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Abstract—Recommender Systems have become an integral
part of online e-Commerce platforms, driving customer en-
gagement and revenue. Most popular recommender systems
attempt to learn from users’ past engagement data to understand
behavioral traits of users and use that to predict future behavior.
In this work, we present an approach to use causal inference
to learn user-attribute affinities through temporal contexts. We
formulate this objective as a Probabilistic Machine Learning
problem and apply a variational inference based method to
estimate the model parameters. We demonstrate the performance
of the proposed method on the next attribute prediction task on
two real world datasets and show that it outperforms standard
baseline methods.

Index Terms—Recommender Systems, Variational Methods,
Collaborative Filtering, Bayesian Statistics

I. INTRODUCTION

Recommender Systems have traditionally been studied from

the lens of attempting to increase customer engagement by

user modeling from past interactions. These interactions are

often collected in terms of explicit user signals like ratings

and item reviews. Recently, there has been a shift in literature

towards building recommenders by using implicit user signals

like item views, item purchases, etc. Implicit signals, while

useful in increasing the coverage of user signals over items,

can suffer from lack of definition of what constitutes a negative

signal. This has led to a class of problems known as One Class

Collaborative Filtering [1] where techniques like low rank

approximation and negative sampling are used to improve user

understanding by eliminating the ambiguity over the negative

train samples.

A common assumption in Implicit OCCF is that all positive

signals are equal. However, this assumption can fail to cap-

ture the wide ranging spectrum of user interactions in some

domains. Normalization techniques do exist to scale these but

there exists scope for more nuanced values for the positive

samples. With modern data collection capabilities, domain

specific fine tuning of user interactions can be achieved to

* Both authors contributed equally to this work.

further our understanding of abstract concepts about users

(like loyalty, satisfaction with the product, etc). One such

idea was introduced in [2] where the concept of long term

customer satisfaction was defined through a function to track

the continuous implicit signal of the user.

While Implicit OCCF systems are quite effective, an often

cited drawback of these systems for user modeling is their lack

of sensitivity to temporally changing user behavior. The traits

of a user from a few months prior need not necessarily model

their present behavior. It follows logically to try to encode the

temporal aspect of implicit signals into a user understanding

objective and optimize over it. This is particularly relevant in

the subset of attribute-driven collaborative filtering as users

tend to develop repeat patterns on certain attributes of an

item. For example, in the domain of music recommendation,

affinity to artists has been studied, and the recommendation

of artists similar to the ones the user is loyal to has also seen

improvements in results [3]. In this work, we try to further our

understanding of users through the notion of temporal loyalty

and integrate it into the attribute-driven collaborative filtering

framework. We optimize the objective from two sources : the

transaction matrix which is a binary matrix that indicates past

interaction (or lack of thereof) of the involved user with the

item’s attribute as well as a temporal loyalty matrix which

attempts to capture drifting user loyalty over time.

The contributions of this work are as follows: first, we

model temporal loyalty of the users to augment the trans-

action matrix. Then, we demonstrate that optimization using

variational inference over these matrices outperforms plain

collaborative filtering based methods on the next attribute

prediction task, thus leading to a better understanding of user

preferences. The rest of the work is organized as follows:

Section II delves into the literature of related work, Section III

describes our proposed system model, Section IV describes our

experiments on two real world datasets , Section V analyzes

the results, and Section VI concludes the work and describes

possible future directions.
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II. RELATED WORK

The idea of optimizing over two matrices for modeling user

preferences is relatively new. There is active research around

the kind of domain-specific objectives to be optimized for and

the corresponding data that could be augmented. The authors

of [2] consider measures of satisfaction with the purchased

items, such as the amount of time spent playing a game

or the number of times a particular artist was heard. Other

works focus on tasks like using dwell time in session-based

recommendations [4], [5] or to enrich the user-item matrix

[6], leveraging implicit signals such as internet browsing logs

[7], etc. On the other hand, several works exist that leverage

the binary transaction matrix to tackle the well-known top-

k recommendation problem in large-scale datasets, such as

those dealing with memory-based collaborative filtering for

explicit feedback [8], item-based collaborative filtering to

address scalability concerns [9], using stratified SGD to deal

with large-scale matrix factorization [10], etc. However, these

rely solely on explicit user signals and fail to incorporate any

temporal signals.

