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Abstract—Domain adaptation helps transfer the knowledge
gained from a labeled source domain to an unlabeled target
domain. During the past few years, different domain adaptation
techniques have been published. One common flaw of these
approaches is that while they might work well on one input
type, such as images, their performance drops when applied to
others, such as text or time-series. In this paper, we introduce
Proportional Progressive Pseudo Labeling (PPPL), a simple, yet
effective technique that can be implemented in a few lines of
code to build a more general domain adaptation technique that
can be applied on several different input types. At the beginning
of the training phase, PPPL progressively reduces target domain
classification error, by training the model directly with pseudo-
labeled target domain samples, while excluding samples with
more likely wrong pseudo-labels from the training set and
also postponing training on such samples. Experiments on 6
different datasets that include tasks such as anomaly detection,
text sentiment analysis and image classification demonstrate that
PPPL can beat other baselines and generalize better.

Index Terms—domain adaptation, transfer learning, anomaly
detection

I. INTRODUCTION

Deep neural networks have been used to approach many
machine learning tasks such as object recognition, sentiment
analysis, and anomaly detection, and they have achieved the
state of the art results on those tasks and even surpassed humans
capabilities [1]]-[7]]. But, usually, in order to train these models,
one needs to collect a very large labeled dataset. The problem
is that labeling a huge dataset is expensive, time-consuming
and needs a human in the loop. Possible workarounds to this
issue include collecting a dataset similar to the target dataset
that is already labeled because they had been used for an
older task, or collecting a dataset that can easily be labeled,
such as a synthetic dataset. Unfortunately, when we train a
model on this labeled dataset, it doesn’t work well on the
target dataset if they are not coming from the same distribution
and when there is a domain gap between them [8], [9]]. In
some cases, when we have a very large and ongoing stream
of inputs to the system, like when we want to detect network
attacks based on the stream of packets that traverse through a
network, this approach becomes more cumbersome as the input
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data distribution is constantly changing and also new attacks
are introduced that may not exist in the training data which
makes it even harder to detect them. Ideally, for such a case,
we would like to label a small portion of network traffic that
also includes some attacks and be able to detect most types
of attacks, including zero-day attacks, in the future without a
need to directly label them.

Unsupervised domain adaptation methods are used to address
such problems where there is a domain shift between data
distributions of a labeled source domain and an unlabeled
target domain. Recently, many different domain adaptation
methods have been proposed [10]-[19]. Despite different types
of techniques used in recent approaches, one common flaw
among them is that they don’t generalize well among different
types of inputs. Some of the methods such as [12], [15]]
are intrinsically designed for images, as they do image-to-
image translation at the pixel level, or they need specific
data augmentation that should be applied to them at the pixel
level. Therefore, there is no straightforward way to apply these
techniques to other input types such as text or time-series data.
For other approaches, they either leverage adversarial loss [|[11]],
[14]], [20] or other techniques such as clustering [10]. One
common problem is that there is no guarantee preventing the
wrong alignment of the target samples. In other words, target
domain representations from one class can get aligned with
another class during the domain adaptation, leading to lower
performance of the model. In addition, the complexity and the
large number of hyper-parameters that some of these methods
have weighs on this problem as there is no straightforward way
to find the hyper-parameters that minimize the target error due
to the lack of a labeled validation set for the target domain.
Therefore, more complexity leads to less generalization.

In this paper, we introduce Proportional Progressive Pseudo
Labeling (PPPL), a more general domain adaptation technique
that works across different input types. PPPL assigns pseudo-
labels to the target samples and trains the model directly
with them. Key to PPPL is that it tries to minimize the
number of target samples that will align with a wrong class
by excluding uncertain samples from the training set at the
beginning of the training procedure and progressively bring
them back into the training loop with a weight proportional
to their certainty. Further, we assume that we can guess the



