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Abstract—Community search is a well-studied problem which,
given a static graph and a query set of vertices, requires to find
a cohesive (or dense) subgraph containing the query vertices. In
this paper we study the problem of community search in temporal
dynamic networks. We adapt to the temporal setting the notion of
network inefficiency which is based on the pairwise shortest-path
distance among all the vertices in a solution. For this purpose
we define the notion of shortest-fastest-path distance: a linear
combination of the temporal and spatial dimensions governed
by a user-defined parameter. We thus define the MINIMUM
TEMPORAL-INEFFICIENCY SUBGRAPH problem and show that
it is NP-hard. We develop an algorithm which exploits a careful
transformation of the temporal network to a static directed and
weighted graph, and some recent approximation algorithm for
finding the minimum Directed Steiner Tree. We finally generalize
our framework to the streaming setting in which new snapshots
of the temporal graph keep arriving continuously and our goal is
to produce a community search solution for the temporal graph
corresponding to a sliding time window.

I. INTRODUCTION

Community search, i.e., the problem of extracting cohesive
subgraphs around a given set of vertices of interest, is a
fundamental graph mining primitive which has received a great
deal of attention [4], [7]. If extracted from dynamic graphs,
these substructures can help understanding the dynamics of the
relationships that exist among these vertices. For instance, in
a research collaboration network, these structure can describe
the dynamics of collaborations between a given group of
researchers along time. As another example, the interactome,
which is the set of molecular interactions in a cell, can be
modeled as a network, in which the vertices are proteins and
through their connections can perform biological functions.
However, these connections are not constantly active, and
therefore a dynamic analysis is more appropriate for under-
standing properly this complex network [10]. Other application
examples include events detection, friendship recommenda-
tion, control of infectious disease, semantic expansion, just
to mention a few. However, surprisingly, little attention has
been devoted to the community search problem in temporal
networks. In this paper we propose a framework for adaptive
community search in dynamic temporal networks based on a
model, defined for static graphs, by Ruchansky et al. [12].
Given a static graph G = (V,E) and a set of query vertices
Q ⊆ V , the problem defined in [12] requires to find a set
of vertices S ⊇ Q such that its induced subgraph minimize
network inefficiency, a measure (formally defined in the next
section) based on the pairwise shortest-path distance among

all the vertices in the subgraph. The characterizing features
of the proposal by Ruchansky et al. are that (i) it is totally
parameterless and (ii) solutions can be disconnected: this way
it allows to detect outliers in the query set, by letting such
vertices disconnected from the others in the produced solution
subgraph. The latter is an important feature, as community
search is an explorative data analysis task, in which we are
given some query vertices which are suspected to be inter-
esting. However, real-world query-sets are noisy and likely to
contain some vertices that are erroneously suspected of being
related. This feature is even more important in the temporal
setting, in which vertices originally related might become
unrelated along time due to concept drift.

In order to generalize the notion of network inefficiency to
temporal networks, the first step is to generalize the notion
of shortest-path distance. As our goal is to use distances as
a measure of cohesiveness, it is important to consider how
the vertices connect through paths both in space (network
structure) and in time (network evolution). For this purpose we
adopt the notion of shortest-fastest-path distance [13]: a linear
combination of the temporal and spatial dimensions governed
by a user-defined parameter α ∈ [0, 1]. This definition general-
izes both shortest and fastest path: by setting α = 1 we obtain
shortest paths, while setting α = 0 we obtain fastest paths.
In general, depending on the application at hand, one can
tune the parameter α to give more importance to the temporal
dimension (α < 0.5) or the spatial one (α > 0.5).

The next step is to define Temporal Network Inefficiency
for which we have to keep in consideration that, due to
the intrinsic directionality of time, distances are no longer
symmetric like in static undirected graphs. We finally can
introduce the main problem studied in this paper which is
the problem of extracting the minimum temporal-inefficiency
subgraph problem from a temporal graph. We show that our
problem is a genuine generalization of that Ruchansky et
al. [12]: in fact, for α = 1 and in the case that the temporal
graph is made of one single snapshot (it is thus not temporal),
then the two problems exactly correspond.

Our proposed algorithm is structured in three phases. In
the first phase the temporal graph is transformed in a static
directed and weighted graph, by flattening all the temporal
snapshots in a unique static graph and by linking the various
replicas of the same vertex in different timestamps, and by
appropriately weighting the links. We show that the resulting
transformed graph is such that the shortest-path distance be-
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tween two vertices on this graph, corresponds to the shortest-
fastest-path distance between the same vertices in the original
temporal network. This property allows us to compute our
solutions on this transformed graph. In the second phase we
look for a connector for the query vertices in Q, i.e., a set
of vertices S ⊇ Q such that in the induced subgraph all the
vertices in Q are connected, to the maximum possible extent.
For this task we extract minimum Directed Steiner Trees from
transformed graph. In the third phase, we greedily reduce the
solution S, returning as solution the subset which minimizes
the temporal inefficiency.