In our work, we use the temporal loyalty to an item

attribute as the second matrix, thus leveraging both explicit

and temporal signals to set up an optimization over the two

matrices. The use of loyalty is motivated by works such as

[11], where the authors model consumers’ repeat purchase

behavior, as well as our experience in the domain of e-

Commerce and grocery. Attribute-based collaborative filtering

has been explored before in works such as [12] where the

authors use categorical attributes to improve recommendation

through multi-task learning or hierarchical classification, and

[13] which deals with attribute-aware collaborative filtering.

Our work captures the changing affinity of the users to these

attributes, and thus could be used as a first stage in hierarchical

classification algorithms: to predict which brands the users will

buy next, before recommending particular items of that brand.

In terms of the application of variational inference and

Bayesian statistics to solve collaborative filtering problems,

most works focus on the use of Variational Auto Encoders.

For example, [14] introduces a generative model with a multi-

nomial likelihood and uses Bayesian inference for parameter

estimation, [15] uses VAE to alleviate the problem of poor

robustness and over-fitting caused by large-scale data, etc.

Other works using Bayesian inference, such as [16], which

presents a scalable inference for Variational Bayesian matrix

factorization with side information, or [17], which proposes a

distributed memo-free variational inference method for large-

scale matrix factorization problems, address some of the well-

known shortcomings of the same in recommender systems.

The experimental framework that we have adopted is called

the Box’s Loop [18], which is used to uncover patterns from

the conditional distribution of a latent variable model and

use them to model the data and make predictions. This was

well suited for our problem, since we assume a particular

structure of the latent variables and use that to explain the

data, and then use those variables for future recommendations.

Related works in the sub-field of latent variable modeling for

recommender systems include works such as [19], which uses

blind regression to complete the partial user-item interaction

matrix and uses the features of the users and items as the latent

variables, and [20], which presents a Bayesian latent variable

model for rating prediction that models ratings over each

user’s latent interests and each item’s latent topics. Embedding

based approaches to model the users and items have also

been tried, in works such as [21], which replaces the inner

product between user and item latent features used in classic

matrix factorization by a neural architecture, and [22], which

couples deep feature learning and deep interaction modeling

with a rating matrix to improve recommendation performance.

Our work fits the optimization task into this framework and

generates user and item attribute embeddings that explain

the data well by applying variational inference, and these

user representations thus obtained help us develop a better

understanding of the user preferences.

III. SYSTEM MODEL

A. The Top-k Attribute Recommendation Problem

The classic top-k recommendation problem can be defined

as follows : given a catalog of items C containing items

i1, i2, · · · , in and an item a ∈ C, henceforth referred to

as the anchor item, finding a ranked list of distinct items

i1, i2, · · · , ik ∈ C to be offered alongside the anchor item,

such that the user of an e-Commerce platform is most likely

to engage with them. This engagement of users can be defined

by a variety of metrics (in our case, the future purchase of the

item).

A sub-problem of the top-k recommendation problem is the

attribute recommendation problem. Rather than the recommen-

dation of the items to cause the next most likely engagement,

the task is to predict on the attribute. For instance, in the space

of e-Commerce, the attribute of interest could be the brand of

the item. Given a user u, the task would be to predict the

k most likely brands that they’re likely to engage with. At-

tribute recommendation is a slightly more well defined space

as, particularly with certain attributes like brands, users are

very likely to develop behaviors like loyalty towards certain

brands. While in the item space, repurchasing of an item is a

commonly seen behavior, especially in domains like grocery,

the re-engagement with attributes is a much more commonly

exhibited behavior in a wide variety of recommender system

domains (songs by the same artist, books by the same author,

movies starring the same actor) and solving it can hence

involve harvesting this richer behavioral signal.