proportions of target samples that belong to each class. Note
that while we don’t know the individual labels in the target
domain, the class proportions can be guessed in many cases.
For example during an object recognition task based on the
images collected from a camera deployed on an autonomous
vehicle, replacing that camera with a new one can cause
a domain shift, but will retain the class proportions. While
other domain adaptation methods don’t consider this condition,
we show that enforcing class proportions during the training
further decreases incorrect alignment of target samples that
results in further improvement of overall system performance.
Experiments on 6 different datasets (CIC-IDS2017 [21]], Yahoo
[22]], Multi-Domain Sentiment [23]], CIFAR-STL [24], [25]],
Office-31 [26] and Office-Home [27]) including tasks such
as anomaly detection, text sentiment analysis, and object
recognition, demonstrates that our approach is superior to other
baselines and generalizes better than them across different
input types. Our experiments show that while PPPL is capable
of improving the accuracy of image classifiers on visual
domain adaptation tasks as good as state-of-the-art methods, it
significantly outperforms them on other tasks with up to 62%
improvement for anomaly detection in network traffic based on
the F1 score. Finally, with an ablation study, we demonstrate
the necessity of each component in our method and with a
sensitivity analysis, we show how robust our method is to the
accuracy of class proportions that are guessed.

II. RELATED WORK

Recent methods that are proposed for domain adaptation
leverage a wide range of techniques to make a classifier get
better results on the target domain. Some of them, such as
CyCADA [15] and self-ensembling (SE) [|12]], are designed for
a specific type of input, namely images. In contrast, our work
on PPPL can easily be applied to several different input types.

The second group of methods are those that don’t require
being applied on a specific input type as their focus is to
mitigate the gap between the source and the target domain in
the feature space at some intermediate layer of a deep network.
The adversarial domain adaptation is the basic idea behind a
large portion of recent approaches [[11]], [[14], [20], in which
the classifier is trained jointly with a domain discriminator
like a GAN [28]]. The discriminator is trained to distinguish
between source and target samples based on their representation
captured from an intermediate layer of a deep network while
the classifier itself is trained in a way to fool the discriminator
that results in generating domain invariant features. Ganin et
al. [14] proposed domain adversarial neural network (DANN)
in which they augment a classifier with a domain discriminator
and train them in an adversarial fashion by back-propagating
the reverse gradients of the domain classifier to learn domain
invariant representations. Long et al. [11] designed conditional
adversarial domain adaptation (CDAN) in which they condition
the domain discriminator on the cross-covariance of domain-
specific feature representations and classifier predictions, as
well as on the uncertainty of the classifier to prioritize the
discriminator on the easy to transfer samples. While we also

model target domain uncertainty into our PPPL method, our
approach differs from approaches like CDAN as they model the
uncertainties into the domain discriminator. Doing so makes
those approaches deal with the complications of training GANs,
whereas in our approach there is no discriminator and we model
uncertainty directly into the classification loss. This results in
less complexity and greater generalization.

Beyond adversarial domain adaptation methods, there are
also other approaches like Contrastive Adaptation Network
(CAN). Kang et al. [[10] mitigate the gap between the source
and target domains at some feature space through the help
of an alternating optimization method in which they initially
cluster target samples into multiple different groups and then
they assign some pseudo labels to them. They then train the
model by minimizing intra-class discrepancy and maximizing
inter-class discrepancy. Similar to CAN, we also assign some
pseudo labels to the target samples, but unlike CAN, we don’t
use any clustering method. We instead assign the pseudo labels
directly based on the model predictions. This, again, leads to
less complexity and greater generalization.

III. DESIGN INSIGHTS

Our goal is to train a deep network with the help of
a labeled source domain in order to maximize the cor-
rect predictions on an unlabeled target domain. Formally,
given a set of labeled samples known as source domain
S = {(21,97), (23,93), s (x?\[s7y]s\[s)} such that y; € ¥ =
{0,1,..., M — 1} and another set of unlabeled samples known
as target domain 7' = {zf, 2%, ..., 2% } which come from
two different data distributions our goal is to train a model
F :z+ y to predict §! € Y to minimize the prediction error
on the target domain. That is to say we want to minimize
Nt (gt # y!) where y! are the ground truth labels of the
target domain samples. In the rest of this section, we first
provide some insights that helped us to design our approach.
Then, in the following section, we explain how we incorporate
these insights to design PPPL.

