
ar
X

iv
:2

00
7.

13
55

2v
1

 [
cs

.D
C

]
 2

7
Ju

l 2
02

0

HeAT – a Distributed and GPU-accelerated Tensor

Framework for Data Analytics

Markus Götz§, Daniel Coquelin†‡§, Charlotte Debus∗, Kai Krajsek‡, Claudia Comito‡, Philipp Knechtges∗,

Björn Hagemeier‡, Michael Tarnawa‡, Simon Hanselmann§, Martin Siggel∗, Achim Basermann∗ and Achim Streit§

∗Institute for Software Technology (SC)

German Aerospace Center (DLR)

Cologne, Germany

{charlotte.debus, philipp.knechtges, martin.siggel, achim.basermann}@dlr.de
†Institute of Bio- and Geosciences Agrosphere (IBG-3)

Forschungszentrum Jülich (FZJ)

Jülich, Germany
‡Jülich Supercomputing Centre (JSC)

Forschungszentrum Jülich (FZJ)

Jülich, Germany

{k.krajsek, c.comito, b.hagemeier, m.tarnawa}@fz-juelich.de
§Steinbuch Centre for Computing (SCC)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

{markus.goetz, daniel.coquelin, simon.hanselmann, achim.streit}@kit.edu

Abstract—In order to cope with the exponential growth in
available data, the efficiency of data analysis and machine learn-
ing libraries have recently received increased attention. Although
corresponding array-based numerical kernels have been signifi-
cantly improved, most are limited by the resources available on
a single computational node. Consequently, kernels must exploit
distributed resources, e.g., distributed memory architectures.
To this end, we introduce HeAT, an array-based numerical
programming framework for large-scale parallel processing with
an easy-to-use NumPy-like API. HeAT utilizes PyTorch as a node-
local eager execution engine and distributes the workload via
MPI on arbitrarily large high-performance computing systems.
It provides both low-level array-based computations, as well as
assorted higher-level algorithms. With HeAT, it is possible for
a NumPy user to take advantage of their available resources,
significantly lowering the barrier to distributed data analysis.
Compared with applications written in similar frameworks,
HeAT achieves speedups of up to two orders of magnitude.

Index Terms—HeAT, Tensor Framework, High-performance
Computing, PyTorch, NumPy, Message Passing Interface, GPU,
Data Analysis, Machine Learning, Dask, Neural Networks

I. INTRODUCTION

The Python programming language has evolved into the

de-facto standard for the data analytics and machine learning

communities. Therein, the default choice for many frameworks

is the SciPy stack [1], which is built upon the computational

library NumPy [2]. NumPy offers efficient data structures

and algorithms for vectorized matrix and tensor operations,

This work is supported by the Helmholtz Association Initiative and Net-
working Fund (INF) under project number ZT-I-0003 and under the Helmholtz
AI platform grant.

allowing for the implementation of efficient numerical and

scientific programs. More recently, deep-learning libraries such

as TensorFlow [3] and PyTorch [4], both of which either

implement or closely mimic the NumPy API, have begun

to bridge the gap between pure CPU-based single-node pro-

cessing and high-performance computing by offering GPU-

accelerated kernels and simple Remote Procedure Call (RPC)

style distributed computations.

These libraries work around Python’s parallel computation

limitations by implementing computationally intensive ker-

nels in low-level programming languages, such as C/C++ or

CUDA, and invoking the respective calls at run-time through

some binding. This allows Python users to exploit powerful

features like vectorization, threading, or the utilization of

accelerator hardware. Still, most of these libraries are confined

to the processing capabilities of a single computation node.

Some libraries, such as Dask [5] or PyTorch’s dist package,

make it possible to write distributed programs based on RPCs.

However, data decomposition, communication structure, work-

load balancing, etc., must be addressed by the user.

In response to these problems, we propose HeAT1 –

the Helmholtz Analytics Toolkit. HeAT is an open-source

library offering a NumPy-like API for distributed and

GPU-accelerated computing for general-purpose and high-

performance computing (HPC) systems of arbitrary size. The

central component of HeAT is the DNDarray data structure,

an N-dimensional array transparently composed of computa-

1https://github.com/helmholtz-analytics/heat

http://arxiv.org/abs/2007.13552v1
https://github.com/helmholtz-analytics/heat

tional objects on one or more processes. The process-local

objects are PyTorch Tensors, allowing HeAT functions to use

both CPUs and GPUs. For distributed memory computing,

communication between processes is crucial. To this end,

HeAT provides a communications back end built on top of

the Message Passing Interface (MPI) [6].

Due to the NumPy-like API of HeAT, existing NumPy

programs can be quickly and easily converted into distributed

HeAT applications. This design allows for users to adapt exist-

ing codes easily. Furthermore small-scale program prototypes

can be developed, which can be transitioned transparently to

an HPC systems without major code or algorithmic changes.

Distributed HeAT applications are typically faster and their

memory limitations are those of the whole system, rather

than those of one node. As a result, HeAT facilitates the

algorithmic development and efficient deployment of large

scale data analytics and machine learning applications.

The remainder of this paper is organized as follows. Sec-

tion II will present related work in the field of (distributed)

array computation. Section III will explain HeAT’s program-

ming model, array, and communication design concepts. Here

we will also highlight some of the unique features of HeAT

that set it apart from other libraries. In Section IV, an em-

pirical performance comparison with Dask, HeAT’s primary

competitor, is presented. Within this section, HeAT is shown

to perform significantly better in all tested areas. Section V dis-

cusses the advantages and limitations of HeAT’s programming

model with respect to other frameworks. Finally, Section VI

concludes the presented work and offers a glimpse into the

future developments planned for HeAT.

II. RELATED WORK

NumPy is arguably the single most important Python li-

brary for numerical calculations; scikit-learn [7] is its most

widely adopted machine-learning counterpart. The typical

NumPy/scikit-learn implementation involves a single CPU,

with selected operations transparently using multiple cores.

Running NumPy on multiple CPUs requires a specific config-

uration and usage of GPUs is not supported.

Modern machine learning and deep learning libraries (e.g.

PyTorch [4], MXNet [8], and TensorFlow[3]) typically mimic

NumPy’s syntax to some degree and support distributed com-

putations for certain parallelization models. For example, Py-

Torch allows explicit message passing with MPI, NCCL, and

Gloo back ends, thus providing support for both multi-CPU

and multi-GPU systems. Both PyTorch and TensorFlow allow

remote computation via the RPC protocol and support AD in

this mode. However, their approaches are primarily focused

on performing embarrassingly parallel computations across

multiple computing nodes. Packages such as Horovod [9]

focus on offering a singular algorithm, i.e., data parallel model

training, but do not target general distributed array-based

computations.

Another approach to distributed computing uses lazy eval-

uation to increase the performance of tensor computations by

operator fusion (e.g. Spartan [10], Bohrium [11], Grumpy [12],

TABLE I: Support for distributed memory computing and

automatic differentiation within currently available Python

libraries for machine learning.

Multi Single Multi NumPy
Package CPU GPU GPU API AD Ref.