B. The Temporal Loyalty Matrix

Most recommender systems dealing with grocery data fo-

cus on the binary transaction matrix. Given a set of users



u1, u2, · · · , um and a set of items i1, i2, · · · , in, the (p, q)th

element of the transaction matrix is 1 if up has purchased iq
within the training window, and 0 otherwise. Oftentimes, user-

based collaborative filtering algorithms that use such matrices

fail to pick up important signals such as a user’s loyalty

to a brand, how their behavior changes dynamically with

time, etc. In this work, we try to capture those signals by

optimizing over a temporal loyalty matrix, L, in addition

to the binary transaction matrix, T. Since we are dealing

with an attribute recommendation problem, consider a set

of users u1, u2, · · · , um and an associated set of attribute

values v1, v2, · · · , vn for a particular attribute (say, brand).

The (p, q)th element of the transaction matrix,

Tpq =























1,
up has bought an item with at-

tribute value vq at least once in the

training window

0, otherwise

(1)

The (p, q)th element of the temporal loyalty matrix is the time-

decayed sum of all the purchases of attribute value vq made

by user up, that is,

Lpq =































tk
∑

t=t1

2
t−tstart

tend−tstart ,

up has bought an item with

attribute value vq k(≥ 1)
times in the training win-

dow

0, otherwise

(2)

The variables tstart and tend in Equation 2 represent the

start and end times of the training window, and t1, t2, ..., tk
are the time instances when the user purchased items with

that attribute value. For instance, a particular brand of beer

purchased over a year ago should not get the same weight

as the one purchased a week ago as user preferences might

have changed. We further show that this framework works

well for recommender systems that have some notion of

loyalty/preference, such as readers’ predilection for certain

authors, etc. This optimization [2] balances data from both

the transaction matrix and the temporal loyalty matrix.

C. The Bayesian Framework

Probabilistic Machine Learning (PML) is a sub-field of

Machine Learning where domain knowledge and assumptions

about the hidden structure of data are leveraged to explain the

observed data. PML models large, interesting, and intercon-

nected datasets at scale.

The iterative probabilistic pipeline, coined Box’s Loop by

[18] lists the steps of modeling a PML pipeline as positing

a model with assumptions about the hidden structure of data,

inferring the hidden variables, and criticizing the model (the

evaluation step). If the evaluation does not meet the standard

required, the values of the hidden variables are revised to better

explain the data at hand.

The structure of collaborative filtering by Matrix Factoriza-

tion effectively lends itself to Box’s Loop. The entries of the

transaction matrix and the temporal loyalty matrix constitute

the observed data. The classic matrix factorization problem

involves decomposition of a given Matrix M into latent factor

matrices U and V along with their respective biases Bu and

Bv. The matrices U and V are known as embedding matrices

in the setting of collaborative filtering. The learning task

then becomes to learn the embeddings and biases such that

their probability, given the observed transaction and temporal

loyalty matrices is maximized. This is also known as the

posterior distribution.

D. The Posterior Distribution

We chose to model both the matrices, T and L, as well as

the priors with normal distributions. This is logical because the

values in the L matrix are continuous and distributions from

the exponential family have shown good results in literature

[2]. Also, the normal family of distributions is conjugate to

itself (or self-conjugate) with respect to a normal likelihood

function, and conjugacy has desirable properties, such as

yielding a closed-form expression for the posterior.

Fig. 1 is a probabilistic graphical representation of our latent

variable model. It shows how the random variables depend on

each other in our generative process. Thus, it helps us form the

posterior by connecting the assumptions that we made about

the data to the model. The components of this graphical model

are the ones used in standard graphical models in the field of

machine learning, such as [18]: the nodes represent random

variables, the edges represent a dependence between the nodes

that they connect, and the plates denote replication. Each entry

in the transaction matrix, Tpq, and the temporal loyalty matrix,

Lpq, depends only on its local variables up, bup, vq, and bvq,

which are the embedding and the bias vectors of the pth user,

and the embedding and the bias vectors of the qth attribute

respectively, and the corresponding global variables (κ and

ψ), as is the case with conditionally conjugate models. κ and

ψ are the scale and the location parameters, which allow the

distributions of T and L to have different dynamic ranges

and be centered around different means, despite sharing some

parameters which model the positive correlation between the

transactions and the temporal loyalty scores, as seen in works

like [2].