A. Insight 1 - when training with pseudo-labels mean square
error is a better choice

As we mentioned earlier, we want to assign pseudo labels
directly based on model predictions to the target domain
samples and train the model with them. For training, there are
two choices here: We can feed the outputs of the final layer
of the model to a Softmax function and train the model with
the cross-entropy (CE) loss. We can also directly minimize the
distance of the final layer outputs and the one-hot encoding of
the labels with mean square error loss (MSE). We argue that
for such a setting, MSE is a better choice. First, consider the
Softmax function which is defined as follows:

o(z); = W fori=0,1,...,M —1
where M is the number of classes. Note that because of the
nature of this function there is no one-to-one mapping between
the probabilities (outputs of the Softmax layer) and the logits
(inputs of the Softmax layer). That is to say, many different
points in the logit space can be mapped to a single vector
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Fig. 1: a) Model accuracy on the target domain when trained only on correct predictions. b) The ratio of wrong predictions at
different levels of model certainty. c¢) The negative impact of early training on wrong pseudo-labels.

of probabilities. For example, when there is only 2 classes,
both of the points [1,100] and [200,299] will be mapped to
the [1 T T +999] This means that potentially, the points that
belong to the same class can form multiple different clusters
in the logit space. More specifically, the target domain samples
and the source domain samples that share the same label or

pseudo label can fall into different clusters. On the other hand,

when we train the model with MSE, the points that have
real or pseudo label C; will fall into one single cluster very
close to the point [0, ...,0, 1,0, ...0] where the i-th index is 1
after we train the model on them. This characteristic is more
desirable as it mitigates the domain gap between the source
and the target samples at logit space and forces the model to
learn features in the earlier layers of the network that leads to
indistinguishable representations at the logit space between the
source and the target domain samples. From another point of
view, if we would have a domain discriminator to distinguish
between the source and the target samples logits it could be
completely fooled. Therefore by using MSE loss in this setting
we get the same advantages of adversarial domain adaptation
techniques without being worried about the complications of
training GANS.

B. Insight 2 - training only on correct samples gradually
reduces the target error

Consider a model pretrained on the source domain. Also,
consider some samples (e.g. A, B and C) from the target domain
that belongs to the same class (e.g. class 1) and fall into the
close proximity of each other at some middle representation
of the network. Assume that we assign pseudo-labels to these
samples directly based on model predictions. Suppose that
some of these pseudo-labels are correct and some are wrong
(e.g. ya = 1,9 = 2,9c = 2). If we exclude wrong samples
(B, C) and train the model only on correct samples (A), then the
model learns that the points (B, C) in close proximity of these
points (A) are also more likely to be from the same class (class

1) and potentially some of them will get a correct pseudo-label
in the next iteration. This effect gets propagated to the points
in close proximity of B and C in the next iteration. Therefore,
excluding wrong samples and training only on correct samples
gradually reduces the target error.

To further show this, in Figure |Ika) we demonstrate the
results of such training on 4 different domain adaptation
tasks namely Amazon — DSLR and DSLR — Amazon from
the Office-31 dataset, Art — Clipart from the OfficeHome
dataset, and Electronics — Books from the Multi-Domain
Sentiment (MDS) dataset. As can be seen in all cases, the
model progressively learns to predict target domain samples
more accurately. These results are better than the results of
any other domain adaptation approach by a large margin and
it also generalizes well across different input types. In other
words, we can significantly reduce the target error only by
assigning pseudo labels to the target samples directly based
on the model predictions and training the classifier with them.
We just somehow need to determine in which cases the model
is wrong to exclude them from the training procedure.

C. Insight 3 - an uncertainty metric can guide which predic-
tions are wrong

Unfortunately, there is no straightforward way to know
which of the model predictions are correct and which ones
are wrong on the target domain as we don’t know the target
domain’s labels. But, among all samples that are predicted as
the same class, there is a relation between the model’s certainty
and the chance of wrong predictions. We capture the model’s
certainty with the difference between the two largest scores
that the model outputs for each sample and call it the certainty
score. This difference becomes smaller as in some intermediate
representation of the inputs the points get further away from the
same-labeled source points, falling into sub-spaces that are not
well explored by the model or when they fall in close proximity
to other points with different labels meaning getting closer to



the decision boundaries. Thus, in such cases, it becomes more
likely to get predicted wrongly. As can be seen in Figure [I[b),
in general when certainty score decreases among samples that
are given the same pseudo-label, a larger portion of predictions
becomes wrong. For this figure, we first trained the model on
the source domain for each of the aforementioned tasks with
MSE loss. Then for each class C the ratio of wrong predictions
to all of the target samples that are predicted as C' and their
certainty scores fall into the interval [if—ol, 1Lo] is calculated.
For each task, the i-th bar demonstrates the average of such
ratio across all the classes.

