triples. In this case,
by simply adding 90K unrelated triples to the KB, we increased the processing
time by 30% (from 8.5s to 11.1s). As shown in Figure 5.2(c), the result was
similar for Q2: the addition of 25K unrelated triples to the KB increased the
processing time by approximately 42.8% (from 2.8s to 4s). These increments
were not negligible and indicated that the mere presence of unrelated triples in
the KB could significantly slow down the query. This is one more reason for
partitioning the KB among the operators of a Semantic CEP network.

Third experiment

We deployed DSCEP on a machine with 16GB of RAM, a Quad-Core
Intel I7 CPU with 2.7GHz, and four cores for this experiment. Also, for
the communication infrastructure, we used Apache Kafka version 2.0 and
Zookeeper6. As DSCEP operator, we used the RSP:BasicProcessor Operator,
which uses our implementation of an RDF stream processor detailed in section
4.4.

The goal of this experiment is to evaluate intra-operator parallelism
and check whether and in which conditions the intra-operator parallelism can
decrease query processing time. We compared the processing time of query Q7

running it with and without intra-operator parallelism. The goal was to evaluate
if we can reduce a query’s overall processing time by instantiating multiple
RSP engines with the same query and splitting the windows among the RSP
engines, using DSCEP for window management, coordinating their execution,
and combine their results.

Query Q7 is shown below:
1 PREFIX . . .

2 CONSTRUCT {? tweet rdf:type sioc:Post .
3 ?tweet sioc:id ?id .
4 ?tweet dc: created ? datetime .
5 ?tweet sioc: has_creator ? postCreator .
6 ?tweet onyx: hasEmotionSet ? emotionSet .
7 ?tweet schema : interactionStatistic ? interactionSet .
8 ?tweet schema : interactionStatistic ? interactionSet2 .
9 ? interactionSet rdf:type schema : InteractionCounter .

10 ? interactionSet schema : interactionType schema : LikeAction .
11 ? interactionSet schema : userInteractionCount ? likeCount .
12 ? interactionSet2 rdf:type schema : InteractionCounter .
13 ? interactionSet2 schema : interactionType schema : ShareAction .

6Apache Zookeeper: https://zookeeper.apache.org/

https://zookeeper.apache.org/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 58

14 ? interactionSet2 schema : userInteractionCount ? shareCount .
15 ? emotionSet rdf:type onyx: EmotionSet .
16 ? emotionSet onyx: hasEmotion ? positive .
17 ? positive onyx: hasEmotionCategory wna:positive - emotion .
18 ? positive onyx: hasEmotionIntensity ? posNum .
19 ? artistURI ex: hasPositiveNumber ? posNum .
20 ? emotionSet onyx: hasEmotion ? negative .
21 ? negative onyx: hasEmotionCategory wna:negative - emotion .
22 ? negative onyx: hasEmotionIntensity ? negNum .
23 ?tweet schema : mentions ? entity .
24 ? entity nee: hasMatchedURI ? artistURI .
25 ? artistURI dbo:genre ?genre .
26 ? artistURI rdf:type dbo: MusicalArtist .
27 ? entity ex: hasName ?name .
28 ?tweet schema : mentions ? TagClass .
29 ? TagClass rdf:type sioc_t :Tag .
30 ? TagClass rdfs:label ?tag .
31 ?tweet schema : mentions ? UserAcc .
32 ? UserAcc rdf:type sioc: UserAccount .
33 ? UserAcc sioc:name ? userName .}
34 FROM <.../KB.rdf> # (The local Knowledge Base to access.)
35 WHERE
36 {
37 ? artistURI rdf:type dbo: MusicalArtist .
38 ? artistURI dbo:genre ?genre .
39 ?tweet rdf:type sioc:Post .
40 ?tweet sioc:id ?id .
41 ?tweet dc: created ? datetime .
42 ?tweet sioc: has_creator ? postCreator .
43 ?tweet onyx: hasEmotionSet ? emotionSet .
44 ?tweet schema : interactionStatistic ? interactionSet .
45 ?tweet schema : interactionStatistic ? interactionSet2 .
46 ? interactionSet rdf:type schema : InteractionCounter .
47 ? interactionSet schema : interactionType schema : LikeAction .
48 ? interactionSet schema : userInteractionCount ? likeCount .
49 ? interactionSet2 rdf:type schema : InteractionCounter .
50 ? interactionSet2 schema : interactionType schema : ShareAction

.
51 ? interactionSet2 schema : userInteractionCount ? shareCount .
52 ? emotionSet onyx: hasEmotion ? positive .
53 ? positive onyx: hasEmotionCategory wna:positive - emotion .
54 ? positive onyx: hasEmotionIntensity ? posNum .
55 ? emotionSet onyx: hasEmotion ? negative .
56 ? negative onyx: hasEmotionCategory wna:negative - emotion .
57 ? negative onyx: hasEmotionIntensity ? negNum .
58 ?tweet schema : mentions ? entity .
59 ? entity nee: hasMatchedURI ? artistURI .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 59

60 ? entity nee: detectedAs ?name .
61 OPTIONAL { ?tweet schema : mentions ? TagClass }
62 OPTIONAL { ? TagClass rdf:type sioc_t :Tag }
63 OPTIONAL { ? TagClass rdfs:label ?tag }
64 OPTIONAL { ?tweet schema : mentions ? UserAcc }
65 OPTIONAL { ? UserAcc rdf:type sioc: UserAccount }
66 OPTIONAL { ? UserAcc sioc:name ? userName }
67 }

Query Q7 is a construct query (line 2). Its result is a new RDF graph
containing all tweets from the input stream that mention a musical artist
(line 37) and some aggregated statistics: the sentiment score and like and share
counts associated with each musical artist.

We executed query Q7 with DSCEP using a network consisting of a
single stream generator and a single RSP:BasicProcessor Operator (Figure 5.3).
We measured the impact of varying the number of RSP engines (RSPnumber)
while keeping the window size (WINsize) fixed and the impact of varying the
window size (WINsize) while keeping the number of RSP engines (RSPnumber)
fixed. Since we already evaluate the impact of the KB on the query processing,
for this experiment, we did not vary the KB size (KBtotal) and the query
search-space (KBused).

Stream
Generator ClientAggregator

RSP engine 8

KB

Publisher

Query Q7

Query Q7

RSP engine1

Operator 1

...

Kafka

Kafka

Kafka

Kafka

Kafka

Figure 5.3: The parallelization of Q7 using one operator with multiple RSP
engines.

The results for this experiment are shown in Figure 5.4, which has four
line graphs. Each graph represents a different test with a different operator
setting. Each operator has a different number of RSP engines (RSPnumber).
First, we executed query Q7 without intra-parallelism by using only one RSP
engine (Operator 1 with RSPnumber=1) and compared it with Operator 2, which
has RSPnumber=2. The processing time per window was, on average, 24.57s for
Operator 1 with WINsize=500, and 26.06s for Operator 2 for the same WINsize.
It means that the Operator 1 processes two windows in 49.14s (two times

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 60

24.57s), while the Operator 2 processes two windows (one in each RSP engine
in parallel) in 26.06s. To be precise, Operator 2 has a processing time per window
6% higher than the processing time per window of Operator 1, but Operator 2
can process two windows in parallel. Thus, approximately, Operator 2 would
take almost half of the time that Operator 1 takes to processes the same input.
When increasing the window size, the processing time difference also increases
between Operator 1 and Operator 2. With WINsize=1000, the processing time
per window of Operator 2 is 8.9% higher, with WINsize=2000 is 10.4% higher
and with WINsize=5000 the processing time per window of Operator 2 is 9.8%
higher. The processing time per window difference between operators was all
inside the range of 6% to 11%. Also, when we increase the window size, the
processing time difference per window between Operator 1 and Operator 2
increases and tends to stabilize around 10%.