As mentioned earlier, all these variables have normal priors

with mean 0 (except the scale parameters, which have a mean

of 1) and a variance that depends on a hyperparameter, denoted

by α with a subscript corresponding to the variable, as seen

in equation 3. Utilising a modeling strategy similar to [2], we

write out the posterior in equation 3 as being proportional to

the product of the likelihoods and the priors. H is the set of

all hyperparameters: those represented by solid black circles

in Figure 1, γ, and β. γ allows us to control how much



importance we give to the two likelihoods relative to each

other, and β is used to model the variance. The matrices T

and L constitute the observed data, represented by grey circles

in Fig. 1. θ is the set of latent variables: the user and item

embeddings and biases, and the location and scale parameters,

represented by white circles in Fig. 1. Each user and item

vector is of dimension d.

P (θ|T,L,H) ∝ P (T, L|θ,H)P (θ|H)

=
∏

(p,q,Tpq)∈T

P (Tpq|up, vq, bup, bvq, κt, ψt, H)

∏

(p,q,Lpq)∈L

P (Lpq|up, vq, bup, bvq, κl, ψl, H)

m
∏

p=1

[P (up|αu)P (bup|αbu)]

n
∏

q=1

[P (vq|αv)P (bvq|αbv)]

P (κt|ακt
)P (ψt|αψt

)P (κl|ακl
)P (ψt|αψl

)

=
∏

(p,q,Tpq)∈T

N (κt(u
T
p vq + bup + bvq) + ψt, (γβ)

−1)

∏

(p,q,Lpq)∈L

N (κl(u
T
p vq + bup + bvq) + ψl, ((1− γ)β)−1)

m
∏

p=1

[N (0, α−1u Id)N (0, α−1bu )]

n
∏

q=1

[N (0, α−1v Id)N (0, α−1bv )]

N (1, α−1κt
)N (0, α−1ψt

)N (1, α−1κl
)N (0, α−1ψl

)

(3)

E. Variational Inference

The posterior P (θ|T, L,H) from Equation 3 solves for the

family of high dimensional latent variables θ, given the initial

prior distributions over the latent variables and a likelihood

function P (T, L|θ,H) that we posit about the model. The

direct application of Bayes’ theorem has the problem of an

intractable high dimensional integration in the denominator

and hence an approximate Bayesian inference of the posterior

is carried out. One of the most popular methods for approx-

imate Bayesian inference is the Markov Chain Monte Carlo

(MCMC). However, despite the high accuracy of MCMC, the

scale of our problem means that it is virtually impossible to

use due to the computational time involved.

Instead, a scalable approach is to treat the posterior ap-

proximation as an optimization problem through variational

inference [23], [24]. The objective of variational inference is

to find the variational distribution which is a proxy-posterior

q parametrized by ν, such that the variational distribution

is least-divergent from the true posterior p. We adopted the

widely used Kullback–Leibler divergence (KL Divergence) as

the divergence metric between the two distributions. The KL

divergence term is an intractable one and the equivalent of

minimizing the KL-Divergence is the maximization of the

Evidence Lower Bound (ELBO) [25]. The ELBO, L (ν), is

described in equation 4.

L (ν) = Eq[log(p(T, L|θ))]−KL(q(θ; ν) ‖ p(θ)) (4)

The terms here provide the classical Bayesian trade off

between the log likelihood of the data and the prior over

the parameters of the model. That is, the first term tries to

maximize the likelihood of the observed transactions and the

temporal loyalty scores, given the embedding vectors. The

second term is the KL divergence between the the variational

distribution and the prior over the embedding vectors. The

second term effectively acts as a regularizer as it tries to

minimize the divergence from the prior and hence prevents

the optimizer from converging to the maximum likelihood

estimate.

Stochastic gradient descent is the commonly used approach

to optimize the ELBO objective. Some works [2] also use

coordinate descent and other variants of gradient descent

to compute the gradients and update the parameters. The

gradients can be obtained by rewriting equation 4 in terms of

the complete log likelihood and then computing the gradient,

as shown in equation 5.