D. Insight 4 - the timing of inclusion of a wrong-prediction
matters

While we can predict better, we cannot know for sure which
predictions are correct, and therefore it might be inevitable we
assign some wrong pseudo-labels to some of the target samples
and train the model on them. But one thing that is important is
the time when we train the model on the target samples with
the wrong pseudo-labels. We argue that the early inclusion
of such samples into the training procedure deteriorates the
model’s performance on the target domain more than later
inclusion. This is because of the same phenomenon that we
discussed in insight 2: When we train a model on a target
sample with a wrong pseudo-label, it would be more likely for
the model to assign that wrong label to the points that are in
close proximity of that wrong sample. Then, this wrong label
propagates to the neighborhood of these newly affected samples
in the next iteration. Therefore, the earlier we train the model
on a wrong sample, the further its impact will propagate, the
more model’s accuracy deteriorates on the target domain. This
can be seen in Figure [T|c). For this figure, for each of the tasks
mentioned in the second insight, we trained the model the same
way we discussed but also we included some samples with
wrong pseudo-labels into the training procedure at different
epochs (epochs 1,4,7 and 10). The size of the wrong pseudo-
labeled samples in each task is equal to 10% of the target
domain sample size. For all of the cases, we trained the model
for 10 epochs. In this figure, we illustrate the change in the
model accuracy when the wrong pseudo-labeled samples were
included in the training loop at epoch 1, 4, and 7 in comparison
with when they were included at epoch 10. Therefore a larger
bar shows a greater decrease in the model’s accuracy. As can
be seen, the earlier the model got trained on the wrong samples
the more its accuracy is decreased. For example, for the Art —
Clipart task if we include the wrong pseudo-labeled samples
at the first epoch of training the final accuracy will be almost
7% lower than when we postpone their inclusion to epoch 10.

IV. PROPORTIONAL PROGRESSIVE PSEUDO LABELING
(PPPL)

Based on the insights we discussed we designed our approach.
In a nutshell, based on the second insight we know that if
we use a model pre-trained on the source domain and assign
pseudo-labels to the target samples with it and exclude the
wrong pseudo-labels the model progressively gets better. Also,

based on the first insight we know that for such a setting using
MSE loss is better than CE loss. Unfortunately, since we don’t
know target labels we can’t find out exactly for which cases
the pseudo-labels are wrong but based on the third insight we
know that the ratio of wrong predictions increases as the model
certainty decreases. In addition, based on the fourth insight we
know that it is better to postpone training the model on such
samples.

Algorithm [I] describes our approach in more detail. The
inputs are F' which is the model pretrained on the source
domain, X which is the set of all source domain samples,
Y, which is the set of all the source domain labels, X; which
is the set of all target domain samples and C'P; which is
the set of target class proportions that are guessed or known
from other sources. We first train the model (F') on the source
domain samples (X, Y) with the MSE loss function (based
on insight 1). Then in each iteration of the algorithm, we first
get the score which is a vector with size M (M is the number
of available classes) for each of the target samples (line 4) and
assign a pseudo-label to that sample based on its largest score.
(line 5). Then for all of the target samples, we calculate the
"certainty score" (line 6) and then assign a weight value to
each of the target samples based on its certainty score (line 7).
This weight will be used later during training to control the
impact of each sample on the model parameters.

