
Analyzing Web Search Behavior for Software
Engineering Tasks

Nikitha Rao, Chetan Bansal, Thomas Zimmermann,
Ahmed Hassan Awadallah, Nachiappan Nagappan

Microsoft Research
{t-nirao, chetanb, tzimmer, hassnam, nachin}@microsoft.com

Abstract—Web search plays an integral role in software engi-
neering (SE) to help with various tasks such as finding documen-
tation, debugging, installation, etc. In this work, we present the
first large-scale analysis of web search behavior for SE tasks using
the search query logs from Bing, a commercial web search engine.
First, we use distant supervision techniques to build a machine
learning classifier to extract the SE search queries with an F1
score of 93%. We then perform an analysis on one million search
sessions to understand how software engineering related queries
and sessions differ from other queries and sessions. Subsequently,
we propose a taxonomy of intents to identify the various contexts
in which web search is used in software engineering. Lastly, we
analyze millions of SE queries to understand the distribution,
search metrics and trends across these SE search intents. Our
analysis shows that SE related queries form a significant portion
of the overall web search traffic. Additionally, we found that there
are six major intent categories for which web search is used in
software engineering. The techniques and insights can not only
help improve existing tools but can also inspire the development
of new tools that aid in finding information for SE related tasks.

I. INTRODUCTION

Internet has become an invaluable source of information in
our daily lives. Web search plays a key role in finding relevant
information from the internet. A typical knowledge worker
frequently searches for data, experts and tools to help with
their daily jobs [1]. In the software engineering domain, web
search is heavily used by developers to assist with various
tasks such as finding API documentation [2], code samples [3],
[4], installation procedures, solutions to fix bugs and other
issues, navigating to resources, etc.

Several aspects of web search usage and user behavior have
been extensively studied in prior work. However, there is lim-
ited understanding of web search usage for software engineer-
ing (SE). Prior work has majorly focused on code search in
particular [5], [6], [7] with several tools being built to facilitate
code search [8], [9], [10], [11]. Still, software engineers use
web search for several other tasks, besides code search, such as
finding tutorials, bug fixes, tools, documentation, discussions,
etc. Xia et al. [12] categorized the various tasks performed by
software engineers that make use of web search and assessed
their frequency and difficulty level by analysing the search logs
collected from 60 developers and additionally interviewed 12
software engineers. Rahman et al. [13] analyzed search logs
from 310 Google developers to compare code related and non-
code related queries and observed that code related search
often required more effort than non-code search.

Understanding usage of web search for software engineering
tasks is important not just for improving web search but also to
inspire the development of new tools and techniques for soft-
ware engineering tasks. As discussed in Section IX, we find
that software engineering queries are not as effective as other
queries in general web search engines, highlighting the need
for custom search engines to enable better search experience
for software engineers. The insights generated can also be used
to improve existing software products based on the various
problems users face. Additionally, the insights from this study
can be leveraged to enable personalized search experiences, to
improve software tool recommendations and help the users to
be more productive.

In this paper, we present the results from the first large-
scale study of web search behavior for software engineering
tasks using millions of search queries and search sessions
from Bing, a commercial web search engine1. Firstly, in order
to identify SE search queries from other non-SE queries, we
use distant supervision to build a machine learning based
classifier for distinguishing between SE and non-SE queries.
We follow this with a comparative study to better understand
the differences in web search behavior for SE and non-SE
queries. Subsequently, we propose a taxonomy of intents to
identify the various tasks for which web search is being used
for software engineering. Following that, we build a heuristics
based model to automatically categorize the search intent
for a given SE query. Next, we analyze the distribution of
intents across various web search metrics such as popularity,
success rate and effort estimation. We further look at the
trends in intents across sessions, different device types and
in the temporal space. Our work is different from prior work
as we perform the first large scale study that analyses web
search behavior for all software engineering tasks and not just
code search. Additionally, our study focuses on the general
population as opposed to developers from a single company.
Specifically, we make the following contributions:

1) We propose a distant supervision based machine learn-
ing classifier to distinguish software engineering related
search queries from other queries (Section IV).