PyTorch a [4]

Legate [14]

Dask [5]

Intel DAAL [16]

TensorFlow a [3]

MXNet [8]

DeepSpeed [17]

DistArray [18]

Bohrium [11]

Grumpy [12]

JAX [19]

Weld [13]

NumPywren [20]

Arkouda [21]

GAiN [22]

Spartan [10]

Phylanx [23]

Ray [15]

HeAT
aBased on RPC, no MPI support.

and Weld [13]). Instead of evaluating each line of code

sequentially, the code is analyzed prior to execution to assess

if operations can be fused together, then optimized code

is generated before execution. The performance gained by

operator fusion can quickly be dominated by the overhead

required by task distribution. Finally, several widely used

libraries, such as Legate [14], Ray [15], and Dask [5], adopt

dynamic task scheduling for parallel execution of NumPy

operations on CPU and GPU HPC systems.

Table I summarizes the current possibilities for distributed

memory high-performance machine learning within the Python

landscape. In most cases support for parallel computation im-

plies the availability of tools that make communication among

processing units possible. Generally, transparent distributed

memory computing is not supported in the aforementioned

high-level APIs. HeAT has been developed to alleviate these

shortcomings.

III. DESIGN AND IMPLEMENTATION

A. Programming Model

The Helmholtz Analytics Toolkit is an open-source library

that implements a NumPy-like API for data structures, func-

tions, and methods for array-based numerical data analytics

and machine learning. An example can be seen in Listing 1.

HeAT realizes a single-program-multiple-data (SPMD) pro-

gramming model [24] using PyTorch and MPI. Additionally,

the framework’s processing model is inspired by the bulk-

synchronous parallel (BSP) [25] model.

sync sync syncsuperstep t superstep t + 1

compute communication

Fig. 1: The BSP-inspired parallel processing model utilized

by HeAT. Computation steps are marked as light blue blocks,

possible communication as blue arrows, implicit or explicit

synchronization points as black vertical bars.

Listing 1: Implementation of a function calculating the stan-

dard deviation of an array, demonstrating the API compatibil-

ity between NumPy and HeAT.

1 import heat as ht

2

3 def standard_deviation(a, axis=0):

4 return ht.sqrt((a - a.mean(axis)) ** 2)

Framework computations proceed in a series of hierarchical

supersteps, each consisting of a number of process-local

computations and subsequent inter-process communications.

In contrast to the classical BSP model, communicated data

is available immediately, rather than after the next global

synchronization. In HeAT, global synchronizations only occurs

for collective MPI calls as well as at the program start and

termination. A schematic overview is depicted in Fig. 1.

The process-local computations are implemented using Py-

Torch as the array-computation engine. Each computation is

processed eagerly, i.e. when issued to the interpreter. The

scheduling onto the hardware is controlled by the respective

runtime environment of PyTorch. For the CPU back end, these

are the synchronous schedulers of OpenMP [26] and Intel

TBB [27]. For the GPU back end, it is the asynchronous

scheduler of the NVidia CUDA [28] runtime system. HeAT

provides the MPI ”glue”, utilizing the mpi4py [29] module,

for the communication in each superstep. Users can freely

access these implementation details, although it is neither

necessary nor recommended to modify the communication

routines.

B. DNDarrays

At the core of HeAT is the Distributed N-Dimensional

Array, DNDarray (cf. Listing 2). The DNDarray object is a

virtual overlay of the disjoint PyTorch tensors which store the

numerical data on each MPI process. A DNDarray’s data

may be redundantly allocated on each node or decomposed

into equally sized chunks, with a maximum difference of one

element along a single axis.

This data distribution strategy aims to balance the workload

between all processes. During computations, API calls may

arbitrarily redistribute data items. However, completed opera-

tions fully automatically restore the uniform data distribution.

To steer the data decomposition and other parallel processing

behaviour, HeAT users can utilize a number of additional

attributes and parameters:

• split: the singular axis, or dimension, along which

a DNDarray is to be decomposed (see Fig. 2 and

Listing 2) or None, if redundant copy;

• device: the computation device, i.e. CPU or GPU, on

which the DNDarray is allocated;

• comm: the MPI communicator for distributed computa-

tion (Section III-C);

• shape: the dimensionality of the global data;

• lshape: the dimensionality of the process-local data

Listing 2: A DNDarray distributed across three processes as

illustrated in Fig. 2(b).

1 import heat as ht

2 a = ht.zeros((5, 4, 3), split=0)

3 a.shape

4 [0/3] >>> (5, 4, 3)

5 [1/3] >>> (5, 4, 3)

6 [2/3] >>> (5, 4, 3)

7 a.lshape

8 [0/3] >>> (2, 4, 3)

9 [1/3] >>> (2, 4, 3)

10 [2/3] >>> (1, 4, 3)

As stated, process-level operations on DNDarrays are per-

formed via PyTorch functions, thus employing their C++ core

library libtorch to achieve high efficiency, where available.

Interoperability with external libraries such as NumPy and

PyTorch is self-evident. Data contained in a NumPy ndarray

or a PyTorch Tensor can be imported into a DNDarray

via the heat.array() function with the optional split

attribute. In the opposite direction, data exchange with NumPy

is enabled by the DNDarray.numpy() method.

DNDarray can reside in a node’s main memory for the

CPU back end or, if available, in the VRAM of GPUs.

Individual DNDarrays can be assigned to hardware devices

via the device attribute or the default device can be defined

as shown in Listing 3.

Listing 3: Programmatic ways of allocating DNDarray on

different devices.

1 import heat as ht

2 # a single allocation

3 a = ht.zeros((1,), device="gpu")

4 a

5 >>> tensor([0.], device="cuda:0")

6

7 # setting a default device

8 ht.use_device("gpu")

9 b = ht.ones((1,))

10 b

11 >>> tensor([1.], device="cuda:0")

C. Distributed Computation

Many algorithms using a distributed DNDarray will re-

quire communication. HeAT has a custom MPI-based com-

munication layer composed of wrappers of point-to-point

and global MPI functions. It utilizes the python library

mpi4py [29], which offers an interface to most common MPI

0
3

6
9

12 15 18 21
24 27 30 33
36 39 42 45
48 51 54 57

ax
is

0

axis 1

9
10 11

21 22 23

33 34 35

45 46 47

57 58 59

axis
2

0
3

6
9

1
4

7
10

2
5

8
11

(a) split=None

48 51 54 57

p
2

57 58 59

48
51

54
57

49
52

55
58

50
53

56
59

24 27 30 33
36 39 42 45

p
1

33 34 35

45 46 47

24
27

30
33

25
28

31
34

26
29

32
35

0
3

6
9

12 15 18 21

p
0

9
10 11

21 22 23

0
3

6
9

1
4

7
10

2
5

8
11

(b) split=0

0
3

12 1524 2736 3948 51
p
0

3
4

5

15 16 17

27 28 29

39 40 41

51 52 53

0
3

1
4

2
5

6

18
30
42
54
p
1

6
7

8

18 19 20

30 31 32

42 43 44

54 55 56

6
7

8

9

21
33
45
57
p
2

9
10 11

21 22 23

33 34 35

45 46 47

57 58 59

9
10 11

(c) split=1

2
5

8
11

14 17 20 23
26 29 32 35
38 41 44 47
50 53 56 59

11

23

35

47

59

p2

2
5

8
111

4
7

10
13 16 19 22
25 28 31 34
37 40 43 46
49 52 55 58

10

22

34

46

58

p1

1
4

7
100

3
6

9
12 15 18 21
24 27 30 33
36 39 42 45
48 51 54 57

9

21

33

45

57

p0

0
3

6
9

(d) split=2

Fig. 2: Distribution of a 3-D DNDarray across three processes: (a), DNDarray is not distributed, i.e., split=None, each

process has access to the full data; (b), (c), and (d): DNDarray is distributed along axis 0, 1 or 2 (split=0, split=1, or

split=2, respectively). An example for case (b) is available in Listing 2. In each case, the data chunk labeled pn resides on

process n, with n = 0, 1, or 2.