Algorithm 1 Proportional Progressive Pseudo-Labeling

1: procedure PPPL(F, X, Y, Xy, CPF;)
2 for i < 1 to 45 do

3 N+104+2x1

4: Sy F(X3)

5: PL; + argmaz(St)
6

7

8

9

CS; + CalcCertaintyScore(S)
W, + CalculateW eight(C'Sy, PLy, N)
X1, Y}, W/ « Brclude(X,, PLy, Wy, CP;)
: XL, Y, W + Select(Xs,Ys)
10: Train(F, X, Y] Ws, X[, Y/, W))
11: end for
12: end procedure

The function CalculateWeight(CSy, PLy, N), first groups
all of the samples that are assigned the same label. Then, for
each group, it assigns a weight between [0.2—1.0] to N% of the
samples and 0 to the rest of the samples of that group. Within
each group, the weights are monotonically assigned based on
the certainty scores such that a sample with a larger certainty
score will be assigned a larger weight. More specifically, if the
number of samples that fall into top N% for a given group is
L. then the weights for those samples are calculated as follows:
w; = % where t; =1+ Lic x j in which j € [0, L.) and w;
is assigned to the j-th sample with the largest certainty score.

For better illustration, in Figure 2] we show the weights that
will be assigned to the target samples with the same pseudo-
label at epoch 1, 20 and 45 of our method. We assumed that
the size of this group would remain in 1000 during the whole
training. As can be seen, for the first epoch only 10% of



the samples will be assigned with a weight of more than 0,
which essentially means that the other 90% samples that have
a lower certainty score will be excluded from training in the
first epoch. At epoch 20, 50% of the samples will be included
in the training and at the final epoch, all the samples will be
included. Using this weighting strategy decreases the chance
of training on wrong samples on the early epochs by excluding
the less certain samples (designed based on insights 3 and 4).
Also for the samples that will be included at each epoch, we
assign a smaller weight to the less certain samples to decrease
the impact of those that are assigned wrong pseudo-labels
and potentially are among included samples on the model
parameters (designed based on insight 3).

There is also another way we try to exclude wrong samples
which is based on guessed class proportions (line 8). In the
FEzclude function, for each label, we first calculate the ratio
of samples with that pseudo-label to the whole target domain
sample size. Then we exclude some samples for classes that
their ratio is higher than its corresponding guessed ratio because
it means that the model predicted samples with that label
more than what we expect. Therefore, we expect that some
of these predictions to be wrong. So, from each class, we
keep excluding the most uncertain predictions until the ratio
of remaining samples becomes equal to our expected ratio
(designed based on insights 2 and 3).

In addition to the target samples, we also select some samples
randomly from the source domain at each epoch to train the
model on them. We do this because in the initial phases of
our algorithm we only include a small portion of the target
samples and we don’t want to make the model over-fit on them.
We also assign a weight equal to 1 to these source samples
as all of their labels are correct. Finally with the combination
of pseudo-labeled target samples and these source samples we
train the model with MSE loss (designed based on insight 1).
More specifically, the loss function we use for training is as
follows: + vazl w;||F(x;) — y;||3 in which y; is the one-hot
encoding of (pseudo)label assigned to sample x; and [V is the
total number of included samples at the current epoch.

V. EVALUATION

In this section, we evaluate PPPL for doing domain adapta-
tion on 6 different datasets. For two of them (CIC-IDS2017 and
Yahoo) we want to do anomaly detection based on time-series,
in one of them (MDS) we want to do sentiment analysis based
on text input, and for the other three (Office-31, Office-Home,
CIFAR-STL) we want to do object recognition in image inputs.

A. Datasets

CIC-IDS2017 dataset consists of network traces of different
network attacks. The whole dataset which is collected over a
week contains millions of packets and each packet is labeled as
either benign or malicious. The task in this dataset is to detect
malicious packets. The type of attacks that are carried out on
different days differs from each other. The Tuesday attacks
are FTP-Patator and SSH-Patator. The Wednesday attacks are
DoS Slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye
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Fig. 2: The illustration of weights assigned to the target samples
with the same pseudo-label.

and Heartbleed. The Thursday attacks are Web attacks and
Infiltration. We consider the traffic collected in each of these
days as one domain and define 6 domain adaptation tasks
between each pair of them (e.g. Tu—We, Tu—Th). In order to
classify the packets in this dataset, we first preprocessed them
with the same method described in [4]]. Given this preprocessing
method, the Tu, We and Th domains contain 573,544, 685,241
and 462,031 samples, respectively. Also, all of these domains
are imbalanced. The percentage of malicious traffic in the Tu,
We, and Th domains are 2.2%, 18.2% and 2.7%, respectively.