Having an algorithm to extract the minimum temporal-
inefficiency subgraph from a temporal graph defined over a
fixed temporal window, our next step is to generalize our
framework to the streaming setting. This is the setting in which
new snapshots of the temporal graph keep arriving continu-
ously and our goal is to produce, at each new timestamp, a
community search solution for the temporal graph defined by a
sliding temporal window of predefined size. Since the network
changes constantly in time, we expect that the communities
evolve as well. Therefore, it is natural that the query set Q
is updated during the evolution, to keep in consideration the
evidence of the key connections and most related vertices
emerged during the previous time windows.

We provide a streaming distributed implementation of our
framework in Apache Spark and experiment on several real-
world networks gathered by a proximity-sensing infrastruc-
ture recording face-to-face interactions in schools and co-
authorship networks.

II. BACKGROUND AND RELATED WORK

Given a graph G = (V,E) and a set of query vertices Q ⊆
V , the community search problem requires to find a connected
subgraph H of G, that contains all query vertices Q and that
exhibits some nice properties of cohesiveness, compactness or
density.While optimizing for different objective functions, the
bulk of this literature (see [4], [7] for recent survey) shares a
common aspect: the solution must be a connected subgraph
of the input graph containing the set of query vertices. Three
recent approaches allow disconnected solutions in community
search: allowing disconnected solutions is equivalent to allow
some query vertices not to participate in the solution, thus
being recognized as outliers. We call this version of the
problem relaxed community search. Akoglu et al. [1] study
the problem of finding pathways, i.e., connection subgraphs
for a large query set Q, in terms of the Minimum Description
Length (MDL) principle. According to MDL, a pathway is
simple when only a few bits are needed to relay which edges
should be followed to visit all of Q. Given a graph G and a
query set Q, Gionis et al. [5] study the problem of finding a
connected subgraph of G that has more vertices that belong to
Q than vertices that do not. For a candidate solution S that has
p vertices from Q and r not in Q, they define the discrepancy
of S as a linear combination of p and r, and study the problem
of maximizing discrepancy. They show that the problem is
NP-hard and develop efficient heuristic algorithms.

The work which we extend to the case of temporal net-
works, is that of Ruchansky et al. [12] which studies, in the
static graph setting, the problem of extracting the minimum
inefficiency subgraph. Let dG[S](u, v) denote the shortest-path
distance between a pair of vertices u, v ∈ S, computed in the
subgraph induced by S, then the problem is defined as follows.

Problem 1 (MIN-INEFFICIENCY-SUBGRAPH [12]): Given
an undirected graph G = (V,E) and a query set Q ⊆ V ,
find the not necessarily connected subgraph H∗ minimizing
the network inefficiency:

H∗ = argmin
G[S]:Q⊆S⊆V

∑
u,v∈S,u 6=v

1− 1

dG[S](u, v)
.

The intuition at the basis of this definition is that all-
pairs shortest-path distances provide a good measure of how
cohesive is a subgraph [11], [12]. However, one issue with
shortest-path distance is that it is enough to have one dis-
connected vertex to have an infinite measure. A simple yet
elegant workaround to this issue, is to use the reciprocal of
the shortest-path distance, under the convention that∞−1 = 0.
Therefore, a disconnected pair of nodes produces 1− 1

∞ = 1
inefficiency. On the opposite, a pair of adjacent vertices
produces 1− 1 = 0 inefficiency. A pair of vertices at distance
2 produces 1/2 inefficiency, a pair at distance 3 produces 2/3
inefficiency, and so on.

Ruchansky et al. show that Problem 1 is NP-hard and
develop an efficient greedy algorithm. They also show that the
minimum inefficiency subgraph exhibits some nice properties
such as the fact of producing small cohesive solutions, the fact
of being able to detect outlier query vertices (by leaving them
disconnected in the produced solution), and the fact of being
able to recognize when the query vertices belong to different
communities. Ruchansky et al. [12] also provide an empirical
(qualitative and quantitative) comparison with [1], [5].

Temporal paths and Steiner trees on dynamic networks.
Given a dynamic network, where edges are timestamped,
temporal paths are paths in the graph structure, along the
temporal dimension. In particular, temporal paths must be
time-respecting, that is, edges along a path appear in non-
decreasing time [8]. Bui-Xuan et al. [2] study interesting paths
as either shortest, fastest or foremost journeys. Wu et al. [14]
propose more efficient methods to compute these paths in
both streaming and transformed graph models. Recently, some
parallel and distributed algorithms for computing temporal
paths [15], [9] have been proposed.

A related problem that we use in our algorithm is the
computation of the minimum Directed Steiner Tree in static
graphs for which a first approximation algorithm was proposed
by Charikar et al. [3]. Recently Huang et al. [6] have studied
the problem of minimum spanning trees in temporal graphs
and propose two definitions based on the optimization of
time and cost. They also propose an improved approximation
algorithm for the minimum Directed Steiner Tree problem for
temporal graphs, using a graph transformation from temporal
to static graphs, similar to the one we use in Section 4.