0 5001,000
2,000

5,0000
20
40
60
80

100
120
140
160
180
200

24.57

51.6

90.87 93.24

Window Size

Pr
oc

T
im

e
Pe

r
W

in
do

w
(s
ec
)

Operator 1: With one RSP engine.

RSPnum=1

0 5001,000
2,000

5,0000
20
40
60
80

100
120
140
160
180
200

31.3

69

113.76 119.58

Window Size

Pr
oc

T
im

e
Pe

r
W

in
do

w
(s
ec
)

Operator 4: With four RSP engines.

RSPnum=4

0 5001,000
2,000

5,0000
20
40
60
80

100
120
140
160
180
200

26.06

56.2

100.33 102.39

Window Size

Pr
oc

T
im

e
Pe

r
W

in
do

w
(s
ec
)

Operator 2: With two RSP engines.

RSPnum=2

0 5001,000
2,000

5,0000
20
40
60
80

100
120
140
160
180
200

53.8

126.9

198.49

192.39

Window Size

Pr
oc

T
im

e
Pe

r
W

in
do

w
(s
ec
)

Operator 8: With eight RSP engines.

RSPnum=8

Figure 5.4: Average processing time per window with varying RSPnumberand
WINsizefor Q7. All processing times (for each WINsize) are an average of 4
runs with 1000 windows each.

When increasing RSPnumberto 4 (with Operator 4), four windows with
WINsize=500 are processed in parallel in 31.3s, one on each RSP engine of

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 61

Number of RSP engines

W
IN

si
ze

R
SP

en
gi
ne

1

R
SP

en
gi
ne

2

R
SP

en
gi
ne

3

R
SP

en
gi
ne

4

R
SP

en
gi
ne

5

R
SP

en
gi
ne

6

R
SP

en
gi
ne

7

R
SP

en
gi
ne

8

Operator 2 500 52.8% 47.2%
Operator 4 500 26% 24.5% 25% 24.5%
Operator 8 500 18% 16.9% 11.2% 7.9% 11.2% 13.5% 10.1% 11.2%
Operator 2 1000 52% 48%
Operator 4 1000 26% 24% 26% 24%
Operator 8 1000 12% 18% 12% 10% 12% 12% 14% 10%
Operator 2 2000 52.1% 47.9%
Operator 4 2000 26.2% 25.1% 24.9% 23.8%
Operator 8 2000 14.6% 10.4% 10.4% 8.3% 8.3% 14.6% 16.7% 16.7%
Operator 2 5000 50% 50%
Operator 4 5000 27.2% 22.8% 22.8% 27.2%
Operator 8 5000 8.3% 10.4% 6.3% 12.5% 18.8% 12.5% 10.4% 20.8%

Table 5.2: Window distribution among RSP engines of each operator (Percent-
age).

Operator 4. Operator 4, with WINsize=500, has a processing time per window
of 27.4% higher than the processing time per window of Operator 1. With
WINsize=1000 the processing time per window of Operator 4 is 33.7% higher,
with WINsize=2000 is 25.2% higher and with WINsize=5000 is 28.2% higher.
In this case, the processing time per window difference between operators 1
and 2 were all inside the range of 25% and 33%.

Different behavior can be observed when comparing the processing time
per window of Operator 8 with Operator 1. Operator 8 takes 119% more time
to process a window when compared to Operator 1, but also Operator 8 can
process up to 8 windows in parallel. In seconds, Operator 1 takes an average of
24,57s to process a single window, and Operator 8 takes an average of 53.8s.
The processing time of a single window increases much more on Operator 8
when compared to Operators 2 and 4. That is because the machine used for
the test has only four cores, making it impossible to execute eight windows
simultaneously. Since each core can execute one process per time, the Operator 4
(with RSPnumber=4) would be the limit for this machine to guarantee that it is
possible to execute four windows simultaneously.

The number of CPU cores impact on each operator can also be observed
in Table 5.2, where Operator 8 tends to have a more significant difference

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 5. Evaluation 62

on window distribution among its RSP engines compared to other operators.
Operator 2 and Operator 4 show that even when increasing the WINsize, the
window distribution percentage was maintained approximately equally divided
among each RSP engine. If there is at least one CPU core per RSP engine, the
window distribution tends to be equally divided among RSP engines.

This third experiment demonstrates that intra-operator parallelism can
reduce overall processing time. It also shows that the number of RDF processors
executed in parallel on the same machine should be compatible with the number
of CPU cores to avoid increasing the processing time of a single window and to
get a more equally divided window distribution among RSP engines.

Note that because DSCEP’s aggregator and publisher use Kafka to send
and receive windows, it also enables that each RSP engine of a single operator
can be executed on a different machine (as illustrated by Figure 5.5). This is a
consequence of the capability that Kafka has to distribute and coordinate data
streams.

Stream
Generator

ClientAggregator

RSP engine 8

KB

Publisher

Query Q7

Query Q7

RSP engine1

Operator 1

...

Kafk
a

Kafka

Kafka

Kafk
a

Kafka

Publisher

Machine 1

Machine 8

KB

Figure 5.5: The parallelization of Q7 using one operator with multiple RSP
engines, each in a different machine.

To assign a number of RSP engines equal to the machine’s number of
CPU cores, allow the use of more RSP engines on a single operator without
increasing the processing time per window.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

6
Discussion and Limitations

This chapter discusses limitations and difficulties regarding dividing
a query into smaller subqueries and challenges on RDF knowledge base
partitioning. It is worth mentioning that a deep discussion and theoretic analysis
of query partitioning, query processing, and KB partitioning are beyond the
scope of this thesis. In the following sections, we give an overall idea and a
brief discussion about these topics.

6.1
Remarks on dividing one query into multiple smaller queries

Query processing in an area in which one of the study subjects is how
to decrease the processing time of a query. One of the ways of speeding up a
query is to break the query into smaller subqueries, execute them in parallel,
and then join its results. Before describing the challenges of breaking a query
into multiple subqueries, we give a short introduction to the SPARQL query
language and refresh some of the basic characteristics of the RDF language
explained in chapter 2.

In the RDF language, all data are represented as a triple (s,p,o) consisting
of a subject s, predicate p, and object o. These triples can be interlinked in
a way that the object o of a triple can be the subject s of another triple.
Thus, an RDF dataset can be considered as representing a directed graph, with
entities (i.e., subjects and objects) as nodes and relationships (i,e. predicates)
as directed edges. The core syntax of SPARQL is a conjunctive set of triple
patterns called basic graph pattern [41]. A triple pattern is similar to an RDF
triple, except that any component in the triple pattern can be a variable. We
call a basic graph pattern a subgraph that a user wants to match against the
RDF data. Thus, SPARQL query processing is essentially a subgraph matching
problem with one or more basic triple patterns to match.

For example, let us analyze the following SPARQL query:

Listing 6.1: Example SPARQL query
1 REGISTER QUERY ExampleQuery1 AS
2 CONSTRUCT {
3 ? temperatureSensor ex: hasSensorID ? tSensorID .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 6. Discussion and Limitations 64

4 ? humiditySensor ex: hasSensorID ? uSensorID .
5 ex: Colocation ex: isColocated ? locTimes }
6 FROM STREAM <http :// ex.org/Sensors > [RANGE TRIPLES 1000]
7 FROM <file :/// Sensors -KB.rdf >
8 WHERE {
9 ? temperatureSensor ex: hasSensorID ? tSensorID .