∇νL (ν) = ∇νEq[log(p(T, L, θ))− log(q(θ; ν))] (5)

In this work, we use score function gradient estimators [26],

[27], by rewriting equation 5 as

∇νL (ν) = Eq[∇ν log(q(θ; ν))(log(p(T, L, θ))−log(q(θ; ν)))]
(6)

F. Prediction function

Once the variational distribution is approximated, predic-

tions are made from the posterior predictive function. The

posterior predictive function uses the likelihood function from

Equation 3, P (T, L|θ,H) to generate the predictions. After

the estimation of the latent variables θ, the values of the

transaction entry Tpq and temporal loyalty entry Lpq for

user p and attribute q are estimated from the distributions

N (κt(u
T
p vq + bup + bvq) + ψt, (γβ)

−1) and N (κl(u
T
p vq +

bup + bvq) + ψl, ((1 − γ)β)−1) respectively. Once the two

values are determined, a simple addition of the two values

gives the overall score for that particular user-attribute pair.

IV. EXPERIMENTS

A. Datasets and preprocessing

We demonstrate our results on two datasets from different

domains. The first is a private dataset from a large-scale

e-Commerce company. We collected six months’ worth of

grocery transaction data. From the transaction metadata, the

customer id, the brand, the transaction date, and the event

epoch (exact epoch at which the transaction happened) were



Fig. 1: A graphical representation of the proposed latent

variable model

chosen. Since we are trying to understand and model loyalty,

we decided to filter out customers that didn’t have more than

a threshold number of items in their basket, thus keeping

only engaged customers in the dataset. From experience, we

have seen that there are a few large merchants and clients,

such as grocery stores, that place bulk orders. These would

not be representative of a single customer and hence we

decided to filter out those customers that had more than an

upper threshold of transactions as well. We used the first

five months of data as our train set and the final month

as the test set. We also filtered out customers that weren’t

present in both the train and the test set, since we would

not have embeddings for customers we have not seen. The

other problem that both the baseline models and our model

suffered from was the introduction of new brands during the

test period, which happens due to change in consumer demand,

seasonality effects, etc. We removed the brands not present in

both the train and the test sets as well. This resulted in a

dataset containing 180,000 customers and 11,200 brands.

The second dataset is the publicly available Goodreads Book

Reviews dataset. This contains ratings, reviews, and a lot of

other attributes of the items and the users, such as user-book

interactions, metadata of the books, etc., collected in 2017 by

scraping users’ public shelves on Goodreads [28], [29]. The

group that collected the dataset recommends using a subset

(by genre) of the dataset, as the entire dataset is really large.

In keeping with our theme of loyalty, we decided to go ahead

with the ‘fantasy and paranormal’ genre. Here, we are trying

to assess readers’ loyalty to authors. And this genre had a

high density of such interactions, as was expected due to the

presence of sequels, authors that write multiple books with

similar themes, etc. The relevant columns in this case were

author, user id, and the time when the book was marked as

read. Even though we had information about the time the book

was shelved, we felt that that would be a weaker (albeit denser)

signal, similar to adding an item to cart in the grocery world,

and hence decided to go ahead with the time the book was

marked ‘read’, which is analogous to a transaction. We again

filtered the data in a fashion similar to the one described for

the first dataset, and ended up with a 150,000 users and 11,400

authors. One thing to note is that the interactions in this dataset

weren’t as dense as the first dataset.

B. Comparison methods

To compare our model, we chose the standard baselines in

literature [28] : Popularity Model (Pop) and classic Matrix

Factorization model (MF). The popularity model captures the

popularity of attributes across each customer and recommends

the most popular attributes for them.

The second model is a standard implicit OCCF Matrix

Factorization. The observed transaction data is used to learn

latent factors for the users and the attributes and to predict

user-attribute interactions. This was done using the standard

Alternating Least Squares (ALS) optimization.

We studied these under two settings : the first setting is a

more realistic setting with the notion of explore-exploit (EE)

built into the recommender system. Most real life recom-

menders employ a strategy to diversify their recommendations

in the hope of increasing exposure of items which do not have

much user interaction. The second setting removes the explore-

exploit strategy from the two baselines to give a sterner test

to our model. We also included a weighting to favor attributes

that the user has prior interactions with. The baseline models

and our model are compared across the metrics that are

described in subsection IV-C.

C. Evaluation metrics

The ground truth dataset was the list of brands bought by

the users in the grocery dataset or the list of authors whose

books were read by the readers in the Goodreads dataset,

in the test window. The predictions from the model were

a list of brands/authors, ordered by the probability that the

given user would buy/read the given brand/author in the test

window. We compare our model with the baseline models on

five different evaluation metrics, most of them well-known in

the collaborative filtering literature [30]–[34].