III. TEMPORAL NETWORK INEFFICIENCY

We are given a continuous stream of timestamped edges
(u, v, t), where u, v ∈ V are vertices and t is a timestamp from
a potentially infinite domain T . We can represent a dynamic
graph as a sequence of graphs, one for each timestamp, defined
over the same set of vertices i.e., G = 〈G0, G1, ..., Gt, ...〉
with Gt = (V,Et) and Et = {(u, v, t)}. Given a temporal
interval [i, j] we denote G[i,j] the projection of G over [i, j].
A temporal path between a pair of vertices v, u ∈ V is a
time-respecting sequence of edges, i.e.,

p(u, v) = {(u = v0, v1, t0), (v1, v2, t1), . . . , (vn, vn+1 = v, tn)}

such that ∀i ∈ [1, n] it holds that ti−1 ≤ ti.
Example 1: A time-respecting path between vertex 6 and

vertex 1 in Figure 1 is p(6, 1) = {(6, 4, 0), (4, 2, 1), (2, 1, 2)}.
However, there exists no time-respecting path from 1 to 6. It
is worth noticing that in a dynamic graph, even if undirected,
due to the notion of temporal path, distance is not symmetric.

When dealing with temporal dynamic graphs, one can
use different characteristics to define the interestingness of a
path between two vertices. In fact, besides the usual spatial
definition of shortest-path distance based on the number of
intermediate vertices, one can also consider the temporal
duration of the path itself. For instance, Wu et al. [14] study
four different types of interesting paths over temporal graphs
within a time window: (1) earliest-arrival path, (2) latest-
departure path, (3) fastest path, and (4) shortest path. In this
paper we adopt a linear combination of the temporal and
spatial distance1, governed by a parameter α ∈ [0, 1].

Definition 1 (Shortest Fastest Path [13]): Given a user-
defined parameter α ∈ [0, 1] we define as shortest fastest path
(SFP) between a pair of vertices u, v ∈ V in a dynamic graph,
a valid temporal path p(u, v) = {(u, v1, t0), . . . , (vn, v, tn)}
minimizing the cost:

L(p) = α|p(u, v)|+ (1− α)(tn − t0) (1)

This definition generalizes both shortest and fastest path
notions. In fact by setting α = 1 we obtain shortest paths,
while setting α = 0 we obtain fastest paths. In general,
depending on the application at hand, one can tune the pa-
rameter α to give more importance to the temporal dimension
(α < 0.5) or the spatial one (α > 0.5). The parameter α
can also be tuned in such a way to favor one dimension, but
using the other dimension for tie-breaking among equivalent
paths in the first dimension. For instance, by setting α to a
small positive quantity ε, the temporal paths that we obtain by
Eq. (1) correspond to fastest paths with the minimum number
of intermediate hops. Similarly, if we set α = 1 − ε, Eq. (1)
will return the shortest paths, and among all shortest paths,
the one employing the minimum number of timestamps.

Definition 2 (Shortest-Fastest-Path Distance): The shortest-
fastest-path distance between two vertices u, v is the cost of the

1Throughout this paper by “spatial” distance we mean the usual shortest-
path distance defined as the minimum number of hops between two vertices.
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3 5 2α 2α
3 6 ∞ min(2α+ 1, 2)
4 5 α α
4 6 α α
5 6 α α

Fig. 1: An example dynamic graph on three timestamps, and the
shortest-fastest-path distance between any pair of vertices.

shortest fastest path between the two vertices, i.e., dG(u, v) =
L(p∗(u, v)), where p∗(u, v) = argminL(p(u, v)).

Example 2: Consider again the example in Figure 1 and
suppose we want to go from vertex 1 to 4. We have a short path
through vertex 2 over two timestamps, i.e., {(1, 2, 0), (2, 4, 1)}
or alternatively we have a bit longer path which is faster, as
it spans only one timestamp: i.e., {(1, 2, 2), (2, 3, 2), (3, 4, 2)}.
The cost of the former path is α + 1, while the cost of the
latter is 3α. An α > 0.5 would favor the shortest path, while
an α < 0.5 will favor the fastest path.

Two simple observations are in place. First, in a dynamic
graph, even if undirected, due to the notion of time-respecting
path, the distance is no longer symmetric (nor it is reacha-
bility). Second, while distance is static graphs is usually in
[1,∞], with our definition of shortest-fastest-path distance the
minimum value is α. With these two observations in mind, we
are now ready to extend the notion of network inefficiency by
Ruchansky et al. [12], to the case of temporal dynamic graphs.

Definition 3 (Temporal Network Inefficiency): Given a tem-
poral graph G[0,t] defined over a set of vertices V and t+ 1
timestamps, and given a user-defined parameter α ∈ [0, 1],
the network inefficiency of G[0,t] is defined as

I(G[0,t]) =
∑

u,v∈V,u 6=v

(1− α
dG[0,t]

(v,u) ) + (1− α
dG[0,t]

(u,v) )

2
.

Definition 3 differs from the notion of static network inef-
ficiency in two main points. The first is that it uses reciprocal
of the distance between two vertices, multiplied by α. This
is to keep the values of the inefficiency in [0, 1], as in the
static case, since as we mentioned before, the minimum length
of a temporal path is α. The second change, is due to the
asymmetry in the distance of the temporal path between two
vertices. Therefore, for each pair of vertices, we calculate
the inefficiency introduced in the network by considering the
distance in both directions of the path.