10 ? temperatureSensor ex: hasSensorType ? sensorType1 .
11 ? sensorType1 rdf:type ex: TemperatureSensor .
12 ? humiditySensor ex: hasSensorID ? uSensorID .
13 ? humiditySensor ex: hasSensorType ? sensorType2 .
14 ? sensorType2 rdf:type ex: HumiditySensor .
15

16 SELECT (count (? loc1) as ? locTimes)
17 WHERE {
18 ? temperatureSensor ex: hasLocation ?loc1 .
19 ? humiditySensor ex: hasLocation ?loc2 .
20 FILTER (? loc1 = ?loc2)
21 } }

This query aims to return a graph with three triples, where the first triple
contains the ID of the temperature sensor, the second triple contains the ID of
the humidity sensor, and the third triple describes if both sensors are co-located.
The variable ?locTimes identifies if both sensors are co-located or not, its value
can be either 0 (not co-located) or 1 (is co-located).

The query can be decomposed into three basic graph patterns, lines 9,
10, and 11 represent the first, lines 12, 13 and 14 represents the second, and
the third is represented from line 16 to line 20. The first and second subgraph
patterns are similar, and they both can be executed in parallel since the task
to find all temperature sensors does not depend on the task to find all humidity
sensors. Thus, these two basic graph patterns do not depend on each other. On
the other hand, the third basic graph pattern can not be executed in parallel
because it needs data retrieved by the other basic graph patterns.

Thus, one way to divide the query represented in listing 6.1 is to divide
it into three separate queries, in this case, one for each basic subgraph pattern
and to execute them following the topology illustrated in figure 6.1.

Figure 6.1 is just one example of dividing a simple query that contains
only three basic graph patterns into three subqueries. But queries can become
more complex with more dependencies between basic graph patterns making
the partitioning of the query a difficult task. In the case of this thesis, the
challenge is not to divide one query into multiple subqueries but to ensure
that each subquery can execute in a different machine and, in some cases, by a
different RDF stream processor engine.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 6. Discussion and Limitations 65

Stream
Generator Client

Operator 1

Subquery1

Operator 2

KB

Operator 3

Subquery2

Subquery3

Figure 6.1: Topology to execute the subqueries.

6.2
Remarks on dividing a knowledge base

Knowledge bases are increasingly being used for representing data on the
Web [42], usually for expert systems that work with one or possibly several
domain areas. In this context, one of the challenges is scalable reasoning that
can generate responsive results to complicated queries involving large datasets.
In most cases, not all data in the knowledge base applies to and is required
by every query formulated to be used in a specific use case. It is possible that
by dividing the knowledge base, a decrease in execution time may be achieved.
However, splitting a knowledge base into independent partitions is a complex
problem because it is difficult to ensure complete and sound query reasoning
on the partitioned data [43].

The complexity of partitioning a knowledge base into multiple parts is
directly related to its level of expressiveness and formality. The more expressive
a KB is, the inter dependency among its elements is higher [44].

Terms

Glossaries

Data
Dictionaries

Thesauri

XML DTDs

Database
Schemas

XML
Schemas

Data
Models

Formal
Taxonomies

Conceptual
Model

Description
Logics

General
Logics

Expressivity & Formality

Informal, Lightweight Knowledge Bases

Glossaries and Data
Dictionaries

Thesauri and
Taxonomies

Metadata and Data
Models

Formal, Heavyweight
Knowledge bases

Figure 6.2: Knowledge base expressiveness levels [1].

Figure 6.2 shows a general vision about the levels of expressiveness of a
knowledge base. Glossaries, Data Dictionaries, Thesauri, and Taxonomies are

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 6. Discussion and Limitations 66

the less expressive models and thus easier to partition when compared with
formal and heavyweight knowledge bases. The more expressive models tend to
have implicit data generated explicitly when the reasoning is executed. Thus,
the partitioning process can compromise the query result since reasoning with
only a part of the knowledge base can result in different outcomes compared to
reasoning with the complete KB.

The other characteristic that is important to have in mind when
partitioning a knowledge base is to know all the queries that will be executed.
If there is a way to know beforehand all queries that will be executed on the
system, the KB partitioning process can be guided to support these specific
queries. By partitioning a KB for only one query, the designer does not have to
guarantee that for every other query, all results will be the same as when the
query is executed on the complete KB [45].

Consider the example of listing 6.1 of the previous subsection, where we
have three subqueries, and two of them need to access the knowledge base.
One of the queries is interested in all temperature sensors, and the other is
interested in all humidity sensors. Also, consider the RDF graph model used to
represent all sensor instances, represented in figure 6.3.

ex:hasSensorID

ex:hasSensorType

ex:Sensor

rdfs:Literal

ex:SensorType

RDF/S Model:

rdf:type

ex:hasSensorType

ex:hasSensorID

_:sensor1

ex:Sensor

rdf:type

_:en1

ex:TemperatureSensor

"AAB1"

Instantiation example:

ex:SensorType

ex:TemperatureSensor

rdfs:subClassOf

ex:HumiditySensor

rdf:type

ex:hasSensorType

ex:hasSensorID

_:sensor2

ex:Sensor

rdf:type

_:en2

ex:HumiditySensor

"AAB2"

Figure 6.3: RDF graph model of the sensor data.

This knowledge base is written using RDF, and there is no rule or
underlying model that connects temperature sensors with humidity sensors.
For queries one and two, it is possible to divide the KB into two parts, one
containing all instances of temperature sensors and the other containing all
instances of humidity sensors.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 6. Discussion and Limitations 67

The task of partitioning a KB can become more complex depending on
its expressiveness level. To enable such partitioning for knowledge bases that
are not lightweight is yet an open research problem. To give an example, in
Cafezeiro at al work [46], it is proposed an algebra of contextualized ontologies
that needs to be applied since the creation of the knowledge base to make
possible it is partitioning. The theory created by Cafezeiro ensures that if the
knowledge base is created following a set of rules that defines a contextualized
ontology, the partitioning of the knowledge base will be possible. However, all
partitions of the KB are pre-defined since the KB is first created, making this
method unsuitable to be applied on already existent KBs.

6.3
Conclusion

Both query and knowledge base partitioning are hard problems, and
there is no simple solution to partition every query or every KB. In DSCEP
infrastructure, the operator is a shared-nothing architecture, and consequently,
KB partitioning is one fundamental strategy to speed up the computation of
the query and increase scalability. DSCEP operators handle RDF data, both on
stream and the KB, and several distributed RDF processing systems have been
introduced where the storage and query processing is managed on multiple
nodes [47].

The use of distributed RDF storage and query systems is possible
since each DSCEP operator has its own RDF stream processor and storage.
Distributed RDF storage systems do not guarantee that each partition of the
KB is independent of the other. It might incur significant intermediate data
shuffling when answering complex SPARQL queries that span multiple different
partitions. However, distributed RDF processing systems are characterized by
larger memory sizes and higher processing capacity.

Within the data streaming environment, we believe that the most natural
way to partition the data is by dividing the windows among multiple nodes to
be processed in parallel. We are aware that partitioning the data stream into
windows only solves the problem of local reasoning. To reason with historical
data is a more complex problem that requires the persistence of the data on the
stream. Finally, the knowledge base size can still be a bottleneck since every
window will have to be processed with the KB data.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

7
Related Work

The following characteristic was listed to analyze and compare each
related work with DSCEP:

– Intra-query parallelism: This can be done by instantiating multiple RSP
engines running the same query into one Operator; the windows of the
same input RDF stream are divided among the RSP engines.