1) NDCG@k: As is known, DCG works on the idea that

highly relevant entries appearing lower in the predictions list

returned by the models should be penalized. In our case, the

relevance for a brand/author is 1 if it appears in the top k

predictions for a user and is present in the ground truth, and 0

otherwise. Ideal DCG (IDCG) is used to normalize this score

to account for the varying lengths of the recommendation lists

returned for different users. Finally, we take a mean of the

NDCG values over all the queries, which are the users in the

test set, to get a measure of the performance. In the following

formulae, reli denotes the relevance of the entry at the ith

position in the predictions list returned by the models.

DCGk =

k
∑

i=1

reli

log2(i + 1)
, NDCGk =

DCGk

IDCGk



2) MAP@k: The area under the precision-recall curve,

which is obtained by plotting the precision and recall at

every position in a ranked list of predictions, is called the

average precision. Mean of the average precision scores over

a set of queries i.e. users, gives the MAP. In the following

formulae, AP is the average precision, MAP is the mean

average precision, P(i) is the precision at position i, ∆r(i) is

the change in recall from position i-1 to i, #rel is the total

number of relevant brands/authors for that user (up to k), and

|U | is the number of users in the test set.

AP =

k
∑

i=1

P (i)∆r(i) =

∑k

i=1 P (i)reli
#rel

,MAP =

∑|U|
j=1 APj

|U |

3) Hit Rate@k: Essentially the true positive rate, where a

true positive is a brand/author predicted in the top k that is

present in the ground truth for that query (user). We take a

mean of the hit rate values over all the queries (users) and

report that in section V.

Hit rate =
Number of True Positives

Number of Positives

4) MRR@k: The reciprocal rank of a query response, i.e.

predictions for a user, is the inverse of the position of the first

item in the predictions list that is present in the ground truth for

that query. Here, we consider only the first k predictions, and

average the reciprocal ranks over all the users. In the following

formula, posi represents the position of the first prediction for

the ith user that is present in the ground truth list for that user.

MRR =
1

|U |

|U|
∑

i=1

1

posi

5) Limited AUC@k: The ROC curve is a plot of the true

positive rate against the false positive rate at various threshold

values, and the general objective in recommender systems is

to maximize the area under the ROC curve. But, in most such

settings, the entries at the top of a list are more impactful than

those at the bottom, but AUC is equally affected by swaps

at different places in the returned list. To address this, we

use limited AUC [35], which basically is the area under the

part of the curve formed by the top k recommendations. This

assumes that all the other relevant recommendations (apart

from the top k) are distributed uniformly over the rest of

the ranking list until all entries are retrieved. Thus, a straight

line is drawn between the end point of the curve formed by

these k recommendations and (1,1), the upper-right point of

any ROC curve, and the area thus obtained is measured. This

addresses some of the issues mentioned before, since swaps

below the top k don’t affect the AUC. This also has a few

other good properties, such as a top-k list that contains more

relevant entries will yield a higher AUC score, with the order

mattering if the length of the list is close to the total number

of brands/authors. We take a mean over all the queries (users)

to get a mean LAUC.

D. Implementation details

To generate the baselines, we used Turicreate [36], an open

source toolkit for generating core machine learning models

including recommenders. For the popularity recommender, we

used the popularity recommender class and for the Matrix

Factorization based model, we utilized the factorization rec-

ommender class. K-Fold cross validation was performed on

both classes of models using the in-built capability to tune the

models and finally the best models of each were selected for

comparison.

For our model, we wrote a custom training loop and used

Edward2 [37], [38] to do black-box variational inference [26].