Example 3: Note that two vertices that are directly con-
nected in at least a timestamp (as for instance vertices 1 and
2 in Figure 1) have a distance of α, and thus they do not add
any temporal inefficiency to the network. Let us now consider



the pair of vertices (1,6). We already saw that there is no time-
respecting path from vertex 1 to 6: thus this direction provides
maximum inefficiency of 1. In the other direction we have the
temporal path p(6, 1) = {(6, 4, 0), (4, 2, 1), (2, 1, 2)} of lenght
3 and spanning 3 timestamps (thus, with a distance of α+2).
Assuming α = 0.5, temporal inefficiency brought by the pair
of vertices (1,6) is

(1− 0.5
∞ ) + (1− 0.5

2.5 )

2
=

1 + 0.8

2
= 0.9

which is close to the maximum inefficiency of 1.

We are now ready to formalize the problem studied in
this paper. We do this in steps: first we define the problem
of finding the minimum temporal-inefficiency subgraph in a
single time window W ; then we extend the framework to
deal with a sliding window, on a potentially infinite stream
of graphs, in an adaptive way.

Let us consider the temporal graph GW = (V,EW ) defined
over the time interval W = [ti − (|W | − 1), ti] with ti ∈ T .
Given a set of vertices S ⊆ V , we denote GW [S] the temporal
subgraph induced by S, i.e., GW [S] = (S, {(u, v, t) ∈
EW |u ∈ S ∧ v ∈ S}). Given a set of query vertices Q, the
minimum temporal-inefficiency subgraph problem requires to
find a set of vertices S containing Q, such that its induced
subgraph minimizes the temporal inefficiency (Definition 3).

Problem 2 (MINIMUM TEMPORAL-INEFFICIENCY SUB-
GRAPH): Given a temporal graph GW = (V,EW ), a param-
eter α ∈ [0, 1] and a set of query vertices Q ⊆ V , find the
minimum temporal-inefficiency subgraph of GW :

H∗ = argmin
GW [S]:Q⊆S⊆V

I(GW [S]).

We observe that when the temporal graph GW is made of
only one snapshot (i.e., |W | = 1) and α = 1, Problem 2
exactly coincides to the MIN-INEFFICIENCY-SUBGRAPH on
standard graphs (Problem 1) of Ruchansky et al. [12]. As
Problem 1 is NP-hard and it is a special case of Problem 2,
it holds that also the MINIMUM TEMPORAL-INEFFICIENCY
SUBGRAPH problem is NP-hard.

Problem 2 above produces one solution subgraph for an
input temporal graph defined over a fixed temporal interval.
We next consider the sliding window setting, where the
temporal graph of interest is defined by a temporal interval
W = [t− (|W | − 1), t] with t ∈ T of predefined length |W |,
which keeps sliding continuously along time. At every new
timestamp the window W is updated by adding a new snapshot
of the graph and removing the most obsolete one. Therefore,
at every new timestamp t ∈ T , we have a new window W
which, in turns, defines a new temporal graph GW , and we
want to solve a new instance of the Problem 2 outputting a new
community. This enables the analysis of how the community
around a query set of vertices Q changes along time.

Adaptive Query Set. One of distinguishing feature that our
framework inherits from [12] is the fact of producing solutions
which are not necessarily connected: if a vertex in the query

set Q results to be not so related to the others, it can be treated
as an outlier by leaving it disconnected in the solution. This
flexibility is an even more interesting feature in the context of
temporal graphs analysis as it allows to deal with concept drift:
something which is interesting and relevant at the beginning
of the temporal domain under analysis, can become less and
less relevant as time progresses.

Based on this observation and exploiting the flexibility
of our framework, we propose the adaptive query set Q
mechanism, as a way to deal with concept drift. This is
achieved by means of two simple update rules that have
the faculty of changing Q amid evidence emerging from the
analysis. The two update rules are as follows:
• if a vertex v ∈ Q remains disconnected in the solution
Ht for a number of consecutive timestamps t larger than
a user-defined threshold λout ∈ N+, then v is removed
from Q;

• if a vertex v ∈ V \ Q appears in the solution Ht for a
number of consecutive timestamps t larger than a user-
defined threshold λin ∈ N+, then v is added to Q.

The rationale for these update rules is that in an explorative
data analysis task, real-world query-sets are likely to contain
some vertices that are erroneously suspected of being related,
or that become unrelated along time due to concept drift.
Similarly, a vertex which is added constantly to the solution,
as it helps reducing the distance among the vertices in Q, can
be considered related to the others in Q and added to the query
set for future monitoring.

IV. ALGORITHMS

We next present our method for solving Problem 2, i.e.,
extracting the minimum temporal-inefficiency subgraph from
a temporal graph GW = (V,EW ). Later we discuss the sliding
window setting and its streaming-distributed implementation.

Our method is structured in three phases:
Phase 1: Graph Transformation – the temporal graph GW
is transformed in a static directed and weighted graph G′,
by flattening all the snapshots Gt with t ∈ W in a unique
graph linking the various replicas of the same vertex in
different timestamps, appropriately weighting these edges and
the original edges, and adding some source and sinks dummy
vertices. We show that the resulting transformed graph G′ is
such that the cost L(p) of the shortest-fastest path between
two vertices in GW can be computed as shortest-path distance
between the corresponding source and sink vertices in G′.
Phase 2: Temporal connector – during the second phase we
compute a connector for the query vertices in Q, i.e., a set
of vertices S ⊇ Q such that in the induced subgraph GW [S]
all the vertices in Q are connected, to the maximum possible
extent. For this task we extract many Directed Steiner Trees
from transformed graph G′.
Phase 3: Minimum Temporal-Inefficiency Subgraph –
in the third phase, following [12], we greedily reduce the
solution S, returning as solution the subset which minimizes
the temporal inefficiency.
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Fig. 2: The transformed graph for the example temporal graph G[0,2]

from Figure 1.