– Inter-query parallelism: Different queries can be executed in parallel by
different operators, each running its set of RSP engines.

– Integrates existing RSPs: The infrastructure allows the use of different
RSP engines, and processing can be done in a compositional manner (i.e.,
the output of an operator should be ready to be used as input for another
operator in the network).

– Allows external KB access: The infrastructure allows its RSP engines to
access local or external KBs.

– Does not restrict the input stream: The infrastructure does not apply any
restriction to the input RDF stream.

– Complies with Semantic CEP: The infrastructure allows and offers features
to each RDF stream processor to run as a Semantic CEP engine.

Semantic CEP often shows an increase in processing time due to the
insertion of the KB within the stream processing; thus, the infrastructure
should provide different parallelism methods to speed up query processing. The
characteristic of integrating existing RSPs is not a requirement for Semantic
CEP. However, it makes the infrastructure not depend on a specific RSP engine
and allows the user to choose the RSP engine that is more suitable for his use
case or a specific query. Finally, the three last characteristics listed above refer
to the requirements that make an infrastructure to be compliant to Semantic
CEP; these requirements are listed in section 2.4.

Several RSP engines have been proposed in the last decade, some focusing
on the processing aspects of continuous RDF queries and others focusing on
enhancing query expressiveness and reasoning capabilities [15, 16, 17, 18, 19, 20].
CQELS-cloud [48] was one of the first RSP engines to focus on scalability and

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 7. Related Work 69

was capable of executing on multiple machines. Its query analyzer uses Apache
Storm to parallelize queries and HBase to store intermediate results and RDF
static data. However, unlike DSCEP, CQELS-cloud focuses on parallelizing a
single query execution and not on providing an infrastructure for coordinating
the execution of multiple queries. Intra- and inter- query parallelism are not
provided, since CQELS-cloud focus on parallelize the execution it self of the
SPARQL language. Additionally, in CQELS-cloud, queries can only access local
knowledge bases.

Calbimonte [2, 49] is one of the first proposals for distributed RDF
stream processing using multiple RSPs. It focuses on connecting different RSP
engines using W3C’s Linked Data Notifications (LDN; [50]). LDN is a protocol
that describes how servers (receivers) can have messages pushed to them by
applications (senders) and how application (consumers) may retrieve those
messages. Calbimonte’s work extends the LDN protocol and uses it as the
backbone for sending and receiving RDF stream elements, where RDF streams
are interpreted as notifications by the applications sending and receiving them.
Figure 7.1 shows an overview of Calbimonte’s infrastructure, where each circle
on the figure represents either a data stream generator, consumer, or processor.
Calbimonte’s infrastructure is implemented in Scala using the Akka HTTP
library. The implementation focus on showing the feasibility of connecting
different RSP engines, stream generators, and consumers.

Figure 7.1: Calbimonte’s infrastructure. [2]

One difference between Calbimonte’s work and DSCEP is that DSCEP
focuses on enabling the RSP engines to work as Semantic CEP operators.
Calbimonte’s proposal has restrictions that prevent this. For instance, in
Calbimonte’s proposal, RSP engines can only access local KBs. Also, while
DSCEP permits intra- and inter-query parallelism, Calbimonte’s only supports
inter-query parallelism. DSCEP also has its window management and provides

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 7. Related Work 70

it to all RSP engines connected, enabling the use of RDF triple streams or
RDF graphs streams.

Another difference is the communication paradigm used among the
operators of the infrastructure. DSCEP uses a publish-subscribe communication
which is asynchronous, and once it is deployed, all receivers will get their data
as soon as they are published on the platform. While in the Calbimonte’s
infrastructure, one of their focus was to extend the LDN protocol, which is
based on notifications exchange, to enable working with RDF data streams.
One extension created by Calbimonte’s work for the LDN was to create a new
HTTP method for the consumer. Every time the consumer wants to retrieve
data from a sender, it must first send a message to the sender to determine
how long or how many events will be consumed. Another extension created is
to enable the receiver to use the HTTP push method to check if there is new
data and also to retrieve data directly from the sender.

Strider [3] is another infrastructure for distributed RDF stream processing,
and figure 7.2 shows an overview of it. The left side of figure 7.2 shows the
input data stream, which consists of transforming messages from IoT devices
into an RDF serialization. Apache Kafka is used to handling the incoming
messages from IoT devices and deliver these messages to the Spark Streaming
layer. Strider’s focus is to process input streams from previously connected IoT
devices only and not to receive other data sources that were not previously
added. The schema of the messages of all IoT devices connected to Strider
is already known in advance, and they are previously mapped to ontology
elements, facilitating optimization and stream processing.

Enconding
LayerKB

Query Reformulation

Query 1 Query 2 Query N

Parsing Layer

Optimization Layer

Query Processing LayerQuery 1 Query 2 Query N

Input Data Stream

Convert input stream to RDF

RDF Stream to DataFrame
Converter

Spark Streaming

Kafka

Figure 7.2: Strider’s infrastructure. [3]

Strider uses its query language and translates its queries into Spark
Streaming queries for enhanced parallelization. All knowledge bases used by
all queries are previously encoded with the query so that every data necessary

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 7. Related Work 71

for query execution will be accessible locally. The encoding process of KBs
restrict its expressiveness to a subset of RDFS with only rdfs:subClassOf, rdfs

:subProperty, rdfs:domain and rdfs:range constructors. Strider queries cannot
access external KBs and can not work with more expressive KBs (which uses
more than the RDFS subset defined by Strider), limiting its use as a Semantic
CEP solution.

BigSR [4] is an evolution of Strider which aims to improve some of its
shortcomings. Figure 7.3 shows an overview of the system architecture. The
Data-Feed (left part of the figure) maintains the same characteristics of Strider’s
data input stream ingestion, where data streams always came from IoT sensors
and can be converted to RDF streams. The Computing core (center part of
figure 7.3) contains the main modifications when compared to Strider. Instead
of defining multiple queries, in BigSR, the user writes just one query in the
form of a sequential code and can specify a set of rules to be applied to multiple
sensors.

Figure 7.3: BigSR’s infrastructure. [4]

BigSR enables recursive queries and adds supports for logical axioms and
rules by using the domain-specific language used to write the query. Once the
query is defined, the compiler on BigSR is responsible for making the query plan
and parallelizing its execution. Consequentially, BigSR focuses on parallelizing
the execution and automatically generating the query plan and not on providing
an infrastructure for coordinating the user’s execution of multiple different
queries. BigSR still does not offer access to external background knowledge on
query level.

Table 7.1 gives a comparison of the related work discussed above and
DSCEP. From the table, it is clear that the primary differentiator of DSCEP
is that it was designed and built with Semantic CEP in mind. For the sake
of efficiency (and lower latency), recent solutions for distributed RDF stream
processing tend to restrict external KB access. Although they gain in efficiency,
they lose in expressivity and reasoning capability, which are critical features of
RDF and Semantic Web technologies in general. Recent solutions also restrict
the input RDF stream to optimize its processing. By restricting the input

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 7. Related Work 72

stream, it is possible to map the data stream schema in advance and improve
efficiency. The DSCEP design philosophy goes in the opposite direction: we
propose to reuse existing RSP solutions and to allow unrestricted access to
external KBs; efficiency should be pursued through intra- and inter- query
parallelization, window processing parallelization and by reducing their search
space (by dividing the KBs).

Table 7.1: Related work vs DSCEP.