Yahoo dataset contains real and synthetic time-series and
the goal is to detect anomalous points in these time-series. The
real domain consists of metrics of different Yahoo services and
reflects the status of the Yahoo system and the synthetic dataset
is generated artificially. Both of the domains are extremely
imbalanced. There are 67 time-series in the real domain and
100 ones in the synthetic domain and each of them contains
multiple anomalous points. We preprocessed this dataset as
follows: For each of the time-series, we first calculated the
difference between each point and its adjacent point and then
normalized all the points in that time-series to have a mean of 0
and standard deviation of 1. Then, we concatenated each point
with the 511 points that came before it and fed this vector to
the classifier as the input. Given this preprocessing method, the
real domain contains 60,629 samples where 1,563 of them are
anomalous and the artificial domain contains 91,000 samples
where 466 of them are anomalous.

Multi-Domain Sentiment (MDS) is widely used to evaluate
domain adaptation methods built for sentiment-analysis based
on text inputs. It contains 27,677 product reviews from
amazon.com about four product domains: books (B), DVDs
(D), electronics (E) and kitchen appliances (K) and therefore
12 different tasks. The goal is to classify the reviews into
positive and negative classes. For each domain, 2,000 reviews
are named labeled and around 4,000 are named unlabeled. For
each task, after Bag of Words (BoW) preprocessing, during



TABLE I: Results of all methods on the CICIDS-2017 dataset. The numbers reported in this table are F1 scores.

Method Tu—We Tu—Th We—Tu We—Th Th—Tu Th— We Avg
Only-Src 0.055 0.215 0.028 0.087 0.010 0.016 0.068
CDAN 0.007 0.004 0.006 0.013 0.000 0.025 0.009
CAN 0.662 0.169 0.123 0.333 0.000 0.005 0.215
PPPL 0.973 0.708 0.855 0.712 0.784 0.964 0.833

TABLE II: Results of all methods on the CIFAR-STL and Yahoo datasets. We reported accuracies for the CIFAR-STL dataset

and F1 scores for the Yahoo dataset.

Method ~ CIFAR — STL  STL — CIFAR  Avg | Real » Syn.  Syn. - Real  Avg
Only-Src 76.0 61.3 68.6 0.441 0.081 0.261
CDAN 717.6 63.3 70.5 0.448 0.049 0.249
CAN 76.6 55.5 66.0 0.016 0.187 0.102
PPPL 79.6 69.7 74.6 | 0.624 0.285 0.454

the training of each method, we used 2,000 labeled reviews
from the source domain and both of the labeled and unlabeled
reviews from the target domain (without their labels).

CIFAR-STL dataset is a combination of images from 9
overlapping classes of CIFAR-10 and STL. There are 45,000
images in the CIFAR-10 domain and 4,500 images in the STL
domain.

Office-31 is widely used for the evaluation of visual domain
adaptation methods and contains 4,652 images in 3 different
domains known as Amazon (A), DSLR (D) and Webcam (W)
and 31 different classes. There are 6 domain adaptation tasks
between each pair of domains (e.g. A—D, D—W, ...) and we
evaluate PPPL and other baselines on all of the 6 tasks.

Office-Home is another dataset used for visual domain
adaptation that is harder than Office-31. This dataset contains
15,500 images in 65 classes and there are in 4 different domains
known as Art (Ar), Clipart (Cl), Product (Pr) and Real-World
(Rw). Therefore for this dataset, 12 different tasks exist between
each pair of domains.

B. Experiments

Baselines: We compare PPPL with two other baselines
which are among the best domain adaptation techniques to the
best of our knowledge: CAN [10] and CDAN [11]. CAN is
state-of-the-art for the Office-31 dataset. Kang et al. in their
evaluation showed that CAN outperforms many other baselines
such as Domain Adversarial Neural Network (DANN) [[14],
[20], Joint Adaptation Network (JAN) [16], Multi-adversarial
Domain Adaptation (MADA) [19], Deep Adaptation Network
(DAN) [29] and Self Ensembling (SE) [12]]. Also, CDAN is
among the best adversarial domain adaptation techniques that
we are aware of. Long et al. in their evaluation showed that
CDAN outperforms many other methods such as DAN [29],
Residual Transfer Networks (RTN) [30], DANN [14], [20],
Adpversarial Discriminative Domain Adaptation (ADDA) [31],
JAN [16] and CyCADA [15]]. Therefore by comparing our
approach with CAN and CDAN and outperforming them, the
superiority of PPPL over many other baselines can be inferred.