We next present each phase in details, then we discuss
sliding window setting and the adaptivity of the query set.

A. Phase 1: Graph Transformation

Given a temporal graph GW = (V,EW ) and the parameter
α ∈ [0, 1] as in Problem 2, we build a static directed weighted
graph G′(V ′, E′, `), where ` : E′ → [0, 1] is the edge
weighting function, as follows:
• Vertices: for each t ∈ W and each v ∈ V we create a

new vertex having as id the pair vertex-timestamp (v, t),
that is V ′ = {(v, t) : t ∈W, v ∈ V }.
• Edges: for each v ∈ V and each pair of consecutive

timestamps ti, ti+1 ∈ W with we create a directed edge
((v, ti), (v, ti+1)) with weight 1− α. The edges in EW ,
are instead assigned a weight of α.

Figure 2 shows the transformed graph for the example
temporal graph G[0,2] from Figure 1.

Let us consider now a pair of vertices (u, v) ∈ V × V , and
let us define P (u, v) = {p((u, ti), (v, tj))|ti, tj ∈ W} the set
of all paths from any replica of u to any replica of v in the
transformed graph G′. Let us also denote `(p) the length of
one such path p, i.e., the sum of the weights of the edges
in the path. Thanks to the edge labeling in G′, the following
(straightforward) lemma holds.

Lemma 1: A path p on the transformed graph G′ from a
replica of u to a replica of v, corresponds to a valid temporal
path p′ from u to v in the temporal graph GW = (V,EW ),
and the length of p in G′ corresponds to the cost of p′ in GW ,
i.e., `(p) = L(p′).

Example 4: On the temporal graph G[0,2] from Fig-
ure 1, consider the time-respecting path p(6, 1) =
{(6, 4, 0), (4, 2, 1), (2, 1, 2)} . Figure 2 reports the same path
on the transformed graph G′. We can observe that the cost of
the path is α+ 2 as dictated by Eq.(1) in Definition 1.

From Lemma 1 it follows that to compute the shortest
fastest path (SFP) between a pair of vertices u, v ∈ V we
can simply find the shortest path between any replica of u to
any replica of v on the transformed graph G′. Moreover it
holds that the length of such shortest path on G′ corresponds
to the shortest-fastest-path distance dG[0,2]

(u, v). In order to
consider all possible shortest paths on G′ from any replica of
a vertex u to any replica of a vertex v we create two dummy
vertices: a dummy source with id u and a dummy sink with id
(v,−1). By starting Dijkstra’s algorithm from dummy source
vertex u we can find the shortest path to sink (v,−1), which
corresponds to the SPF from u to v on G[0,2].

4,0

6,0



2,1

4,1



1,2 2,2


1-

1-

Fig. 3: The temporal path p(6, 1) = {(6, 4, 0), (4, 2, 1), (2, 1, 2)}
from Example 1 reported on the transformed graph G′. We can see
that the path has a cost of α+ 2.

Example 5: Consider again the running example on G[0,2]

(Figure 1), and suppose we want to compute the shortest-
fastest-path distance dG[0,2]

(1, 4). On G′ augmented with
dummy source vertex 1 and sink (4 − 1), we compute all
shortest paths from the source to the sink.
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
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4,-1

0
0

0

1

0
00

Fig. 4: Possible shortest-fastest paths from 1 to 4: the red one (if
α > 0.5) or the blue one (if α < 0.5).

In Figure 4 we report the two paths, previously dis-
cussed in Example 2, {(1, 2, 0), (2, 4, 1)} (in red) and
{(1, 2, 2), (2, 3, 2), (3, 4, 2)} (in blue). We can see how their
length computed over G′ are α+1 and 3α, respectively. Which
of the two is the shortest-fastest path depends on the value of
α, as discussed in Example 2. We observe that it holds that
dG[0,2]

(1, 4) = min(3α, α+ 1) as reported in Figure 1.
The phase 1 of our method, graph transformation, is de-

scribed in lines 1-8 of Algorithm 1.

B. Phase 2: Temporal Connector

In the second step we aim at building a connector for the
set of query vertices Q, i.e., a set of vertices S ⊇ Q such
that in the induced subgraph GW [S] all the vertices in Q are
connected, to the maximum possible extent. In fact, due to the
requirement of time-respecting paths, not all vertices in Q are
necessarily reachable from all the other vertices in Q.

We deal with this task by building Directed Steiner Trees
(DST) [3] on the transformed graph G′ augmented with the
dummy source and sink vertices for all v ∈ Q.