2) We propose a taxonomy of intents to characterize the
web search behavior for software engineering tasks. This

1The datasets cannot be made public due to GDPR and other privacy laws.

ar
X

iv
:1

91
2.

09
51

9v
3 

 [
cs

.S
E

] 
 2

9 
A

ug
 2

02
0



taxonomy includes the following intents: API, Debug,
HowTo, Learn, Installation, Navigational and Miscella-
neous (Section VI).

3) We perform a comparative study to understand how soft-
ware engineering related search queries and sessions are
different from other queries and sessions by analyzing
one million search sessions using the query logs from
Bing web search engine (Section V).

4) To better understand the distribution of intents in SE
queries, we propose a heuristics based intent classification
model (Section VII).

5) Lastly, we investigate the distribution of intents for six
million queries across various web search metrics such
as popularity, success rate and effort estimation. We also
compare query trends across sessions, device types and
in the temporal space (Section VIII).

The rest of the paper is organized as follows. We start
by presenting the related work in Section II. In Section III,
we describe the query logs dataset used for our analysis. We
follow this with SE query classification in Section IV and
discuss the SE query analysis in Section V. We then describe
the taxonomy of intents for SE queries in Section VI. The
intent classification and analysis is presented in Sections VII
and VIII respectively. Finally, we present the discussion in
Section IX and conclude in Section X.

II. RELATED WORK

There has been a significant amount of work from the data
mining and information retrieval communities around charac-
terizing and improving web search. In the empirical software
engineering community, the primary focus has been on ana-
lyzing code search by developers. In this work, we leverage
insights and metrics from prior work to better understand web
search in context of software engineering.

A. Web search behavior

Prior work has extensively studied various aspects of web
search behavior. Ong et al. [14] examined user behavior for
Mobile search and Desktop search queries; highlighting sev-
eral differences in usage including the type of queries and the
interaction with the results. Other work focused on character-
istics of the results such as the effect of snippet length and
content [15] and the effect of the number of documents in
the result list [16]. There also has been studies that focused
on query characteristics such as the query interface and query
difficulty [17]. These studies are rather generic in nature and
aim to provide a general characterization of how people use
and interact with web search.

There has also been several studies on web search usage for
specific user groups in well defined segments based on domain
independent factors such as demographics, task type or task
difficulty. For example, Mehrotra et al. [18] studied search
engine usage across different ages, genders and other demo-
graphics. Moreover, the level of difficulty of the task was also
shown to have a notable impact on interactions with search
engines [19], [20]. Additionally, web search in healthcare and

medical diagnosis has also received significant attention [21],
[22]. Spink et al. [21] provided general characterization of
medical and health queries. Search query analysis has been
also used to understand and characterize user behavior in var-
ious domains such as web security [23] and e-commerce [24].

In this work, we build upon the prior work for analyzing
and characterizing web search usage for software engineering
tasks. We also discuss the implications of this characterization
to improve existing tools and inspire the development of new
tools to better support software engineering tasks.

B. Code search

In the software engineering community, there has been sub-
stantial work done in understanding and improving code search
[8], [9], [10], [11]. Bajracharya et al. [5] analyzed usage of
Koders.com, a specialized code search engine, by developers.
They perform lexical analysis of the search queries and use
topic modelling techniques to extract 50 topics from the search
queries. Similarly, Stolee et al. [6] surveyed developers on
the tools used for code search and found that 69% of the
participants used web search for code search and were not
satisfied with the existing code search tools. Sadowski et al.
[7] surveyed 27 developers at Google to better understand the
various properties of code search queries.

Xia et al. [12] collected search logs from 60 developers and
interviewed 12 software engineers to categorize search tasks
into 34 buckets across seven different categories. They also
carried out a survey to understand the level of difficulty and
frequency of these search tasks. Additionally, they found that
developers are more likely to search for code on web search
engines rather than specialized code search engines. Rahman
et al. [13] analyzed search logs from 310 developers at Google
(150, 000 search queries) and built a statistical model based
on Stack Overflow tags to classify search queries into code-
related and non-code-related queries. They then compared the
search sessions with respect to duration, query length, result
clicks, and query reformulations and found that code related
searches sessions often requires more effort than general non-
code search sessions. Hassan et al. [25] mined search logs to
characterize the usage of web search for debugging errors and
exceptions.