C
Q
EL

S-
cl
ou

d

[48] C
al
bi
m
on

te
’s

[2] St
rid

er

[3] Bi
gS

R

[4] D
SC

EP

Query intra-parallelism − − + + +
Query inter-parallelism − + + + +
Integrates existing RSPs − + − − +
Allows external KB access − − − − +
Does not restrict the input stream + + − − +
Complies with Semantic CEP − − − − +

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

8
Conclusion

As far as we know, DSCEP is one of the first distributed infrastructures
focused on Semantic CEP, which enables reasoning with data both on the stream
and on external or local KBs (Research question 1 - RQ1). DSCEP infrastructure
enables the construction of distributed Semantic CEP operator networks
using existing RSP engines by providing features to approximate current RSP
solutions to the processing model of SCEP engines (Research questions 2 and
3 - RQ2 and RQ3). For example, by offering window management capabilities,
support to multiple streams, support for streams of RDF-graphs, and support
for processing streams in a compositional manner. Additionally, it enables newly
created RDF stream processors to work with already existing ones.

We show how DSCEP distributed RDF stream processing can speed
up monolithic SPARQL queries by breaking them into parallel subqueries
(Research question 5 - RQ5). We did experiments that showed a considerable
reduction in query processing time when such parallelization is applied.

We also discussed the possibility of partitioning large knowledge bases
among the various subqueries so that not only the search space but the total
KB side considered by each query is reduced (Research question 4 - RQ4). Our
experiments indicate that KB partition can considerably impact the overall
processing time of the system. The mere presence of unrelated triples (not part
of the query search-space) can significantly slow down the query.

DSCEP provides an infrastructure that enables the test and evaluation of
different strategies for query and KB partitioning. It is also possible to test and
evaluate with DSCEP how operator and KB placement can affect the overall
system performance.

Additionally, we showed that it is possible to reduce the processing time
by parallelizing the windows of the same input stream into multiple nodes
containing the same query. Our experiments show that by dividing the windows
of a single stream into two parallel processing nodes, it is possible to reduce
the query processing time by almost half. In the stream processing area, the
partitioning of the stream into windows is essential. Consequently, speeding up
a continuous query by parallelizing the processing of its windows is the most
natural way of partitioning.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Chapter 8. Conclusion 74

These are experiments that focus on specific characteristics to help us
understand the impact of each part of the system on the overall performance.
The system’s final performance in the real world will depend on a set of
additional variables, like CPU and memory capacity, latency among nodes, etc.

Although we used C-SPARQL and our basic implementation of stream
processor as RSP engine in the experiments, DSCEP provides features that
ease the integration of other RSP engines or any other RDF processing system.
These features include stream aggregation and splitting, window management,
RDF triple and RDF graph streams support, and inter-query and intra-query
parallelism support.

We are aware that this is only a first and initial step towards real-time
reasoning over data streams using background knowledge bases, and that
much more theoretical and practical research is required to show its feasibility
for large-scale and distributed applications. For instance, more work is still
needed in SCEP engines because the scalability of current SCEP engines when
processing data from the stream against a knowledge base is still an issue.
This scalability problem may be mitigated by proposing new RDF processing
algorithms and new distributed infrastructures.

Also, one possible line of research is to investigate how to automate
the process of partitioning and distributing KB among the various operators.
Supposing that the KB is flat and lightweight and since queries are often static,
DSCEP could identify the part of the KB used by each operator and partition
the KB accordingly.

The quality of service (QoS) is also an interserting topic to study. For the
developer and the client to better understand the KB and query partitioning,
it would be interesting to research and define the quality of service (QoS)
parameters. The client could determine a set of QoS conditions that can
facilitate or restrict the KB/query partitioning depending on the QoS chosen.
For example, if the client does not want to apply reasoning, the KB partitioning
problem becomes less complex. Some clients just want to use RDF as a format
to integrate different data sources.

Another possible future work is to add to DSCEP the ability to determine
and change operator and database placement on the fly. During runtime, DSCEP
could monitor different infrastructure parameters and test different placements
for operators and databases to optimize for things like overall processing time,
latency, etc.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Bibliography

[1] PEASE, A.. Ontology: A Practical Guide. Articulate Software Press,
2011.

[2] CALBIMONTE, J.-P.. Linked data notifications for rdf streams. In:
Proc. 2017 WSP and WOMoCoE (co-located ISWC), 2017.

[3] REN, X.; CURÉ, O.; KE, L.; LHEZ, J.; BELABBESS, B.; RANDRIAMALALA,
T.; ZHENG, Y.; KEPEKLIAN, G.. Strider: An adaptive, inference-
enabled distributed RDF stream processing engine. Proc. VLDB
Endow., 10(12), 2017.

[4] REN, X.; CURÉ, O.; NAACKE, H.; XIAO, G.. BigSR: Real-time
expressive RDF stream reasoning on modern Big Data platforms.
In: Proc. 2018 IEEE Big Data. IEEE, 2018.

[5] LUCKHAM, D. C.. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, 2001.

[6] DAYARATHNA, M.; PERERA, S.. Recent advancements in event
processing. ACM Comput. Surv., 51(2), 2018.

[7] AGRAWAL, J.; DIAO, Y.; GYLLSTROM, D.; IMMERMAN, N.. Efficient
pattern matching over event streams. In: Proc. 2008 SIGMOD. ACM,
2008.

[8] TEYMOURIAN, K.; PASCHKE, A.. Towards semantic event processing.
In: Proc. 2009 DEBS. ACM, 2009.

[9] SCHAAF, M.; GRIVAS, S. G.; ACKERMANN, D.; DIEKMANN, A.; KOSCHEL,
A.; ASTROVA, I.. Semantic complex event processing. In: Proc. 2012
WSEAS. WSEAS, 2012.

[10] TEYMOURIAN, K.; PASCHKE, A.. Semantic enrichment of event
stream for semantic situation awareness. In: Semantic Web: Implica-
tions for Technologies and Business Practices. Springer, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Bibliography 76

[11] KESKISÄRKKÄ, R.. Towards semantically enabled complex event
processing. Technical Report 1782, Linköping University, 2017.

[12] TEYMOURIAN, K.; ROHDE, M.; PASCHKE, A.. Fusion of background
knowledge and streams of events. In: Proc. 2012 DEBS. ACM, 2012.

[13] SEQUEDA, J. F.; CORCHO, O.. Linked data stream: A position paper.
In: Proc. 2009 SSN09 (co-located ISWC). CEUR-WS.org, 2009.

[14] The W3C RDF Stream Processing Community Group. https:
//www.w3.org/community/rsp/. Accessed May 2021.

[15] BOLLES, A.; GRAWUNDER, M.; JACOBI, J.. Streaming SPARQL:
Extending SPARQL to process data streams. In: The Semantic
Web: Research and Applications. Springer, 2008.

[16] BARBIERI, D. F.; BRAGA, D.; CERI, S.; VALLE, E. D.; GROSSNIKLAUS, M..
Querying RDF streams with C-SPARQL. SIGMOD Record, 39(1),
2010.

[17] CALBIMONTE, J.-P.; CORCHO, O.; GRAY, A. J. G.. Enabling ontology-
based access to streaming data sources. In: Proc. 2010 ISWC. Springer,
2010.

[18] ANICIC, D.; FODOR, P.; RUDOLPH, S.; STOJANOVIC, N.. Ep-sparql: A
unified language for event processing and stream reasoning. In:
Proc. 2011 WWW. ACM, 2011.

[19] LE-PHUOC, D.; DAO-TRAN, M.; PARREIRA, J. X.; HAUSWIRTH, M.. A
native and adaptive approach for unified processing of linked
streams and linked data. In: Proc. 2011 ISWC. Springer, 2011.