Definition 4 (Minimum Directed Steiner Tree): Given a
directed weighted static graph G = (V,E, `) where ` is
the edge-weighting function. Given a set of terminal vertices
X ⊂ V and a root vertex r ∈ V , the minimum directed Steiner
tree problem (DST) ask to find the minimum cost tree which
connects the root r to each terminal v ∈ X . In the case in
which not all the terminals are reachable from the root, then
the minimum cost achievable is +∞. In this case the problem
requires to return a tree that covers as much as possible of
X , and among the trees that do so, the one of minimum cost.



More precisely, for each r ∈ Q we search for the minimum
DST using the dummy source vertex r as the root and the
dummy sink vertices {(u,−1)|u ∈ Q \ {r}} as terminals.
For computing the minimum DST on the transformed graph
G′ augmented with the dummy source and sink vertices, we
exploit the recent approximation algorithm by Huang et al. [6]
appropriately modified to take care of the disconnected cases.
It is important to note that the method in [6] requires in
input the transitive closure of the graph G′ which might be a
computational bottleneck. In Algorithm 1, lines 9 we report
the transitive closure computation as it was a pre-processing
step. However, later in Section IV-D we discuss a way we use
to reduce the computational overhead.

Let us denote MDST (G′, r,Q \ {r}) such minimum DST,
or simply MDST (r). We also overload the weighting function
` to denote the total cost of the tree. i.e., `(MDST (r)). Our
method selects

r∗ = argmin
r∈Q

`(MDST (r)).

If `(MDST (r)) <∞ then we are done: we select as connec-
tor in the original temporal graph GW the set of vertices whose
replicas are involved in MDST (r) computed over the trans-
formed graph G′, i.e., S = {u ∈ V |(u, ti) ∈ MDST (r)}.
Otherwise, if `(MDST (r)) =∞, then there are disconnected
terminals. Let us denote the set of disconnected terminals Q.
Until Q is not empty, we pick randomly a v ∈ Q, retrieve its
MDST (v) that we already computed, add its vertices to the
connector S, and update Q by removing the terminal nodes
which are reachable from v.

The details of the second phase of our method are reported
in Algorithm 1, lines 9-19.

C. Phase 3: Minimum Temporal-Inefficiency Subgraph

During the second step we have created a connector, i.e., a
set of vertices S ⊇ Q. Following [12], in the third and last step
our method greedily removes from S \Q the vertex v∗ which
provides the greatest improvement in the objective function.

The process is iteratively continued until S\Q is not empty.
In the end all the intermediate subgraphs produced during the
process are compared and the one which provides the smallest
temporal inefficiency is returned as solution. The third phase
of our method is described in Algorithm 1, lines 20-28.

D. Streaming Distributed Implementation

In the previous sections we have presented in details our
method, summarised in Algorithm 1, for the case of a temporal
graph GW defined over a fixed temporal window W . In the
more general case, we consider an infinite stream of input
graphs. At each new timestamp t the incoming graph Gt
becomes the latest snapshot of the sliding window W , which
maintains its size stable by leaving out the most obsolete
snapshot. Each time the window W gets updated, we apply
Algorithm 1 to the new GW to produce a new minimum
temporal-inefficiency subgraph. After this, the query set Q
is potentially updated by using the update rules presented

Algorithm 1: Minimum Temporal-Inefficiency Sub-
graph
input : Temporal graph GW = (V,EW ), α ∈ [0, 1],

Q ⊆ V
output: GW [S] such that Q ⊆ S ⊆ V

1 Q′ ← {(u,−1)|u ∈ Q}
2 VW ← {(v, t)|t ∈W, v ∈ V }
3 V ′ ← VW ∪Q′ ∪Q
4 E′ ← {((v, ti), (v, ti+1))|t, t+ 1 ∈W, v ∈ V }
5 for e ∈ E′ do `(e) ← 1− α
6 for e ∈ EW do `(e) ← α
7 E′ ← E′ ∪ EW
8 G′ ← (V ′, E′, `)
9 G′ ← Transitive closure of G′

10 for r ∈ Q do
11 MDST (r) ← MinimumDST(G′, r, Q′)
12 r∗ ← argminr∈Q `(MDST (v))
13 S ← {u ∈ V |(u, ti) ∈MDST (r∗)}
14 if `(MDST (r∗)) =∞ then
15 Q ←

{(u,−1) ∈ Q′|dMDST (r∗)(r
∗, (u,−1)) =∞}

16 while Q 6= ∅ do
17 pick v from Q
18 S ←

S ∪ {u ∈ V |(dMDST (v)(v, (u,−1)) 6=∞}
19 Q ←

Q\{(u,−1) ∈ Q|dMDST (v)(v, (u,−1)) 6=∞}
20 mincost ← I(GW [S])
21 S∗ ← S
22 while S \Q 6= ∅ do
23 v∗ ← argmaxv∈S\Q I(GW [S])−I(GW [S \ {v}])
24 S ← S \ {v∗}
25 if I(GW [S \ {v}]) < mincost then
26 mincost ← I(GW [S \ {v}])
27 S∗ ← S \ {v}
28 return GW [S∗]

in Section 3. We deployed our framework in a streaming
distributed implementation on Apache Spark.