Our work differs from the existing work in the software
engineering community in several aspects. This is the first
large-scale study, conducted on millions of search queries and
sessions, to analyze web search behaviour for all software
engineering tasks and not just code search or debugging. Web
search is often used for several other software engineering
tasks like debugging, navigation, learning and installation. Fur-
ther, by using the search logs from Bing web search engine, we
are able to analyze the behavior of the general population with-
out limiting ourselves to developers in a commercial setting.

III. WEB SEARCH LOGS

In this study, we use the search query logs from Bing, a
commercial web search engine. The logs comprise of a rich
set of metadata associated with each user query. Please note



Table I: Domains used for inferring labels

SE domains Description

github.com Largest collaborative software develop-
ment platform

developer.mozilla.org Documentation for web standards and
Mozilla projects

docs.oracle.com Documentation for Oracle products in-
cluding Java

developer.android.com Official website for Android applica-
tions and OS

stackoverflow.com One of the most popular question and
answer website for programmers

that the logs are anonymized to remove any user identifiable
information before any analysis was conducted and all results
presented in this paper are aggregated over several user queries
and sessions.

A. Terminology

In accordance with the terminology defined in Web search,
here is a list of key terms along with their definitions that are
frequently used throughout the paper.

• Search query: The raw query text that a user enters into
the search engine.

• Client: A user facing application used for browsing
the search engine and doing search queries. Clients are
uniquely identified by using various tracking mecha-
nisms, for instance, browser cookies.

• Search session: The various search queries that a user
may enter consecutively until there is either a thirty min-
utes period of inactivity [26] or the browser is closed.

• Result URLs: Ordered list of URLs displayed by the
search engine in response to the user’s search query.

• Click URLs: List of URLs which were clicked on by the
user from the result URLs ordered by the time of click.

• Dwell Time - The amount of time spent by the user on
the page resulting from a click. Previous research has
shown that dwell time has a significant correlation with
users satisfaction from the resulting web page [27].

• SAT (Satisfactory) Click - A click is said to be satisfac-
tory if the user has a dwell time of over thirty seconds
as proposed by Fox et al. [27].

B. Scope of the study

Web search patterns tend to vary significantly based on
several factors such as geography, locales, etc. To minimize
this variance, we have limited the scope of this work to en-
US locale. Further, we filter out traffic generated by bots since
we aim to analyze user behavior in this study.

IV. SE QUERY CLASSIFICATION

In order to understand how web search is used for software
engineering tasks, we first need to be able to distinguish SE
search queries from other queries.

A. Inferring labels

A significant amount of labeled data containing both SE
queries and non-SE queries is required to build a high accuracy
machine learning based classifier. However, getting the labels
can be quite laborious and expensive. Hence, we propose the
use of distant supervision techniques to build our training
dataset. We use the website listings from Alexa.com [28] and
the click information from the query logs and perform the
following steps:

1) We collect the top 5 SE related websites from the soft-
ware category on Alexa.com (summarised in Table I).

2) We then process 5 days of the query logs described in
Section III and sample 1 million queries. We discuss the
data sampling process in detail in Section IV-B.

3) Subsequently, we label the subset of sampled queries
having at least one click on a SE domain (listed in Table
I) as SE related. The remaining randomly sampled queries
are labeled as Non-SE related.

The key insight leveraged here is that the queries which result
in a click on the SE related domains are generic and diverse
enough to train a more generic classifier for all SE related
queries. The efficacy of this method is confirmed by the re-
sults of the evaluation process. An additional optimization was
performed to remove navigational queries from the data by
removing queries which resulted in a click to the home page of
the SE domains. Lastly, a machine learning model was used to
train the classifier rather than solely relying on the heuristics,
as (i) Not all queries with clicks leading to these websites
may be SE related, for example, the queries for logging in and
financial statements, (ii) The top 5 SE related websites are a
small subset of the SE related websites.