[20] KIETZ, J.-U.; SCHARRENBACH, T.; FISCHER, L.; BERNSTEIN, A.;
NGUYEN, K.. TEF-SPARQL: The DDIS query-language for time
annotated event and fact triple-streams. Technical report, University
of Zurich, Department of Informatics, 2013.

[21] GILLANI, S.; ZIMMERMANN, A.; PICARD, G.; LAFOREST, F.. A query
language for semantic complex event processing: Syntax, seman-
tics and implementation. Semantic Web, 10, 2018.

[22] REIS, R. D.; ENDLER, M.; DE ALMEIDA, V. P.; HAEUSLER, E. H.. A soft
real-time stream reasoning service for the internet of things. In:
2019 IEEE 13th International Conference on Semantic Computing (ICSC), p.
166–169, 2019.

https://www.w3.org/community/rsp/
https://www.w3.org/community/rsp/
DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Bibliography 77

[23] DE ALMEIDA, V. P.; BHOWMIK, S.; LIMA, G.; ENDLER, M.; ROTHERMEL,
K.. Dscep: An infrastructure for decentralized semantic complex
event processing. In: 2020 IEEE International Conference on Big Data
(Big Data), p. 391–398, 2020.

[24] ENDLER, M.; E SILVA, F. S.. Past, present and future of the
contextnet iomt middleware. Open Journal of Internet Of Things, 4(1),
2018. Special Issue: Proc. 2018 VLIoT (co-located VLDB).

[25] KOLDEHOFE, B.; MAYER, R.; RAMACHANDRAN, U.; ROTHERMEL, K.;
VÖLZ, M.. Rollback-recovery without checkpoints in distributed
event processing systems. In: Proc. 2013 DEBS. ACM, 2013.

[26] WOOD, D.; LANTHALER, M.; CYGANIAK, R.. RDF 1.1 concepts and
abstract syntax. Recommendation, W3C, 2014.

[27] CAROTHERS, G.; PRUDHOMMEAUX, E.. RDF 1.1 Turtle. Recommen-
dation, W3C, 2014.

[28] HAYES, P.; PATEL-SCHNEIDER, P.. RDF 1.1 semantics. W3C
recommendation, W3C, 2014.

[29] BRICKLEY, D.; GUHA, R.. RDF schema 1.1. W3C recommendation,
W3C, 2014.

[30] W3C-OWL-WG-2012. OWL 2 web ontology language document
overview (second edition). W3C recommendation, W3C, 2012.

[31] ANTONIOU, G.; VAN HARMELEN, F.. Web ontology language: OWL.
In: Handbook on Ontologies. Springer, 2009.

[32] ZOU, L.; ÖZSU, M. T.. Graph-Based RDF Data Management. Data
Science and Engineering, 2(1):56–70, 2017.

[33] DELL’AGLIO, D.; VALLE, E. D.; VAN HARMELEN, F.; BERNSTEIN, A..
Stream reasoning: A survey and outlook. Data Sci., 1, 2017.

[34] KESKISÄRKKÄ, R.; BLOMQVIST, E.. Semantic complex event pro-
cessing for social media monitoring: A survey. In: Proc. 2013 SMILE
(co-located ESWC). CEUR-WS.org, 2013.

[35] TOMMASINI, R.; BONTE, P.. Web stream processing with rsp4j. In:
Proceedings of the 15th ACM International Conference on Distributed and
Event-Based Systems, DEBS ’21, p. 164–167, New York, NY, USA, 2021.
Association for Computing Machinery.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Bibliography 78

[36] EUGSTER, P. T.; FELBER, P. A.; GUERRAOUI, R.; KERMARREC, A.-M..
The many faces of publish/subscribe. ACM Comput. Surv., 35(2),
2003.

[37] FAFALIOS, P.; IOSIFIDIS, V.; NTOUTSI, E.; DIETZE, S.. TweetsKB: A
public and large-scale RDF corpus of annotated tweets. In: Proc.
2018 ESWC. Springer, 2018.

[38] DE OLIVEIRA AVELINO, J.; DE FARIA CORDEIRO, K.; CAVALCANTI, M. C..
An rdf based approach for integrating data at different levels of
abstraction. In: Proceedings of the Brazilian Symposium on Multimedia and
the Web, p. 81–88, New York, NY, USA, 2020. Association for Computing
Machinery.

[39] PAGE, K. R.; LEWIS, D.; WEIGL, D. M.. Meld: A linked data
framework for multimedia access to music digital libraries. In:
2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL), p. 434–435,
2019.

[40] XIONG, H.; PANDEY, G.; STEINBACH, M.; KUMAR, V.. Enhancing data
analysis with noise removal. IEEE Transactions on Knowledge and Data
Engineering, 18(3):304–319, 2006.

[41] QUILITZ, B.; LESER, U.. Querying distributed RDF data sources
with SPARQL. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
5021 LNCS:524–538, 2008.

[42] SAKR, S.; WYLOT, M.; MUTHARAJU, R.; LE PHUOC, D.; FUNDULAKI, I..
Linked data: Storing, querying, and reasoning. Springer International
Publishing, March 2018.

[43] OREN, E.; KOTOULAS, S.; ANADIOTIS, G.; SIEBES, R.; TEN TEIJE, A.;
VAN HARMELEN, F.. Marvin: A platform for large-scale analysis
of semantic web data. In: Proc. of the WebSci09: Society On-Line, 2009.

[44] RAZ, T.; BOTTEN, N. A.. The knowledge base partitioning problem:
Mathematical formulation and heuristic clustering. Data and
Knowledge Engineering, 8(4):329–337, 1992.

[45] KOSSMANN, J.; PAPENBROCK, T.; NAUMANN, F.. Data dependencies
for query optimization: a survey. VLDB Journal, 2021.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Bibliography 79

[46] CAFEZEIRO, I.; VITERBO, J.; RADEMAKER, A.; HAEUSLER, E. H.;
ENDLER, M.. Specifying ubiquitous systems through the algebra
of contextualized ontologies. Knowledge Engineering Review, 29(2):171–
185, 2014.

[47] SAKR, S.; WYLOT, M.; MUTHARAJU, R.; PHUOC, D.; FUNDULAKI, I..
Distributed RDF Query Processing, p. 51–83. Springer International
Publishing, 2018.

[48] LE-PHUOC, D.; QUOC, H. N. M.; VAN, C. L.; HAUSWIRTH, M.. Elastic
and scalable processing of linked stream data in the cloud. In:
Proc. 2013 ISWC. Springer, 2013.

[49] CALBIMONTE, J.-P.. Decentralized messaging for rdf stream
processing on the web. Semantic Web – Interoperability, Usability,
Applicability an IOS Press Journal, 2017.