The main computational bottleneck of Algorithm 1 is at
line 9: in fact, the algorithm from [6] requires in input the
transitive closure of the graph. Producing the transitive closure
requires some computationally expensive algorithm, such as
Floyd-Warshall, which has O(V 3) complexity. In order to
avoid this step, we adopt a lazy evaluation approach computing
on the fly the transitive closure between two vertices in the
graph, when and only if this is required. Instead of using
Floyd-Warshall algorithm, we use Dijkstra’s algorithm, and
we calculate the shortest paths from a given source vertex
to the rest of the reachable vertices of the graph. In this
way we avoid computing the shortest paths from the vertices
that are unreachable temporally from the query vertices. The
computation of all shortest paths from each query vertex is
done in parallel. Depending on the depth i that is used as
a parameter for the computation of the minimum DST as



described by [6], we continue i times the process by choosing
as source vertices the i-th step neighbours of the query vertices
in Q. Finally, we distribute the computation of the minimum
DST that uses as root each query vertices in Q (lines 10-11
of Algorithm 1).

V. EXPERIMENTS

In our experiments we use three real-world dynamic net-
works summarized in Table I. Two datasets are face-to-face
interaction networks gathered by the SocioPatterns2 project
using wearable proximity sensors in schools, with a temporal
resolution of 20 seconds. PrimarySchool contains the contact
events between 242 volunteers (232 children and 10 teachers)
in a primary school in Lyon, France, during two days. The data
expand across 19 hourly timestamps. HighSchool describes
the close-range proximity interactions between students and
teachers (327 individuals overall) of nine classes during five
days in a high school in Marseilles, France. The data expand
across 41 hourly timestamps.

The third dataset is the co-authorship network of 16 con-
ferences and journals from the databases, data mining, and
information retrieval areas (VLDB, SIGMOD, ICDE, EDBT,
KDD, ICDM, SIGIR, CIKM, WWW, WSDM, ECIR, ECML,
TKDE, TODS, IEEE BigData and Data Mining and Knowl-
edge Discovery) collected from DBLP3. Each vertex is an
author and each edge represents co-authorship. It contains 18
yearly timestamps from 2000 to 2017.

Experimental environment. We run our experiments in on a
3.1 GHz Intel Core i7 machine with 16 GB of memory. We
use local mode Spark execution with four worker nodes. In
each worker we allocate one executor. For the computation of
the DST we set the recursion depth to 1.

TABLE I: Characteristics of the datasets used.
Network |V | |E| |T | time granularity

PrimarySchool 242 7 420 19 1 hour

HighSchool 327 40 896 41 1 hour

DBLP 46 160 377 852 18 1 year

A. Effect of Parameter α

One of the key notions of our work is that of shortest fastest
path (Definition 1). Instead of choosing between measuring
distances in space or time, we propose to use a linear combi-
nation of the temporal and spatial distance, governed by a user-
defined parameter α ∈ [0, 1]. Depending on the application at
hand, one can tune the parameter α to give more importance to
the temporal dimension (α < 0.5) or the spatial one (α > 0.5),
with the extreme cases α = 0 and α = 1 corresponding to
fastest-path distance and shortest-path distance, respectively.
How to set α might depend on the application at hand, the
sensibility of the analyst and the intended semantics of the
cohesiveness measure. When there is no reason to favor space

2http://www.sociopatterns.org
3http://dblp.uni-trier.de/

over time, nor the other way around, one can simply adopt the
default value of 0.5.

In the first set of experiments we analyse the effect of
α. More in details we ask to what extent the communities
found are similar, if we use α = 0.1 and α = 0.9. In these
experiments we pick a set of query vertices Q at random, with
|Q| = 4, and we measure the Jaccard similarity between the
community returned at every timestamp for the two values of
α. We use λin = 1 (i.e., nodes that are added to Q to form the
solution S at time t, become part of Q at time t + 1), while
we never drop vertices from Q. We repeat each experiment
for 100 different Q and report the average.

9 10 11 12 13 14 15 16 17 18
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

a
rd

 S
im

ila
ri

ty

35 36 37 38 39
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

a
rd

 S
im

ila
ri

ty

(a) (b)

Fig. 5: Jaccard similarity for the communities detected for α = 0.1
and α = 0.9. (a): PrimarySchool with window length |W | = 3; (b):
HighSchool dataset with |W | = 6.

Figure 5 (a) shows the Jaccard similarity for Prima-
rySchool when we set the window size to |W | = 3, presenting
results for 10 consecutive timestamps. Since the window has
size 3 at each timestamp we see the results that correspond in
3 hour interval. Therefore, at timestamp 14, we see the results
of the temporal connector that corresponds to the window
W = [12, 14]. The Jaccard similarity varies between 0.18
to 0.7 depending on the timestamp. Confirming that different
values of α produce different behaviors. However, as the
network evolves, the similarity between the solutions returned
with α = 0.1 and α = 0.9 keeps growing. This is probably
due to the adaptivity of the query set: as important vertices
are added to the query set Q, the community search becomes
more stable, converging on the truly important vertices that
relate to the initial set of query vertices.

Figure 5 (b) shows the Jaccard similarity for HighSchool
when we set the window size to |W | = 6, reporting results for
five consecutive timestamps. Since each snapshot of the dataset
corresponds to one hour data, the results reported correspond
to 6 hour window interval. Therefore, at timestamp 35, we see
the results that correspond to W = [30, 35], i.e., starting from
the 30th hour until the end of the 35th hour. Here the results
are more stable with Jaccard similarity at about 0.5.