implementations and enables the communication of contiguous

Python buffer objects (e.g. NumPy arrays). In cases where

CUDA-aware MPI is available, this also allows for commu-

nications to be performed directly between multiple GPUs.

Without CUDA-aware MPI, data must be copied from the

GPU to the CPU, sent to another CPU, then copied to the

target GPU. This increases the communication overhead, as

well as the run time, of some functions. The DNDarray

memory representation is encoded in the one dimensional

buffer via strides (steps between elements) along the respective

dimension. A main challenge in communicating an arbitrarily

split DNDarray is the preservation of this data structure.

The HeAT communication module internally handles buffer

preparation as the interface between the DNDarray and the

mpi4py functionality.

For point-to-point communications (e.g. send,

receive), buffer preparation is trivial as the data can

be sent contiguously from one process and unpacked by

the receiving process. More considerable efforts must be

made for communication involving collective operations.

For gathering operations (e.g. gather, allgather), the

node-local Tensor sent by each process must have the

correct memory layout, which is dependent on the split axis

of the DNDarray. For scattering operations (e.g. scatter,

all-to-all), the data chunks must be packed correctly

along the split axis before distribution.

HeAT addresses the packing issues by creating custom

MPI data types, which wrap the local Tensor buffer. First,

the DNDarray’s dimensions are permuted such that the

dimension along which data assembling or distribution should

take place is the first dimension. Then, custom data types are

created via the MPI function Create_vector to iteratively

pack the dimensions from the last to the first. The individual

data types at each dimension are defined via the DNDarray’s

strides. The creation of such a buffer is schematically shown in

Fig. 3. Here, a split DNDarray is assembled to split=None

via the allgather function using custom send and receive

buffer objects.

With this internal buffer handling, HeAT offers a uni-

fied interface that provides communication without exposing

the internal data representation. Based on the MPI layer, a

resplit function is provided to change the split axis of a

DNDarray if required. Re-splitting a DNDarray adheres to

load balancing, i.e., the data is uniformly distributed across

processes as previously stated. However, caution must be

taken when using resplit as it is based on global MPI

communication functions, thus requiring both significant com-

munication and local memory.

D. Unique Features

As a result of this design concept, HeAT offers a number

of unique features, which distinguish it from existing libraries.

Here, we briefly mention two of the more important.

1) Parallel Pseudo-Random Numbers: In many machine

learning methods random guesses are used for initial values.

To make this a reproducible process independent of the

number of processes, HeAT implements a parallel pseudo-

random number generator (pPRNG) building on counter-based

PRNGs [30]. The core idea is to encrypt an easily and

independently reproducible sequence, e.g. an ascending vector

of natural numbers, with a symmetric encryption process

where the random number seed is used as the encryption

key. Through data decomposition of the sequence (O(1)), the

random number generation can be parallelized in a scalable

manner and produces an identical sequence of random num-

bers independent of the processor count.

HeAT utilizes a eight-round 32-/64-bit Threefry [30] en-

cryption process for generating uniformly distributed pseudo-

random integer sequences. The corresponding floating point

values can be obtained by masking out the sign and expo-

nent bits and retaining the mantissa bits. Finally, normally

distributed random numbers are usually derived by rejection

split=1

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

sendbuf.permute(1,0)

v = MPI_create_vector(4,1,3)

MPI_create_resized(0,4*float)

elements=3

MPI_Allgatherv()

v = MPI_create_vector(4,1,6)

MPI_create_resized(0,4*float)

elements=6

recvbuf.permute(1,0)

split=None

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

Rank 0
sendbuf

0 1 2

10 11 12

20 21 22

30 31 32

0 10 20 30

1 11 21 31

2 12 22 32

0 10 20 30

1 11 21 31

2 12 22 32

Rank 1
sendbuf

3 4 5

13 14 15

23 24 25

33 34 35

3 13 23 33

4 14 24 34

5 15 25 35

3 13 23 33

4 14 24 34

5 15 25 35

s
t
r
i
d
e
=
1

stride=3

0 10 20 30

1 11 21 31

2 12 22 32

3 13 23 33

4 14 24 34

5 15 25 35

s
t
r
i
d
e
=
1

stride=6

recvbuf

0 1 2 3 4 5

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

Fig. 3: Internal handling of a resplit(None) operation on

a two-dimensional DNDarray with split=1 in HeAT, i.e.,

data replication on all nodes. It depicts the on-the-fly creation

of MPI datatypes for the strided access into the output and

input buffers.

sampling methods like the Box-Muller transform [31]. In

counter-based pPRNGs, this approach is either invalid due

to redrawing already used counter numbers, thus biasing the

random numbers, or it is computationally expensive due to

global redrawing rounds. HeAT obviates this problem by

implementing a direct conversion on top of generalized ex-

ponential distributions [32].

2) Distributed Automatic Differentiation: The most distin-

guishing feature of a machine learning library is that the

majority of routines are automatically differentiable (AD), thus

allowing for the use of gradient-based optimization algorithms

during training. Since HeAT utilizes PyTorch’s process-level

commands, the process-level functions are mostly differen-

tiable. However, the communication routines are not directly

differentiable. In order to enable reverse-mode AD, i.e., back-

propagation, HeAT uses differentiable wrappers for its com-

munication routines that are transparent to PyTorch. These

wrappers are embedded into the directed acyclic graph (DAG)

that PyTorch builds for the backward step, enabling us to

leverage the existing AD mechanics in PyTorch.

Let us consider a simple point-to-point communication

example. A blocking send and receive operation can be

interpreted as an assignment from a variable x at process

px to another variable y residing on processes py. The send

operation corresponds to a receive operation in the adjoint

mode, and vice versa. It is possible to construct these pairs

of operations for all MPI communication primitives, thus en-

abling fully automated differentiation. Using this mechanism

one can construct not only data-, but also model-parallel and

pipelined high-level differentiable algorithms.

IV. PERFORMANCE RESULTS

A systematic approach is utilized for the performance

evaluation of HeAT. The results are compared with Dask [5],

the library currently dominating the landscape of distributed

computing in Python. Four algorithms are benchmarked: k-

means in IV-C1, the forward propagation of a neural network

in IV-C2, least absolute shrinkage and selection operator

(LASSO) regression in IV-C3, and spectral clustering in

IV-C4. Details about these algorithms can be found in their

respective sections.