Setup: For evaluation of PPPL on the CIC-IDS2017, Yahoo,
MDS and CIFAR-STL datasets we trained a model from scratch.
After preprocessing, we trained a two-layer fully-connected
network (2048 — 2) for CIC-IDS2017, a four-layer fully-
connected network (2048 — 2048 — 256 — 2) for Yahoo and
another four-layer fully-connected network (2048 — 2048 —
2048 — 2) for the MDS dataset. For the CIFAR-STL dataset,
we trained the same convolutional network used in [[12] for this
dataset. For the Office-31 and Office-Home datasets we used
ResNet-50 [32] pretrained on ImageNet [33|] as the feature
extractor. We removed the final layer of Resnet-50 model and
added 4 new layers at the end (4096 — 4096 — 4096 —
#classes). In all of the datasets, we first trained the model on
the labeled source samples and then we did domain adaptation
with labeled source samples and unlabeled target samples
according to the Algorithm [1_-] Also, in all of the cases here
we assumed that we know the class proportions in the target
domain accurately. In the sensitivity analysis section, we show
how inaccurate class proportions impact the results.

Results: CAN and CDAN perform very poorly on the
anomaly detection tasks. The results on the CIC-IDS2017
dataset are reported in Table [[] which are the F1 scores
calculated for each case. As can be seen, on average PPPL
is 61.8% better than the best baseline we compared with.
Table [[Il shows the results of all methods on CIFAR-STL and
Yahoo datasets. For the Yahoo dataset, because we have a very
imbalanced dataset, we also reported F1 scores. Note that on
average, our approach notably improves model performance
on both datasets compared to training only on the source
domain samples (6% improvement for the CIFAR-STL dataset
and 19.3% improvement for the Yahoo dataset). Whereas, on
average CAN performs even worse than just training on the
source domain on both datasets. CDAN also performs worse
than training on the source domain for the Yahoo dataset and
just slightly better than training a model using only source
domain samples on the CIFAR-STL dataset. The same problem
can be observed for the MDS dataset. The results for this dataset

For more details, please see https://github.com/s-mohammad-hashemi/pppl.



TABLE III:

Accuracy (%) for all the 12 tasks of the MDS dataset.

Method B— B— B— D— D— D— E— E— E— K- K- K- A
etho D E K B E K B D K B D E Ve
Only-Src 810 73.0 756 780 742 785 714 723 8.7 732 740 863 769
CDAN 833 805 824 790 683 821 618 659 860 655 654 843 754
CAN 793 778 805 756 762 814 739 744 853 739 709 831 777
PPPL 832 842 860 819 844 871 755 803 899 771 796 892 832
TABLE IV: Accuracy (%) for all the six tasks of Office-31 based on ResNet-50.
Method A—-D A—-W D—-A D—-W WA W=D Avg
Only-Src 82.1 79.4 66.9 98.1 66.3 99.8 82.1
CDAN 92.9 94.1 71.0 98.6 69.3 100.0 87.7
CAN 95.0 94.5 78.0 99.1 77.0 99.8 90.6
PPPL 95.0 96.1 77.8 99.2 77.3 100.0 90.9
TABLE V: Accuracy (%) for all the 12 tasks of Office-Home based on ResNet-50.
Method Ar— Ar— Ar— Cl— Cl— Cl- Pr— Pr— Pr— Rw— Rw— Rw— A
etho cl Pr Rw Ar  Pr Rw  Ar cl Rw  Ar cl Pr Ve
Only-Src 41.3 67.8 75.0 56.9 65.2 67.2 53.7 39.0 74.5 66.2 43.2 78.1 60.7
CDAN 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 71.3 70.9 56.7 81.6 65.8
CAN 60.0 79.0 81.3 68.2 78.9 78.3 67.7 57.1 83.1 74.3 62.9 84.9 73.0
PPPL 62.9 80.2 82.2 70.0 80.8 80.7 69.5 58.4 83.6 77.2 62.0 85.8 74.4
are reported in Table [T} Note that CDAN performs worse TABLE VI: Alternative training strategies.
Fhan tr.ammg only on the source dom:fun samples and CAN Task Al A2 A3 A4 PPPL
just slightly works better than it, while PPPL outperforms
. .. . . . A —D 86.6 894 914 892 950
it by 6.3%. In addition to outperforming other baselines in B E 817 743 763 793 842
tasks such as anomaly detection and sentiment analysis, PPPL S—R  0.187 0259 0.095 0.282 0.285