B. Solutions Characterization

We next characterize the solutions produced along time.
For each experiment we present aggregated results for 100
randomly selected query sets. Following [12] se select the
initial query set, which in the rest of this section will be
denoted Qt0 ⊆ V , by using three different parameters:

http://www.sociopatterns.org
http://dblp.uni-trier.de/
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Fig. 6: |Q|, |S|, and EW [S] as a function of t for 100 random
query sets of size |Qt0 | = 6 and 12 for PrimarySchool dataset.
The initial query sets Qt0 are selected at random for (n,m, k) =

[(|Qt0 |, 0, 0), (|Qt0 | − 1, 1, 1), (
|Qt0

|
2
,
|Qt0

|
2
, 1)].

• the size of the initial query set |Qt0 |,
• the number of vertices n < |Qt0 | that we select from a

randomly chosen “main” community,
• the number of communities k from which we select the
m = |Qt0 | − n remaining vertices.

This way we can control the number of “outliers” that
we know are contained in Qt0 . More specifically, we select
at random a community from which we extract n vertices.
The other m = |Q| − n vertices are extracted from k other
communities. Notice here that when m = k, it is implied
that we have n vertices from the same community and m
outliers. For this set of experiments we use PrimarySchool
and HighSchool datasets, for which we already know the
underlying communities, i.e., students belonging to the same
class form a community. We produce 100 query sets for each
one of the following three combinations of the parameters n,
m, k:

• no outliers, i.e., (|Qt0 |, 0, 0);
• one outlier, i.e., (|Qt0 | − 1, 1, 1);
• query set split in two communities, i.e.,

(|Qt0 |/2, |Qt0 |/2, 1).
We repeat out experiments for values of |Qt0 | = 6 and 12.
As before, we use λin = 1 (i.e., nodes that are added to Q
to form the solution S at time t, become part of Q at time
t+1), while we never drop vertices from Q. Figure 6 reports
the results for PrimarySchool: we focus on the size of the
query set, |Q|, at the beginning of each timestamp, the size of
the solution in terms of number of vertices |S| and number of
induced temporal edges |EW [S]|.

We observe that all the different characteristics of the
temporal connector (|Q|, |S| and |EW [S]|) exhibit the same
behavior. In the first setting (first row plots), where all the
vertices are concentrated in the same community, the size of
the query set increases as the time evolves. However, in the
second setting (second row plots), this behavior is smoothed
as we notice a smaller increase of the size of Q that starts in a
later timestamp. Finally, in the third setting, where the vertices
are equally partitioned in the two communities, there is almost
no increase in the query set for |Qt0 | = 6 and a small increase
for |Qt0 | = 12 starting at timestamp 7. These results verify
our hypothesis that our approach connects vertices that exist
in the same community, and adds parsimoniously vertices in
the temporal connector. We additionally notice, that thanks to
the adaptivity of the query set the increase and the decrease
of |Q|, |S| and |EW [S]| are smooth in time.

We see similar trends for HighSchool data (not reported
for sake of space).

C. Case Study

Finally we present some anecdotal evidence to give an
idea of the practical applicability of our framework in the
discovery of the community around a given set of vertices and
monitor its evolution along time. Figure 7 reports an example
in the DBLP co-authorship temporal network. The initial query



Fig. 7: Case study for DBLP dataset. Initial query set Qt0 marked with blue color. The vertices which form the temporal community with
Q are marked in white, while the vertices added to Q are marked in red. In this example |W | = 4, α = 0.1, and λin = 1. The edges are
the temporal edges that exist in at least one timestamp within the given time window. The figure reports only some of the

set Qt0 contains six researchers, spanning different research
communities, but which were all linked to Yahoo Labs in
Barcelona: either employees or frequent academic visitors.

We can observe the following temporal dynamics. Back
in time no collaboration was occurring among the six query
vertices and the produced solution just leave all of them
disconnected. Later on, as the lab in Barcelona is established,
collaborations start appearing. However, at the beginning the
solution subgraph is still sparse and formed by only the query
vertices. As time goes by, more and more collaborators start
being involved and they are added to the solution, as they help
making the subgraph more cohesive (reducing the distances
among the query vertices). The vertices (marked in white)
which are used to produce a minimum temporal inefficiency
subgraph, are then added to the query set for the future
timestamps (and marked in red).

VI. CONCLUSIONS

In this paper we tackled the problem of community search
in temporal dynamic networks and proposed the problem of
extracting the minimum temporal-inefficiency subgraph. We
developed a method based on a careful transformation of the
temporal network to a static directed and weighted graph,
and some recent approximation algorithm for the extraction
of Directed Steiner Tree. We provided a streaming distributed
implementation of our framework in Apache Spark and exper-
imented on several real-world networks.

While the community search problem is well studied, both
the “relaxed” variant, which allows some query vertices to
remain disconnected, and the variant on temporal networks
are largely and surprisingly unexplored. These are important
problems which, in the coming years, will receive more
foundational treatment and will find more applications. This
work represents just a first step in this direction.
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