B. Training data

As described earlier, there is a rich set of metadata asso-
ciated with the search queries such as the query text, result
URLs, clicked URLs, dwell times, etc. However, we only
use the features derived from the query text for training the
classifier to ensure accurate classification despite the absence
of other information. For instance, not all queries lead to clicks
on the search results. Also, since our heuristics rely on the
clicked URLs, they are explicitly removed from the model
features to prevent overfitting. The query text is preprocessed
to remove all non-alphanumeric characters. This followed by
a transformation of the query text to vector form by using
the TF-IDF representation. The TF-IDF representation ensures
that the model does not overfit on frequently occurring words
such as stop words.

For training and testing of ML classifiers, around 2 million
search queries are sampled from a time period between May
1st, 2020 and May 15th, 2020. Presently, the queries are lim-
ited to en-US and normal traffic as described in Section III-B.
The queries are sampled using stratified sampling techniques
with a 1 : 10 ratio of SE:Non-SE queries since SE queries form
a small fraction of the overall web search traffic. Considering
that the extract ratio of SE:Non-SE queries in the real world is



Fig. 1: Top 20 positively and negatively correlated features

Table II: 10-fold cross-validation comparison

Model Precision Recall F1 AUC

AdaBoost 0.891 0.516 0.653 0.826

DecisionTree 0.911 0.890 0.900 0.935

LinearSVC 0.941 0.920 0.930 0.989

LogisticRegression 0.940 0.891 0.915 0.988

not known, a low sampling ratio is chosen arbitrarily. Accord-
ingly, the dataset contains 2 million non-SE and 0.2 million
SE queries. Lastly, a 70 : 30 random split of the dataset is
used to generate the train and test datasets.

C. Model selection

The task of identifying SE and non-SE queries is formulated
as a binary classification problem. In order to find the most
suitable classification model, several experiments are run with
different machine learning algorithms, namely, AdaBoost, De-
cision Trees, Logistic Regression, Linear SVC (Support Vector
Classification). The Scikit-learn 0.20.0 package for Python
3.7.1 is used for training and evaluating all the classifiers.
Note that our goal is to explore the feasibility of classifying
SE related search queries rather than finding the best-fitting
classification model. Hence, the default hyper-parameters for
these classifiers are used as is.

The classifiers are evaluated and compared against the fol-
lowing four widely used metrics: Precision, Recall, F1-Score
and AUC (area under ROC curve). In line with existing work
such as [29], the classification models are evaluated using 10-
fold cross-validation. Table II summarises the performance of
classifiers based on the evaluation metrics. We note that the
LinearSVC classifier outperforms all other models with a F1-
score of 0.93 and AUC of 0.989. Consequently, the LinearSVC
model is chosen to classify the queries as SE and Non-SE.

D. Model evaluation

The efficacy of the LinearSVC model for classifying SE
and non-SE queries is further evaluated in the following ways.
Firstly, an additional analysis of the model on the automati-
cally labeled test dataset described in the previous section is
carried out. This is followed by an evaluation of the model on
manually annotated data. Lastly, a qualitative analysis of the

Table III: Evaluation results of LinearSVC model on test data

Class Precision Recall F1-score Support

SE 0.94 0.93 0.93 149,558

Non-SE 0.98 0.98 0.98 450,442

feature weights learnt by the model shows that the model is
highly generic and does not overfit on the hueristics used.

Evaluation on inferred labels - As shown in Table II, the
LinearSVC model has high accuracy on the test data created
using the inferred labels (described in Section IV-A). Given
that the data has a class imbalance, the metrics are individu-
ally calculated for the two classes, SE and Non-SE, and the
resulting scores are reported in Table III. Here, support refers
to the number of samples that belong to a given class. We find
that the LinearSVC model has an F1-score of 0.93 for the SE
class (minority) and we achieve upto 0.98 F1-score for Non-SE
class (majority). Hence, validating that the model can classify
both SE and Non-SE queries in the test set with high accuracy.