[50] CAPADISLI, S.; GUY, A.. Linked data notifications. W3C recommenda-
tion, W3C, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

A
Appendix

A.1
Queries

Query Q used on experiment 1 of chapter 5, subsection 5.5 is shown below:

1 REGISTER STREAM TweetStream AS
2 PREFIX ex: <http :// example .org/>
3 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
4 PREFIX rdfs: <http :// www.w3.org /2000/01/ rdf - schema #>
5 PREFIX owl: <https :// www.w3.org /2002/07/ owl#>
6 PREFIX onto: <file :/// Users/vitor/git - repository /KAFKA/scep -

operator / examples />
7 PREFIX onyx: <http :// www.gsi.dit.upm.es/ ontologies /onyx/ns#>
8 PREFIX dc: <http :// purl.org/dc/terms/>
9 PREFIX dbc: <http :// dbpedia .org/page/ Category :>

10 PREFIX dbo: <http :// dbpedia .org/ ontology />
11 PREFIX dbp: <http :// dbpedia .org/ property />
12 PREFIX dbr: <http :// dbpedia .org/ resource />
13 PREFIX sioc: <http :// rdfs.org/sioc/ns#>
14 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
15 PREFIX sioc_t : <http :// rdfs.org/sioc/types#>
16 PREFIX schema : <http :// schema .org/>
17 PREFIX nee: <http :// www.ics.forth.gr/isl/oae/core#>
18 PREFIX wna: <http :// www.gsi.dit.upm.es/ ontologies / wnaffect /ns#>
19 # Get all tweets mentioning both musical artists and TV shows
20 # plus the aggregated sentiment scores, likes, and shares.
21 CONSTRUCT {
22 ?tweet rdf:type sioc:Post .
23 ?tweet sioc:id ?id .
24 ?tweet dc: created ? datetime .
25 ?tweet sioc: has_creator ? postCreator .
26 ?tweet schema : interactionStatistic ? interactionSet .
27 ?tweet schema : interactionStatistic ? interactionSet2 .
28 ? interactionSet rdf:type schema : InteractionCounter .
29 ? interactionSet schema : interactionType schema : LikeAction .
30 ? interactionSet schema : userInteractionCount ? likeCount .
31 ? interactionSet2 rdf:type schema : InteractionCounter .
32 ? interactionSet2 schema : interactionType schema : ShareAction .
33 ? interactionSet2 schema : userInteractionCount ? shareCount .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 81

34 ? artistURI ex: hasPositiveNumber ? countArtPositveTweets .
35 ? artistURI ex: hasNegativeNumber ? countArtNegativeTweets .
36 ? artistURI ex: hasLikeCount ? likesArt .
37 ? artistURI ex: hasShareCount ? sharesArt .
38 ? emotionSet onyx: hasEmotion ? negative .
39 ? negative onyx: hasEmotionCategory wna:negative - emotion .
40 ? negative onyx: hasEmotionIntensity ? negNum .
41 ?tweet schema : mentions ? entity .
42 ? entity nee: hasMatchedURI ? artistURI .
43 ? artistURI dbo:genre ?genre .
44 ? artistURI rdf:type dbo: MusicalArtist .
45 ? entity ex: hasName ?name .
46 ?tweet schema : mentions ? entity2 .
47 ? entity2 nee: hasMatchedURI ?uri .
48 ? entity2 ex: hasName ? nameEntity .
49 ?uri rdf:type dbo: TelevisionShow .
50 ?uri ex: hasPositiveNumber ? countTvPositveTweets .
51 ?uri ex: hasNegativeNumber ? countTvNegativeTweets .
52 ?uri ex: hasLikeCount ? likesTv .
53 ?uri ex: hasShareCount ? sharesTv .
54 ?tweet schema : mentions ? TagClass .
55 ? TagClass rdf:type sioc_t :Tag .
56 ? TagClass rdfs:label ?tag .
57 ?tweet schema : mentions ? UserAcc .
58 ? UserAcc rdf:type sioc: UserAccount .
59 ? UserAcc sioc:name ? userName .
60 }
61 FROM STREAM <.../Tweets> [RANGE TRIPLES 1000]
62 FROM <.../KB.rdf> # (Only for local access.)
63 WHERE {
64 # Q1: Get all tweets mentioning a musical artist.
65 # Q2: Get all tweets mentioning a TV show.
66 ? artistURI rdf:type dbo: MusicalArtist .
67 ? artistURI dbo:genre ?genre .
68 ?tweet rdf:type sioc:Post .
69 ?tweet sioc:id ?id .
70 ?tweet dc: created ? datetime .
71 ?tweet sioc: has_creator ? postCreator .
72 ?tweet onyx: hasEmotionSet ? emotionSet .
73 ?tweet schema : interactionStatistic ? interactionSet .
74 ?tweet schema : interactionStatistic ? interactionSet2 .
75 ? interactionSet rdf:type schema : InteractionCounter .
76 ? interactionSet schema : interactionType schema : LikeAction .
77 ? interactionSet schema : userInteractionCount ? likeCount .
78 ? interactionSet2 rdf:type schema : InteractionCounter .
79 ? interactionSet2 schema : interactionType schema : ShareAction .
80 ? interactionSet2 schema : userInteractionCount ? shareCount .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 82

81 ? emotionSet onyx: hasEmotion ? positive .
82 ? positive onyx: hasEmotionCategory wna:positive - emotion .
83 ? positive onyx: hasEmotionIntensity ? posNum .
84 ? emotionSet onyx: hasEmotion ? negative .
85 ? negative onyx: hasEmotionCategory wna:negative - emotion .
86 ? negative onyx: hasEmotionIntensity ? negNum .
87 ?tweet schema : mentions ? entity .
88 OPTIONAL {? tweet schema : mentions ? entity2 .}
89 ? entity nee: hasMatchedURI ? artistURI .
90 ? entity nee: detectedAs ?name .
91 OPTIONAL {? entity2 nee: hasMatchedURI ?uri . }
92 OPTIONAL {? entity2 nee: detectedAs ? nameEntity . }
93 OPTIONAL { ?uri rdf:type dbo: TelevisionShow . }
94 OPTIONAL { ?uri dbo:genre ? tvShowGenre . }
95 FILTER (? uri != ? artistURI)
96 OPTIONAL { ?tweet schema : mentions ? TagClass }
97 OPTIONAL { ? TagClass rdf:type sioc_t :Tag }
98 OPTIONAL { ? TagClass rdfs:label ?tag }
99 OPTIONAL { ?tweet schema : mentions ? UserAcc }

100 OPTIONAL { ? UserAcc rdf:type sioc: UserAccount }
101 OPTIONAL { ? UserAcc sioc:name ? userName }
102

103 # Q3: Aggregate sentiment score of musical artists.
104 {
105 SELECT ? artistURI ?tweet ? otherURI ?genre (count (? posNum) as ?

countArtPositveTweets)
106 WHERE
107 {
108 ?tweet rdf:type sioc:Post .
109 ?tweet onyx: hasEmotionSet ? emotionSet .
110 ?tweet schema : mentions ? entity .
111 ?tweet schema : mentions ? entityOther .
112 ? entity nee: hasMatchedURI ? artistURI .
113 ? artistURI rdf:type dbo: MusicalArtist .
114 ? artistURI dbo:genre ?genre .
115 ? emotionSet onyx: hasEmotion ? positive .
116 ? positive onyx: hasEmotionCategory wna:positive - emotion .
117 ? positive onyx: hasEmotionIntensity ? posNum .
118 ? entityOther nee: hasMatchedURI ? otherURI .
119 ? otherURI ex:type ex: isNotMusicalArtists .
120

121 FILTER (! contains (str (? posNum), "0.0"))
122 }
123 GROUP BY ? artistURI ?tweet ? otherURI ?genre
124 }
125 {

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 83

126 SELECT ? artistURI2 ? tweet2 ? otherURI2 ? genre2 (count (? negNum)
as ? countArtNegativeTweets)

127 WHERE
128 {
129 ? tweet2 rdf:type sioc:Post .
130 ? tweet2 onyx: hasEmotionSet ? emotionSet2 .
131 ? tweet2 schema : mentions ? entity2 .
132 ? tweet2 schema : mentions ? entityOther2 .
133 ? entity2 nee: hasMatchedURI ? artistURI2 .
134 ? artistURI2 rdf:type dbo: MusicalArtist .
135 ? artistURI2 dbo:genre ? genre2 .
136 ? emotionSet2 onyx: hasEmotion ? negative .
137 ? negative onyx: hasEmotionCategory wna:negative - emotion .
138 ? negative onyx: hasEmotionIntensity ? negNum .
139 ? entityOther2 nee: hasMatchedURI ? otherURI2 .
140 ? otherURI2 ex:type ex: isNotMusicalArtists .
141