The benchmarking experiments are divided into weak scal-

ing and strong scaling experiments. In the former, the work-

load with respect to the algorithmic complexity per process

remains constant as the amount of computing resources in-

creases. In the latter, the total workload remains constant as

the amount of computing resources increases. Computational

resources are expressed in the number of nodes.

Benchmarking results for weak scaling are presented as

throughput per process, i.e., number of floating point opera-

tions per second, normalized by the maximum execution time

of all processes, where the number of floating point operations

can be either measured or approximated. If FLOPS cannot be

measured, than results are presented as inverse run time in

order to maintain trend behavior. For strong scaling, results

are presented as the execution speedup compared to a NumPy-

based implementation. This demonstrates the effectiveness of

both HeAT and Dask against a baseline.

Each data point represents the average outcome of a total of

nine runs, with the error bars indicating the empirical standard

deviation. A warm-up run preceded the first run and the result

is not included in the measurement. A fractional number of

nodes refers to the usage of the equivalent fraction of a node’s

resources.

A. Execution Environment

The experiments were run on a machine learning HPC sys-

tem comprised of 15 compute nodes at the Jülich Supercom-

puting Centre (JSC). Each node is equipped with two 12-core

Intel Xeon Gold 6126 CPUs, 206GB of DDR3 main memory

and four NVIDIA Tesla V100 SXM2 GPUs with 32GB
VRAM per card. The GPUs communicate node-internally

via an NVLink interconnect. The system is optimized for

TABLE II: Software packages used for performance bench-

marks.

General Python

Package Version Package Version

CUDA 10.2 dask 2.12.0
GCC 8.3.0 dask-ml 1.2.0
HDF5 1.10.5 dask-mpi 2.0.0
Intel Cluster Studio XE 2019.03 heat 0.3.0
PAPI 5.7 mpi4py 3.0.3
ParaStationMPI 5.2.2-1 numpya 1.15.2
Python 3.6.8 python-papi 5.5.1.5

sklearn 0.22.2
torch 1.4.0

ausing Intel MKL 2019.1.

GPUDirect communication across node boundaries, supported

by 2x Mellanox 100Gbit EDR InfiniBand links.

The software environment for benchmarking is summarized

in Table II. At the time of writing, CUDA-aware MPI is not

functioning on the system. Thus, all experiments were per-

formed via MPI communication over host memory, resulting

in extra copy operations for the multi-GPU measurements.

We expect the adoption of CUDA-aware MPI communication

to significantly reduce the overhead of communication oper-

ations. Additionally, PAPI [33] does not accurately measure

the number of operations for Dask. Therefore, the operation

count for Dask assumes that it corresponds with the number of

operations required by an equivalent NumPy calculation. This

slightly underestimates the total number of performed FLOPS

as copy and communication operations will not be included.

However, the difference is negligible as the computations

required in each experiment are on the order of several TFlop.

The Dask execution model envisages one scheduler process

and multiple worker instances. The scheduler sends workload

via serialized RPC calls to the workers. The actual program

code is provided in a separate script that connects the sched-

uler to the workers via a dask.distributed.Client

instance. The discovery of the scheduler is done manually

by passing an IP address or via information in files on a

shared filesystem. Networking between the processes builds

on network sockets and utilizes Infiniband using TCP over

IB. Each worker maintains its execution state by writing into

journaling directories.

B. Datasets

Three publicly available datasets were chosen to demon-

strate the effectiveness of HeAT for different data charac-

teristics and to mimic common use-cases. For the bench-

marking of the k-means algorithms (Section IV-C1) and the

forward propagation of a neural network (Section IV-C2), we

utilized the Cityscapes dataset [34]. It contains 5 000 high-

resolution images with fine-grained annotations. Each image is

2 048×1 024 pixels with three 256 bit RGB color channels per

pixel, which have been flattened and combined into a short-fat

matrix with 5 000×6 291 456 entries. For weak-scaling runs

each process has 300 rows of the matrix. For strong scaling

runs, the first 1 200 rows are used.

For the LASSO regression benchmark (Section IV-C3), pa-

rameters from the EURopean Air pollution Dispersion-Inverse

Model(EURAD-IM) [35] have been used as input variables.

The EURAD-IM is an Eulerian meso-scale chemistry transport

model as part of the Copernicus Atmosphere Monitoring

Service (CAMS)2. The regression targets of our experiment

are the errors of ozone forecasts of the model at measurement

sites3, such that the LASSO regression infers the dependency

of different model parameters on the forecast error. For the

experiment, 107 data points and 100 parameters of the model

have been chosen and stored in a tall-skinny matrix.

For the spectral clustering benchmark (Section IV-C4), the

SUSY dataset was chosen [36] as a tall-skinny dataset. It

contains 5 000 000 samples from Monte Carlo simulations of

high-energy particle collisions. Each sample has 18 features,

consisting of kinematic properties measured by the particle

detectors and high-level functional derivations of those mea-

surements [37]. The computational load of spectral clustering

grows quadratically with the number of samples. For the weak

scaling experiments sample numbers were thus increased by

the square root of the number of processes involved. The

first 25 820, 36 515, 51 640, 73 030, and 100 000 samples

were used for N =1, 2, 4, 8 and 15 nodes, respectively. For

experiments on one node with one or two GPUs, 12 910 and

18 258 samples were used. The strong scaling measurements

were performed using the first 40 000 samples of the dataset.

All data sets were converted from their original sources

into data matrices and stored as single-precision floats in an

HDF5 file [38]. While Dask and HeAT utilize parallel I/O via

h5py [39], they handle data decomposition differently. Dask

offers an automatic data decomposition scheme and the manual

specification of data chunk sizes. Dask has been tested with

both automatic chunking (their recommended setup) and with

a tuned chunking where the chunk size mirrors HeAT’s data

decomposition. All measurements with HeAT load the data

with split=0 (cf. Section III-B).

C. Experiments

1) k-means: k-means [40] is a vector quantization method

originating from the field of signal processing. It is commonly

used as an unsupervised clustering algorithm that is able to

assign all observations, x, within a dataset into k disjoint

partitions, each forming a cluster, (Ci). Formally, the method

solves the problem

argmin
C

k∑

i=1

∑

x∈Ci

dist(x, ci) (1)

given a distance metric dist and each cluster centroid ci.
In practice, the Euclidean distance is often used as distance

measure, effectively minimizing the inter-cluster variance. The

k-means clustering problem is generally NP-hard, but can

be efficiently approximated using an iterative optimization

2https://atmosphere.copernicus.eu/
3obtained from https://www.lanuv.nrw.de/umwelt/luft/immissionen/messorte-

und-werte/

0.25 0.5 1 2 4 8 15

100

101

102

103

Nodes

T
h
ro

u
g
h
p
u
t

p
er

p
ro

ce
ss

,
[G

F
lo
p
/
p
ro

c
e
ss
/
s]

1 2 4 8 15

100

101

102

103

Nodes

S
p
ee

d
u
p

v
s.