Edward2 is a low-level language for specifying probabilistic

models as programs and performing computations. We fed

the models/distributions as functions whose inputs were the

random variables that we were conditioning on and the outputs

were the random variables that the probabilistic program

was over. In the training loop, we first computed the log-

likelihood using samples from the variational distribution. We

used Edward’s and TensorFlow’s tracing functionalities (in

steps 8 and 12, Algorithm 1) to record the model’s computa-

tions for automatic differentiation. We then computed the KL

divergence between the variational distribution and the prior

distribution using the attributes of TensorFlow’s distributions,

and combined that with the log likelihood obtained from

the posterior predictive function to get the ELBO. We tried

different optimizers, learning schedules, and hyperparameter

settings. A pseudocode of Edward’s custom training loop

adapted to our problem setting has been presented in Al-

gorithm 1. This loop is called a certain number of times

(to ensure convergence) for each batch in each epoch and

the values of the variational parameters used to build the

variational distribution (step 2, algorithm 1) are the updated

values (step 13, algorithm 1) from the previous run.

Algorithm 1 Variational Inference Training Loop

INPUT: Batch from Transaction matrix Tb , batch from Temporal Loyalty matrix Lb,
Transaction matrix T, Temporal Loyalty matrix L, set of hyperparameters H, set of
latent variables θ, set of prior variables {u, v, bu, bv, κt, ψt, κl, ψl}

1: procedure CUSTOM TRAINING LOOP(Tb , Lb)
2: variational family, trainable parameters ← Build variational distribution
3: qu, qv, qbu, qbv, qκt, qψt, qκl, qψl ← Sample posterior variables from the

variational family
4: PPT , PPL ← Obtain posterior predictive functions, P (T |θ,H) and
P (L|θ,H), from equation 3 by setting prior variables to the sample posterior values

5: LLTb
, LLLb

← Compute the log likelihood of Tb and Lb from PPT and
PPL respectively

6: Initialize KL ← 0
7: for prior variable, variational variable in [(u, qu), (v, qv), (bu, qbu), (bv, qbv),

(κt, qκt), (ψt , qψr ),(κs, qκs), (ψs, qψs)] do

8: KL ← KL + KL divergence between the distributions of the varia-
tional variable and the prior variable

9: end for

10: ELBO← Compute ELBO using KL, LLTb
, and LLLb

from equation 4
11: Loss← -ELBO
12: Get the gradients using the loss and the trainable parameters obtained
13: Update the parameter values
14: end procedure



Metric

Method

Pop

+ EE

MF

+ EE
Pop MF

VI-

MF

NDCG

@5 0.047 0.054 0.144 0.210 0.212
@10 0.031 0.036 0.096 0.140 0.141
@15 0.026 0.031 0.081 0.118 0.120
@20 0.025 0.028 0.077 0.112 0.114

MAP

@5 0.016 0.021 0.049 0.098 0.099
@10 0.008 0.011 0.026 0.051 0.053
@15 0.006 0.008 0.020 0.040 0.040
@20 0.006 0.007 0.018 0.037 0.038

HR

@5 0.064 0.064 0.197 0.196 0.198
@10 0.033 0.033 0.101 0.101 0.102
@15 0.024 0.025 0.075 0.075 0.076
@20 0.022 0.022 0.067 0.066 0.068

MRR

@5 0.080 0.108 0.246 0.491 0.492
@10 0.080 0.108 0.246 0.491 0.492
@15 0.080 0.108 0.246 0.491 0.492
@20 0.080 0.108 0.246 0.491 0.492

LAUC

@5 0.532 0.532 0.598 0.598 0.599
@10 0.516 0.516 0.551 0.551 0.552
@15 0.512 0.512 0.539 0.540 0.540
@20 0.511 0.511 0.536 0.537 0.537

Table I: Comparison of evaluation metrics across models on

e-Commerce grocery data

Metric

Method

Pop

+ EE

MF

+ EE
Pop MF

VI-

MF

NDCG

@5 0.020 0.027 0.047 0.068 0.069
@10 0.014 0.019 0.034 0.049 0.051
@15 0.012 0.016 0.030 0.043 0.044
@20 0.010 0.015 0.028 0.040 0.041

MAP

@5 0.007 0.013 0.017 0.033 0.034
@10 0.004 0.008 0.011 0.021 0.022
@15 0.003 0.006 0.009 0.018 0.018
@20 0.002 0.005 0.008 0.016 0.017

HR

@5 0.031 0.028 0.070 0.069 0.071
@10 0.018 0.017 0.041 0.041 0.042
@15 0.013 0.014 0.031 0.031 0.033
@20 0.011 0.012 0.026 0.027 0.028