142

143 FILTER (! contains (str (? negNum), "0.0"))
144 }
145 GROUP BY ? artistURI2 ? tweet2 ? otherURI2 ? genre2
146 }
147

148 # Q4: Aggregate likes/shares of musical artists.
149 {
150 SELECT ? artistURI ?tweet ?genre (count (? likeCount) as ? likesArt

)
151 WHERE
152 {
153 ?tweet rdf:type sioc:Post .
154 ?tweet schema : mentions ? entity .
155 ? entity nee: hasMatchedURI ? artistURI .
156 ? artistURI rdf:type dbo: MusicalArtist .
157 ? artistURI dbo:genre ?genre .
158 ?tweet schema : interactionStatistic ? interactionSet .
159 ? interactionSet rdf:type schema : InteractionCounter .
160 ? interactionSet schema : interactionType schema : LikeAction .
161 ? interactionSet schema : userInteractionCount ? likeCount .
162 }
163 GROUP BY ? artistURI ?tweet ?genre
164 }
165 {
166 SELECT ? artistURI2 ? tweet2 ? genre2 (count (? shareCount) as ?

sharesArt)
167 WHERE
168 {
169 ? tweet2 rdf:type sioc:Post .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 84

170 ? tweet2 schema : mentions ? entity2 .
171 ? entity2 nee: hasMatchedURI ? artistURI2 .
172 ? artistURI2 rdf:type dbo: MusicalArtist .
173 ? artistURI2 dbo:genre ? genre2 .
174 ? tweet2 schema : interactionStatistic ? interactionSet2 .
175 ? interactionSet2 rdf:type schema : InteractionCounter .
176 ? interactionSet2 schema : interactionType schema : ShareAction

.
177 ? interactionSet2 schema : userInteractionCount ? shareCount .
178 }
179 GROUP BY ? artistURI2 ? tweet2 ? genre2
180 }
181

182 # Q5: Aggregate sentiment score of TV shows.
183 {
184 SELECT ? tvShowURI ?tweet ? otherURI ?genre (count (? posNum) as ?

countTvPositveTweets)
185 WHERE
186 {
187 ?tweet rdf:type sioc:Post .
188 ?tweet onyx: hasEmotionSet ? emotionSet .
189 ?tweet schema : mentions ? entity .
190 ?tweet schema : mentions ? entityOther .
191 ? entity nee: hasMatchedURI ? tvShowURI .
192 ? tvShowURI rdf:type dbo: TelevisionShow .
193 ? tvShowURI dbo:genre ?genre .
194 ? emotionSet onyx: hasEmotion ? positive .
195 ? positive onyx: hasEmotionCategory wna:positive - emotion .
196 ? positive onyx: hasEmotionIntensity ? posNum .
197 ? entityOther nee: hasMatchedURI ? otherURI .
198 ? otherURI ex:type ex: TelevisionShow .
199

200 FILTER (! contains (str (? posNum), "0.0"))
201 }
202 GROUP BY ? tvShowURI ?tweet ? otherURI ?genre
203 }
204 {
205 SELECT ? tvShowURI2 ? tweet2 ? otherURI2 ? genre2 (count (? negNum)

as ? countTvNegativeTweets)
206 WHERE
207 {
208 ? tweet2 rdf:type sioc:Post .
209 ? tweet2 onyx: hasEmotionSet ? emotionSet2 .
210 ? tweet2 schema : mentions ? entity2 .
211 ? tweet2 schema : mentions ? entityOther2 .
212 ? entity2 nee: hasMatchedURI ? tvShowURI2 .
213 ? tvShowURI2 rdf:type dbo: TelevisionShow .

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 85

214 ? tvShowURI2 dbo:genre ? genre2 .
215 ? emotionSet2 onyx: hasEmotion ? negative .
216 ? negative onyx: hasEmotionCategory wna:negative - emotion .
217 ? negative onyx: hasEmotionIntensity ? negNum .
218 ? entityOther2 nee: hasMatchedURI ? otherURI2 .
219 ? otherURI2 ex:type ex: isNotTelevisionShow .
220

221

222 FILTER (! contains (str (? negNum), "0.0"))
223 }
224 GROUP BY ? tvShowURI2 ? tweet2 ? otherURI2 ? genre2
225 }
226

227 # Q6: Aggregate likes/shares of TV shows.
228 {
229 SELECT ? tvShowURI ?tweet ?genre (count (? likeCount) as ? likesTv)
230 WHERE
231 {
232 ?tweet rdf:type sioc:Post .
233 ?tweet schema : mentions ? entity .
234 ? entity nee: hasMatchedURI ? tvShowURI .
235 ? tvShowURI rdf:type dbo: TelevisionShow .
236 ? tvShowURI dbo:genre ?genre .
237 ?tweet schema : interactionStatistic ? interactionSet .
238 ? interactionSet rdf:type schema : InteractionCounter .
239 ? interactionSet schema : interactionType schema : LikeAction .
240 ? interactionSet schema : userInteractionCount ? likeCount .
241 }
242 GROUP BY ? tvShowURI ?tweet ?genre
243 }
244 {
245 SELECT ? tvShowURI2 ? tweet2 ? genre2 (count (? shareCount) as ?

sharesTv)
246 WHERE
247 {
248 ? tweet2 rdf:type sioc:Post .
249 ? tweet2 schema : mentions ? entity2 .
250 ? entity2 nee: hasMatchedURI ? tvShowURI2 .
251 ? tvShowURI2 rdf:type dbo: TelevisionShow .
252 ? tvShowURI2 dbo:genre ? genre2 .
253 ? tweet2 schema : interactionStatistic ? interactionSet2 .
254 ? interactionSet2 rdf:type schema : InteractionCounter .
255 ? interactionSet2 schema : interactionType schema : ShareAction

.
256 ? interactionSet2 schema : userInteractionCount ? shareCount .
257 }
258 GROUP BY ? tvShowURI2 ? tweet2 ? genre2

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

Appendix A. Appendix 86

259 }

DBD
PUC-Rio - Certificação Digital Nº 1712685/CA

	DSCEP: An Infrastructure for Decentralized Semantic Complex Event Processing
	Resumo
	Table of contents
	Introduction
	Motivational Use Case for Semantic CEP
	Research Questions and Contributions

	Background
	RDF, Reasoning, and Knowledge Bases
	RDF Streams
	RDF Stream Processing
	Limitations of current RSP engines

	Semantic CEP

	Conceptual Architecture
	Assumptions
	Infrastructure Modules
	Stream Generator
	Operator
	Client

	Supported query parallelisms

	Implementation
	Apache Kafka and DSCEP
	DSCEP Components
	Publisher Component
	Aggregator, RSP engine and Script Components

	Configuring an example operator topology on DSCEP
	DSCEP Implemented Operators

	Evaluation
	Input RDF Stream
	Knowledge Base
	Access Methods
	Setup
	Experiments

	Discussion and Limitations
	Remarks on dividing one query into multiple smaller queries
	Remarks on dividing a knowledge base
	Conclusion

	Related Work
	Conclusion
	Bibliography
	Appendix
	Queries