N
u
m

P
y

HeAT, CPU HeAT, GPU Dask, auto Dask, tuned

PyTorch, CPU PyTorch, GPU NumPy

Fig. 4: k-means clustering: weak (upper) and strong scaling

measurements (lower), cf. Section IV-C1.

method, such as, detecting a local minimum, i.e., Lloyd’s

algorithm [41]. In this experiment, we have benchmarked a

k-means implementation relying on distance matrix compu-

tations between the data points and the centroids. These are

dominated by element-wise vector operations in the distance

matrix computation and reduction operations for finding the

best matching centroids. For each benchmark, we have per-

formed 30 optimization iterations at eight assumed centroids.

Weak scaling measurements are shown in Fig. 4 (upper

panel). This shows that HeAT outperforms Dask by at least

an order of magnitude. Furthermore, the weak scaling trend

is nearly linear for HeAT, demonstrating solid scalability

for larger datasets for both CPU and GPU. For Dask we

were unable to complete the measurement procedure for all

node configurations. While it was sporadically possible to

complete the benchmark with a four-node configuration, it

would terminate with an out-of-memory exception before the

completion of the sequence. For 8 and 15 nodes, we were

unable to obtain any measurements due to excessive memory

consumption. Thus, the dashed line in the plots depicts a

linear extrapolation of the previous trend while maintaining

the temporal difference between the automatically chunked

measurements and the tuned chunk size measurements.

For HeAT, a single GPU shows overall better performance

compared to multiple GPUs (cf. Section IV-A). The difference

in throughput between PyTorch and HeAT on a single node

can be explained by a customized distance matrix computation

implementation in HeAT. For both frameworks, we invoke

the built-in cdist functions. However, the implementation in

HeAT performs quadratic expansion of the Euclidean terms,

instead of the naı̈ve squaring and summation approach. The

same implementation in PyTorch should result in similar

performance.

Strong scaling measurements are shown in Fig. 4 (lower

panel). Here, we obtain similar conclusions as in the

weak scaling measurements. HeAT outperforms Dask by

a significant margin and shows more favorable scaling

behaviour. Again, we had to extrapolate two measurement

points for Dask due to out-of-memory issues. While HeAT’s

CPU computations scale approximately linearly, the GPU

back end shows strong linearity.

2) Forward-Propagation of a Neural Network: An ob-

jective of HeAT is the implementation of fully distributed

neural networks. The first forward step of a neural network

is composed of a matrix multiplication between the input data

and a weight matrix and, if applicable, the addition of the

relevant bias information. After this, an activation function

is applied to the result. As the forward step of a network

can be repeated many times, the performance differences

of networks in different frameworks can increase drastically.

HeAT’s matrix multiplication is implemented using collective

communications. This allows for the efficient usage of data by

each process.

This benchmark is composed of the matrix multiplication of

the input data (CityScapes) with a random weight matrix of

size (6 291 456 × 128), equivalent to a fully connected neural

network layer with 128 neurons. The result of the multipli-

cation is then fed through a rectified linear unit (ReLU) [42]

activation function

max(XW, 0) (2)

where X is the input data, W is the weight matrix, and

max() is the element-wise maximum of XW and 0.

The number of operations for this function is dominated by

the matrix multiplication. Thus, weak scaling measurements

should be nearly flat. As illustrated in Fig. 5 (upper panel),

HeAT shows the expected behavior for both CPU and GPU

calculations. On GPUs, HeAT maintains an average through-

put of (12.90± 0.21)TFlop/s, or (82.14± 1.34)% of the

maximum [43]. Dask reaches a higher throughput on CPU at

lower nodes due to its centralized scheduler, then performance

degrades (cf. Section II).

The strong scaling measurements are shown in Fig. 5

(lower panel). While both HeAT and Dask show significant

speedup against NumPy, HeAT shows higher speedups and

more consistent scaling than Dask. The GPU measurements

show a speedup of roughly a factor of two more than both

0.25 0.5 1 2 4 8 15

101

102

103

104

Nodes

T
h
ro

u
g
h
p
u
t

p
er

p
ro

ce
ss

,
[G

F
lo
p
/
p
ro

c
e
ss
/
s]

1 2 4 8 15

100

101

102

103

Nodes

S
p
ee

d
u
p

v
s.

N
u
m

P
y

HeAT, CPU HeAT, GPU Dask, auto Dask, tuned

PyTorch, CPU PyTorch, GPU NumPy GPU Peak

Fig. 5: Forward-propagation of a neural network: weak (upper)

and strong scaling measurements (lower), cf. Section IV-C2.

Dask and NumPy.

3) LASSO: LASSO is a regression method of simultane-

ously applying regularization and parameter selection. Its basic

form is an extension of the ordinary linear regression (OLS)

method by introducing an L1-norm penalty of the parameters

scaled by the regularization parameter. The corresponding

objective function reads

E(w) = ‖y −Xw‖22 + λ‖w−‖1 (3)

where y denotes the n samples of the output variables;

X ∈ R
n×m denotes the system matrix in which m−1 columns

represent the different features, one column represents the

constant bias term, and each of the n rows represents one

data sample; w ∈ R
m denotes the regression coefficients;

w− ∈ R
m−1 the regression coefficients of the features; and λ

the regularization parameter.

In addition to the L2-norm regularization approach (i.e.,

Ridge-regression), LASSO favors not only smaller model

parameters but, depending on the regularization parameters,

can force selected model parameters to be zero. It is a popular

method to determine the importance of input variables with

respect to one or more dependent output variables.

In this experiment, a LASSO algorithm is used to determine

the most important model parameters of the EURAD-IM

model [35] on the forecast error of ozone. In order to minimize

the objective function, a coordinate descent algorithm with a

proximal gradient soft threshold applied to each coordinate

was implemented in HeAT, Dask, NumPy, and PyTorch. For

the weak scaling measurements, the LASSO algorithm is run

for 20 iterations on a data sample size of 714 280 samples per

node.

The HeAT CPU measurements show good weak scaling

behaviour (Fig. 6, upper panel) with the highest throughput

compared to the Dask and HeAT GPU versions. Dask shows

poor weak scaling due to the incompleteness of Dask with re-

spect to NumPy operations. For example, assignments to Dask

arrays are not supported by the library itself but are heavily

utilized in the implemented LASSO algorithm. Consequently,

Dask cannot make efficient use of its lazy evaluation concept

for this algorithm. The HeAT GPU version also does not scale

well, albeit with a significantly higher throughput than Dask.

This is due to the high number of communication operations

required; the effect is increased when combined with a non-

CUDA-aware MPI environment (cf. Section IV-A). Overall

we can conclude that HeAT outperforms Dask by up to more

than two magnitudes for weak scaling and by more than three

magnitudes for strong scaling.

Strong scaling measurements (Fig. 6, lower panel) were

conducted for the entire sample set. The trends observed

in the weak scaling measurements are also visible here.

Dask shows almost no scaling, whereas the HeAT CPU

measurements indicate a good scaling behaviour. For the

HeAT GPU implementation the speedup decreases with the

increase in computing resources due to the non-CUDA-aware

MPI environment.