can still work as good as other baselines on the Office-31 and
Office home datasets where our baselines demonstrate their best
performance. The results on the Office-31 dataset are reported
in Table On this dataset, PPPL works as good as CAN and
even slightly better. The results on the Office-Home dataset
are reported in Table [V| PPPL outperforms other baselines on
this dataset. Our results are 1.4% better than CAN and 8.6%
better than CDAN. Therefore these results confirm that our
approach generalizes better across different input types.

C. Analysis

Ablation Study: To show the necessity of each component
of our method, we compare PPPL with the following alternative
training strategies: A1) We replace MSE with CE loss. A2)
We include all the target samples into the training loop from
the first epoch. That is to say we modify line 7 of Algorithm
to become W; < CalculateWeight(CS;, PL;,100). A3)
Instead of class-aware weight assignment in C'alculateW eight
function, we assign weights to target samples without grouping
them based on their assigned pseudo-label and group them only
based on their certainty scores. A4) We don’t adjust the training
set based on target class proportions. In other words, we remove
line 8 from Algorithm [T, We make these comparisons for the
following tasks: A — D from the Office-31 dataset, B — E
from the MDS dataset and Syn — Real from the Yahoo dataset.

TABLE VII: Training PPPL with enforcing different CP.

CP

Task 10% 20% 30% S. T. Diff.
A—=D 96.6 950 948 914 950 .32
A=W 955 955 958 950 96.1 .21
D—A 717 770 743 747 778 .32
Ar — Cl 615 61.6 623 579 629 47
S —+R 0.264 0.264 0.266 0.263 0.285 .04

Table shows the results. Note that on average, all of the
alternative training strategies perform worse than PPPL.
Sensitivity Analysis: During the evaluation of our method,
we assumed that we know the exact values of class proportions
of the target domain. Now we want to see how much error our
method can tolerate in the class proportions. The bottom line
is that we can always enforce source domain class proportions
during training with PPPL as we can calculate them with the
help of source labels. Therefore in Table [VII] we show how
our method performs when we enforce source domain class
proportions (column 5) and when there is 10%, 20% and 30%
error (column 2,3 and 4) in our guessed values compared to
real target domain class proportions for five different tasks. In
this table, for the anomaly detection task, the error is calculated
for the anomalous class. That is to say for E € {0.1,0.2,0.3}



anomalous class proportion is modified such that |CP, —
CP,| = E x CP,. For the other tasks, the error is calculated

based on all the classes. More specifically, the guessed class

proportions are chosen such that ©X, |CP; — CP;| = E where

CP; is the real class proportion for i-th class and C'P; is the
guessed one. The last column of this table also shows the
difference between the source domain and target domain class
proportions which are calculated with this formula for all of
the tasks. Note that for most of the tasks in the table, the
algorithm’s performance gets affected only slightly when there
is up to 30% error in the guessed class proportions. Also,
note that just by enforcing source class proportions, we can
still get good results when the difference between the source
and target CPs is small (e.g. A — W task). Therefore our
algorithm will be a good choice when we can estimate target
class proportions with a small error or when the source and
target class proportions are very similar.

VI. CONCLUSION

In this paper, we proposed Proportional Progressive Pseudo
Labeling (PPPL), a simple and novel method for domain
adaptation that generalizes better than other methods across
different input types. PPPL aims to progressively reduce the
error on the target domain by assigning pseudo-labels to the
target domain samples and training the model with them while
excluding samples with more likely wrong pseudo-labels from
the training set and also postponing training on such samples.
Experiments on multiple different tasks confirm the superiority
of our approach compared to other strong baselines.
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