MRR

@5 0.033 0.061 0.075 0.148 0.150
@10 0.034 0.061 0.075 0.148 0.151
@15 0.034 0.061 0.075 0.149 0.151
@20 0.034 0.061 0.076 0.149 0.152

LAUC

@5 0.514 0.512 0.533 0.533 0.534
@10 0.508 0.507 0.521 0.521 0.522
@15 0.506 0.505 0.517 0.517 0.518
@20 0.505 0.505 0.516 0.516 0.516

Table II: Comparison of evaluation metrics across models on

Goodreads data

V. RESULTS AND ANALYSIS

The results on the e-Commerce data and the open source

Goodreads data have been presented in Table I and Table

II respectively. The metrics for our model are shown in

the final column, titled VI-MF (Variational Inference Matrix

Factorization).

The first two baselines, with the explore-exploit strategy,

suffer from trading off accuracy for diversity and hence do not

perform as well as the other models. In both settings, with and

without explore-exploit, MF-based models outperform the pop

models because the pop models simply recommend attributes

of the items that the user has bought most in the past whereas

the latent factors capture user affinities well as they learn better

representations from the interactions.

Our model shows a clear 1 to 3 percent increase in all

metrics across the various ranks as compared to the best

performing baseline model (that is, the classic Matrix Factor-

ization) in both the e-Commerce grocery dataset as well as the

Goodreads dataset. The size and scale of the datasets mean that

these gains are significant. Quantitatively, in the e-Commerce

setting, for a business with tens of billions of dollars in

revenue, a 1 to 3 percent increase translates to hundreds of

millions of dollars. This indicates that incorporating temporal

loyalty leads to a better understanding of the user preferences,

thus having an effect on the prediction of user behavior and

subsequently revenue.

Overall, the metrics on the e-Commerce grocery data are

higher than the ones on the Goodreads data. This can be

explained by the higher density of grocery data leading to

stronger user affinities to attributes. Interestingly, the trends

across the models seem to hold across the domains of grocery

and ‘Fantasy and Paranormal’ genre. In other words, the notion

of brand loyalty in grocery seems similar to the notion of

author loyalty in the ‘Fantasy and Paranormal’ genre of books.

VI. CONCLUSION AND FUTURE WORK

In this work, we leverage a customer’s temporal loyalty

to an item attribute in addition to the engagement behavior

to model their preferences and subsequently tackle the top-k

attribute recommendation problem. We model this as an opti-

mization problem over two matrices and use the Box’s Loop

framework and variational inference to estimate the parameter

values and train the user embeddings that best explain the

observed explicit and temporal signals. We demonstrate the

effectiveness of the user embeddings learnt by showing that

the proposed approach outperforms standard baselines for this

task on a private e-Commerce grocery dataset as well as the

publicly available Goodreads dataset, which also supports the

hypothesis that capturing a customer’s temporally changing

interests can lead to better recommendations.

In terms of future directions, one could explore other ways

to come up with the loyalty scores in the Temporal Loyalty

matrix, L. Some works, such as [39], also focus on enriching

the transaction matrix, T, to address issues that arise due to

sparsity; we plan to investigate coupling those with our current

approach. Another direction to explore would be to model the

priors and the likelihoods with other distributions, informed by

domain knowledge and the type of data one is dealing with.



VII. ABBREVIATIONS AND ACRONYMS

ALS: Alternating Least Squares

AP: Average Precision

DCG: Discounted Cumulative Gain

EE: Explore-Exploit

ELBO: Evidence Lower Bound

HR: Hit-Rate

IDCG: Ideal Discounted Cumulative Gain

KL: Kullback-Leibler Divergence

LAUC: Limited Area Under the Curve

MAP: Mean Average Precision

MF: Matrix Factorization

MCMC: Markov Chain Monte Carlo

MRR : Mean Reciprocal Rank

NDCG: Normalized Discounted Cumulative Gain

OCCF: One Class Collaborative Filtering

PML: Probabilistic Machine Learning

ROC: Receiver Operating Characteristic

SGD: Stochastic Gradient Descent

VAE: Variational Auto Encoder

VI : Variational Inference
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