4) Spectral Clustering: Spectral clustering is the process

of partitioning data samples into k groups based on graph

theory [44]. The underlying idea is to embed the dataset in

the lower dimensional space of the k smallest eigenvalues of

the graph’s Laplacian matrix and then employ a clustering

algorithm on them. The Laplacian matrix is derived from

the adjacency matrix, which describes the edges, or links,

between the data samples by a pairwise distance metric sij .

The calculation of all pairwise metrics between n data samples

has computational and memory complexity of O(n2), where

n is the number of data items. The subsequent eigenvalue

decomposition of the Laplacian matrix is asymptotically in

the same computational complexity class. The distributed

spectral clustering algorithm in HeAT relies on calculating

the similarity matrix S = {sij} using ring-communication of

data chunks. The eigenvalue decomposition is derived via the

Lanczos algorithm [45], an adaptation of the power-method for

finding extreme eigenvalues and corresponding eigenvectors.

Unlike many other frameworks, our implementation calculates

the exact similarity matrix, rather than an approximation

via the Nystrom method [46]. Further, it does not require

sparsification of this matrix, but can work on fully-connected

0.25 0.5 1 2 4 8 15

10−2

10−1

100

101

102

Nodes

T
h
ro

u
g
h
p
u
t

p
er

p
ro

ce
ss

,
[G

F
lo
p
/
p
ro

c
e
ss
/
s]

1 2 4 8 15

10−1

100

101

102

Nodes

S
p
ee

d
-u

p
v
s

N
u
m

P
y

HeAT, CPU HeAT, GPU Dask, auto Dask, tuned

PyTorch, CPU PyTorch, GPU NumPy

Fig. 6: LASSO regression: weak (upper) and strong scaling

measurements (lower), cf. Section IV-C3

dense graph representations of the data.

The evaluated frameworks apply conceptually different

workflows to perform spectral clustering. Dask-ml utilizes the

Nystrom method for approximating the similarity matrix and

its eigenvalues. Scikit-learn sparsifies the Laplacian matrix and

applies the ARPACK library for eigenvalue decomposition.

For PyTorch, spectral clustering was implemented for these

experiments with both the built-in eigenvalue solver (B) as

well as the Lanczos algorithm (L). Due to these differences

in workflows, the comparison of the number of operations

performed is not be meaningful. Thus, the inverse overall run

time is reported.

Fig. 7 (upper panel) shows the results of the weak scaling

experiment. HeAT clearly outperforms the other algorithms,

except for the GPU version of the Lanczos implementation in

PyTorch. However, with more processors, the communication

overhead dominates computation time, primarily due to the

plethora of pairwise distance calculations. On CPU, the Py-

Torch built-in implementation was canceled after exceeding

the time limit. Results for the strong scaling measurements

are presented in Fig. 7 (lower panel). On both CPU and

GPU, the PyTorch built-in implementation measurements were

not completed as they exceeded the time limit. For HeAT

0.25 0.5 1 2 4 8 15

10−3

10−2

10−1

100

101

Nodes

ru
n
ti

m
e−

1
,

[1
/
s
]

1 2 4 8 15

100

101

102

103

Nodes
S

p
ee

d
-u

p
v
s

sc
ik

it
-l

ea
rn

HeAT, CPU HeAT, GPU Dask-ml, auto

Dask-ml, tuned PyTorch, CPU (L) PyTorch, GPU (L)

PyTorch, GPU (B) scikit-learn

Fig. 7: Spectral clustering: weak (upper) and strong scaling

measurements (lower), cf. Section IV-C4. Inverse run time

is reported for weak scaling, as each framework utilizes a

different implementation.

GPU measurements, the communication overhead causes an

opposing trend to the increasing speedup at higher node

numbers. Nonetheless, HeAT’s spectral clustering algorithm

provides superior run times to the other frameworks.

V. DISCUSSION

We have presented HeAT, a Python-based framework for the

distributed data analytics and machine learning on multiple

CPUs and GPUs. It offers transparent parallel handling of

data and operations to exploit the available hardware, be

it personal workstations or world-class HPC systems. The

NumPy-like API enables users to easily translate existing

NumPy applications into distributed applications.

From the inception of HeAT, building parallelism into the

dense linear algebra functions which compose the founda-

tion of modern machine learning libraries has been a pri-

ority. PyTorch has been selected as an imperative, node-

local compute engine for HeAT. As a direct result, HeAT

benefits from PyTorch’s highly optimized functions. However,

distributed versions of these functions do not exist within

PyTorch. HeAT is designed to alleviate this. To leverage the

full potential of PyTorch, the algorithms within HeAT are de-

signed based on a hierarchical strategy. For example, HeAT’s

matrix multiplication utilizes PyTorch’s matrix multiplication

implementation on submatrices and aggregates the results via

MPI communications. This hierarchical strategy enables the

efficient utilization of the underlying hardware by exploiting

locality in the memory hierarchy. An additional benefit of

using PyTorch is that the associated run-time cost of Python

is negligible because the computationally demanding functions

are implemented in low-level languages.

Some of PyTorch’s features do not directly map to HeAT.

Among them is the just-in-time (JIT) compiler that enables

the on-the-fly optimization of functions. While PyTorch’s in-

termediate representation can only optimize its own operations

and several native Python functions, it cannot optimize MPI

routines. In order to make HeAT fully JIT-able, a low-level

implementation of the MPI layer as a C++ PyTorch extension

is necessary. Albeit work-intensive, it is a worthwhile oppor-

tunity for HeAT to obtain further performance gains.

For deep learning applications, several attempts have

been made towards distributed model training (e.g. PyTorch

dist, Horovod). These frameworks primarily focus on data-

parallelism; however, generalized model parallelism is not

available. HeAT’s programming model facilitates straight-

forward data-parallelism as well as model parallelism and

pipelining. The use of a custom communication layer allows

for the implementation of distributed automatic differentiation,

which is a vital part for a distributed model architecture.

In contrast to existing large-scale machine learning and

data analytics frameworks, HeAT is designed with a focus on

high-performance computing. Hence, significant efforts have

been made to efficiently utilize the available hardware while

avoiding central bottlenecks, such as workload schedulers and

excessive I/O, e.g. serial file access or journaling. Although

HeAT is unable to achieve peak hardware utilization in all

cases, it enables the user to access a substantial portion

of maximum performance with a high-level interface and

the performance benefits are relatively independent of data

characteristics.

Furthermore, the user-base of HPC resources is predomi-

nantly composed of domain experts who do not often have

a strong background in parallelization. Hence, the number

of configuration parameters for parallel constructs which are

exposed to users should be minimized. At the same time, these

constructs must be both powerful and versatile enough to allow

for implementation of a large variety of distributed algorithms.

HeAT’s programming model offers a way to easily develop

application-specific algorithms while leveraging the available

computational resources, setting it apart from other approaches

and libraries.

VI. CONCLUSIONS AND OUTLOOK

With HeAT, we address the needs of the ever-growing

community of scientists, both in academia and industry, who

seek to speed up the process of extracting information from

large datasets. To this end, we have set upon the task of

combining data analytics and machine learning algorithms

with state-of-the-art high-performance computing into one,

easy-to-use Python library.

The quality of an HPC machine learning library is de-

fined by its performance. Section IV shows weak and strong

scaling experiments on a number of applications: cluster-

ing (k-means, Section IV-C1, and spectral clustering, Sec-

tion IV-C4); LASSO regression (Section IV-C3); and the

forward-propagation step of a neural network (Section IV-C2).

The presented results show that HeAT outperforms the most

popular current competitor by up to two orders of magnitude

in terms of processing speed.

In the short term perspective, the logical next step is the

public availability of distributed automatic differentiation (cf.

Section III-D2). This subsequently offers the opportunity for

the development of high-level differentiable algorithms, such

as data- and model-parallel neural networks. In light of the

ever increasing need for machine learning models to yield

reliable predictions, considerable efforts have been put towards

the development of probabilistic approaches. HeAT’s program-

ming model and internal design give access to all levels of

algorithmic development and by such offers an intuitive way

to implement such approaches. One continuous objective also

is the optimization of computation and memory performance

of commonly used kernels.

We have demonstrated that even in its current early stage,

HeAT offers great potential. The convergence of speed and

usability sets it up to redefine high-performance data analytics

by putting high levels of parallelism within easy grasp of

scientists in academia and industry alike.

ACKNOWLEDGMENT

The authors would like to thank the system administrators

at the Jülich Supercomputing Centre and in particular Dr.

Alexandre Strube for their continuous support in maintaining

the benchmarking HPC system. Furthermore, we want to

thank the Helmholtz Analytics Framework collaboration for

thorough feedback and valuable suggestions.

REFERENCES

[1] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,

T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,

W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,

J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J.

Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,

Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde,

J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,

C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-

dregosa, P. van Mulbregt, and S. . Contributors, “SciPy

1.0: Fundamental Algorithms for Scientific Computing

in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[2] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The

NumPy array: a Structure for Efficient Numerical Com-

putation,” Computing in Science & Engineering, vol. 13,

no. 2, pp. 22–30, 2011.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo,

Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,

L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems,” 2015, software available

from tensorflow.org, [accessed at 2020-02-24]. [Online].

Available: http://tensorflow.org/

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang,

Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala,

“PyTorch: An Imperative Style, High-Performance

Deep Learning Library,” in Advances in Neural

Information Processing Systems 32. Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available:

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[5] M. Rocklin, “Dask: Parallel Computation with Blocked

algorithms and Task Scheduling,” in Proceedings of the

14th Python in Science Conference (SciPy 2015), K. Huff

and J. Bergstra, Eds., 2015, pp. 130–136.

[6] Message Passing Interface Forum, MPI: A

Message-Passing Interface Standard, Version

3.1. High Performance Computing Center

Stuttgart (HLRS), 2015. [Online]. Available:

https://fs.hlrs.de/projects/par/mpi//mpi31/

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg et al., “Scikit-learn: Machine

Learning in Python,” Journal of Machine Learning Re-

search, vol. 12, pp. 2825–2830, 2011.

[8] T. Chen, M. Li, Y. Li, M. Lin, N. Wang,

M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang,

“MXNet: A Flexible and Efficient Machine Learning

Library for Heterogeneous Distributed Systems,”

2015, [accessed at 2020-02-02]. [Online]. Available:

http://arxiv.org/abs/1512.01274

[9] A. Sergeev and M. Del Balso, “Horovod: Fast

and Easy Distributed Deep Learning in TensorFlow,”

2018, [accessed at 2020-03-17]. [Online]. Available:

http://arxiv.org/abs/1802.05799

[10] C.-C. Huang, Q. Chen, Z. Wang, R. Power, J. Ortiz,

J. Li, and Z. Xiao, “Spartan: A Distributed Array

Framework with Smart Tiling,” in Proceedings of

the 2015 USENIX Conference on USENIX Annual

Technical Conference. USENIX Association, 2015.

ISBN 978-1-931971-22-5 p. 1–15. [Online]. Available:

https://www.usenix.org/conference/atc15/technical-session/presentation/huang-chien-chin

[11] M. R. Kristensen, S. Lund, T. Blum, K. Skovhede,

and B. Vinter, “Bohrium: Unmodified NumPy Code on

CPU, GPU, and Cluster,” in Proceedings of the 4th

Workshop on Python for High Performance and Scientific

Computing (PyHPC13), 2013.

[12] M. Ravishankar and V. Grover, “Automatic acceleration

of Numpy applications on GPUs and multicore CPUs,”

2019, [accessed at 2020-03-17]. [Online]. Available:

http://arxiv.org/abs/1901.03771

[13] S. Palkar, J. Thomas, D. Narayanan, A. Shanbhag,

R. Palamuttam, H. Pirk, M. Schwarzkopf, S. Amaras-

inghe, S. Madden, and M. Zaharia, “Weld: Rethinking

the Interface Between Data-Intensive Applications,”

2017, [accessed at 2020-03-17]. [Online]. Available:

http://arxiv.org/abs/1709.06416

[14] M. Bauer and M. Garland, “Legate NumPy: Acceler-

ated and Distributed Array Computing,” in Proceedings

of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 2019. doi:

https://doi.org/10.1145/3295500.3356175 pp. 1–23.

[15] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,

E. Liang, M. Elibol, Z. Yang, W. Paul, M. I. Jordan,

and I. Stoica, “Ray: A Distributed Framework for

Emerging AI Applications,” in 13th USENIX Symposium

on Operating Systems Design and Implementation

(OSDI 18). USENIX Association, 2018. ISBN

978-1-939133-08-3 pp. 561–577. [Online]. Available:

https://www.usenix.org/conference/osdi18/presentation/moritz

[16] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang,

R. Henschel, C. Stewart, Z. Zhang, E. Mccallum et al.,

“Benchmarking Harp-DAAL: High Performance Hadoop

on KNL clusters,” in 2017 IEEE 10th International

Conference on Cloud Computing (CLOUD). IEEE,

2017. doi: https://doi.org/10.1109/CLOUD.2017.19 pp.

82–89.

[17] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO:

Memory Optimization Towards Training A Trillion

Parameter Models,” 2019, [accessed at 2020-03-17].

[Online]. Available: https://arxiv.org/abs/1910.02054

[18] IPython development team and Enthought, Inc.,

“DistArray: Think globally, act locally,” 2020,

[accessed at 2020-02-28]. [Online]. Available:

http://docs.enthought.com/distarray

[19] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,

C. Leary, D. Maclaurin, and S. Wanderman-Milne,

“JAX: Composable Transformations of Python+NumPy

Programs,” 2018, [accessed at 2020-02-29]. [Online].

Available: http://github.com/google/jax

[20] V. Shankar, K. Krauth, Q. Pu, E. Jonas,

S. Venkataraman, I. Stoica, B. Recht, and J. Ragan-

Kelley, “numpywren: serverless linear algebra,”

2018, [accessed at 2020-03-015]. [Online]. Available:

http://arxiv.org/abs/1810.09679

[21] M. Merrill, W. Reus, and T. Neumann, “Arkouda: Interac-

tive Data Exploration Backed by Chapel,” in Proceedings

of the ACM SIGPLAN 6th on Chapel Implementers and

Users Workshop (CHIUW 2019). ACM, 2019. doi:

https://doi.org/10.1145/3329722. ISBN 9781450368001

[22] J. Daily and R. Lewis, “Using the Global Arrays Toolkit

to Reimplement NumPy for Distributed Computation,”

http://tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://fs.hlrs.de/projects/par/mpi//mpi31/
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1802.05799
https://www.usenix.org/conference/atc15/technical-session/presentation/huang-chien-chin
http://arxiv.org/abs/1901.03771
http://arxiv.org/abs/1709.06416
https://www.usenix.org/conference/osdi18/presentation/moritz
https://arxiv.org/abs/1910.02054
http://docs.enthought.com/distarray
http://github.com/google/jax
http://arxiv.org/abs/1810.09679

in Proceedings of the 10th Python in Science

Conference (SciPy 2011), 2011. [Online]. Available:

http://conference.scipy.org/scipy2011/slides/daily GA Toolkit.pdf

[23] R. Tohid, B. Wagle, S. Shirzad, P. Diehl, A. Serio,

A. Kheirkhahan, P. Amini, K. Williams, K. Isaacs,

K. Huck et al., “Asynchronous Execution of Python Code

on Task-Based Runtime Systems,” in 2018 IEEE/ACM

4th International Workshop on Extreme Scale Program-

ming Models and Middleware (ESPM2). IEEE, 2018,

pp. 37–45.

[24] F. Darema, “The SPMD Model: Past, Present and Fu-

ture,” in Recent Advances in Parallel Virtual Machine

and Message Passing Interface, ser. Lecture Notes in

Computer Science, Y. Cotronis and J. Dongarra, Eds.,

vol. 2131, no. 1. Springer Berlin Heidelberg, 2001.

doi: https://doi.org/10.1007/3-540-45417-9 1. ISBN 978-

3-540-45417-5 pp. 1–1.

[25] L. Valiant, “A Bridging Model for Parallel Computation,”

Communications of the ACM, vol. 33, no. 8, pp. 103–111,

1990.

[26] L. Dagum and R. Menon, “OpenMP: an Industry Stan-

dard API for Shared-memory Programming,” IEEE Com-

putational Science and Engineering, vol. 5, no. 1, pp.

46–55, 1998.

[27] C. Pheatt, “Intel R© Threading Building Blocks,” Journal

of Computing Sciences in Colleges, vol. 23, no. 4, pp.

298–298, 2008.

[28] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scal-

able Parallel Programming with CUDA,” Queue, vol. 6,

no. 2, pp. 40–53, 2008.

[29] L. Dalcı́n, R. Paz, M. Storti, and J. D’Elı́a, “MPI

for Python: Performance Improvements and MPI-

2 Extensions,” Journal of Parallel and Distributed

Computing, vol. 68, pp. 655–662, 05 2008. [Online].

Available: https://doi.org/10.1016/j.jpdc.2007.09.005

[30] J. Salmon, M. Moraes, R. Dror, and D. Shaw, “Parallel

Random Numbers: As Easy as 1, 2, 3,” in Proceedings

of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, 2011. doi:

https://doi.org/10.1145/2063384.2063405 pp. 1–12.

[31] N. K. Boiroju and K. Reddy, “Generation of Standard

Normal Random Numbers,” Interstat, vol. 5, pp. 1–14,

2012.

[32] D. Kundu and A. Manglick, “A Convenient Way Of

Generating Normal Random Variables Using Generalized

Exponential Distribution,” Journal of Modern Applied

Statistical Methods, vol. 5, no. 1, pp. 266–272, 2006.

[33] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Col-

lecting Performance Data with PAPI-C,” in Tools for

High Performance Computing 2009. Springer, 2010,

pp. 157–173.

[34] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-

zweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele,

“The Cityscapes Dataset for Semantic Urban Scene Un-

derstanding,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, June

2016. doi: 10.1109/CVPR.2016.350. ISSN 1063-6919

pp. 3213–3223.

[35] H. Elbern, H. Schmidt, O. Talagrand, and A. Ebel, “4D-

variational Data Assimilation with an Adjoint Air Quality

Model for Emission Analysis,” Environmental Modelling

& Software, vol. 15, no. 6, pp. 539–548, 2000.

[36] P. Baldi, P. Sadowski, and D. Whiteson, “Searching

for Exotic Particles in High-energy Physics with Deep

Learning,” Nature Communications, vol. 5, p. 4308,

2014.

[37] D. Dua and C. Graff, “UCI machine

learning repository,” 2017. [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/SUSY

[38] The HDF Group, “Hierarchical Data Format, version

5,” 1997, [accessed at 2020-02-29]. [Online]. Available:

http://www.hdfgroup.org/HDF5/

[39] A. Collette, Python and HDF5. O’Reilly, 2013. ISBN

978-1449367831

[40] J. MacQueen, “Some Methods for Classification and

Analysis of Multivariate Observations,” in Proceedings of

the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, vol. 1, no. 14, 1967, pp. 281–297.

[41] S. Lloyd, “Least Squares Quantization in PCM,” IEEE

Transactions on Information Theory, vol. 28, no. 2, pp.

129–137, 1982.

[42] V. Nair and G. Hinton, “Rectified Linear Units Improve

Restricted Boltzmann Machines,” in Proceedings of the

27th International Conference on Machine Llearning

(ICML-10). Omnipress, 2010. ISBN 9781605589077

pp. 807–814.

[43] NVIDIA V100 Tensor Core GPU, NVIDIA, 1

2020, [accessed at 2020-03-17]. [Online]. Available:

https://www.nvidia.com/en-us/data-center/v100/

[44] U. Von Luxburg, “A Tutorial on Spectral Clustering,”

Statistics and Computing, vol. 17, no. 4, pp. 395–416,

2007.

[45] C. Lanczos, “An Iteration Method for the Solution of the

Eigenvalue Problem of Linear Differential and Integral

Operators,” Journal of Research of the National Bureau

of Standards, no. 45, pp. 255–282, 1950.

[46] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spec-

tral Grouping Using the Nystrom Method,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

vol. 26, no. 2, pp. 214–225, 2004.

http://conference.scipy.org/scipy2011/slides/daily_GA_Toolkit.pdf
https://doi.org/10.1016/j.jpdc.2007.09.005
http://archive.ics.uci.edu/ml/datasets/SUSY
http://www.hdfgroup.org/HDF5/
https://www.nvidia.com/en-us/data-center/v100/

	I Introduction
	II Related Work
	III Design and Implementation
	III-A Programming Model
	III-B DNDarrays
	III-C Distributed Computation
	III-D Unique Features
	III-D1 Parallel Pseudo-Random Numbers
	III-D2 Distributed Automatic Differentiation

	IV Performance Results
	IV-A Execution Environment
	IV-B Datasets
	IV-C Experiments
	IV-C1 k-means
	IV-C2 Forward-Propagation of a Neural Network
	IV-C3 LASSO
	IV-C4 Spectral Clustering

	V Discussion
	VI Conclusions and Outlook