Manual evaluation - So far, the evaluations were performed
on the automatically labeled dataset. To ensure that the clas-
sifier does not overfit by simply learning to distinguish search
queries leading to the SE websites listed in Table I from
queries leading to clicks on other websites, a manual evalu-
ation is conducted on 200 randomly sampled search queries
from the test dataset. Two of the authors manually and inde-
pendently annotate the data with SE and Non-SE labels. The
Cohen Kappa [30] coefficient is then used to measure the inter-
rate agreement with a resulting score of 0.91. Upon evaluating
the trained ML model on this manually labeled dataset, we
see that the model achieves an accuracy of 0.93 which proves
that the model is generalizable, highly accurate and does not
overfit on the training data.

Feature coefficients - The ML classifier is trained using
the unigram features extracted from the search queries. The
trained model is further analyzed by extracting the top fea-
tures learned. Figure 1 plots the top 20 features and their
corresponding coefficients learned by the model. It is observed
that both the positively (for instance: python, github, string)
and negatively correlated features (for instance: county, news,
porn) were highly generalized topics that corresponds to SE
and Non-SE tasks respectively.



Table IV: Comparison of SE and non-SE search sessions

Metric SE (± SEM) Non-SE (± SEM)

Unique Session % 2.611 97.389

Unique Client % 2.832 97.168

Avg. unique query count 2.186 (± 0.014) 3.05 (± 0.005)

Avg. similar query % 4.278 (± 0.072) 3.555 (± 0.01)

Avg. term addition count 2.484 (± 0.068) 2.183 (± 0.021)

Avg. term removal count 2.184 (± 0.085) 1.879 (± 0.025)

Table V: Comparison of SE and non-SE search queries

Metric SE (± SEM) Non-SE (± SEM)

Avg. word count 5.245 (± 0.017) 3.807 (± 0.002)

Avg. character count 30.521 (± 0.0111) 24.088 (± 0.0163)

Avg. click count 0.41 (± 0.002) 0.449 (± 0.003)

Avg. SAT click count 0.217 (± 0.001) 0.236 (± 0.002)

Avg. total dwell time
(in sec)

270.051 (± 2.072) 307.549 (± 0.339)

V. SE QUERY ANALYSIS

In this section, a comparative study is carried out to anal-
yse the differences in SE and Non-SE queries across several
metrics that are broadly divided into the following categories:
query characteristics (such as counts, query similarity and re-
formulation metrics), interaction characteristics (such as clicks
and dwell time) and geographical trends. This provides key
insights into differences in web search behaviour for SE spe-
cific tasks and other Non-SE tasks. Table IV and Table V
summarise the findings for session-level behaviour and query-
level behaviour respectively.

A. Data

The analysis is carried out on one million search sessions
that are randomly sampled from a time period between May
1st and May 15th, 2020. Necessary filters are applied to re-
move automated traffic from bots and services and the scope
is limited to users having English locale in the US region. The
resulting dataset contains 4, 103, 219 queries from 985, 920
distinct clients with 2.1% of the total queries automatically
labeled as SE queries using the trained classifier. Additionally,
a given search session is labeled as SE related if a majority
of queries in the session are SE related. This results in 2.61%
of all the web search sessions from the sampled data being
labeled as SE search sessions. Thereby validating that web
search is significantly used for SE related tasks (Table IV).

B. Session-level analysis

Number of unique queries: While query characteristics like
the number of unique queries provides a good estimate of
query popularity, it can also be used as a proxy to estimate
the session length. A higher number of unique queries per
session indicates that the user is required to explore different
variations of the search query before their information need
is fulfilled resulting is longer search sessions. Note that using
the unique query counts ensures that the same query is not

accounted for multiple times even if the user refreshes the
search page or hits the back button. It is observed from Table
IV that SE search sessions contain an average of 2.186 unique
queries which is 28.33% lower than non-SE search sessions
demonstrating that the SE search sessions tend to be shorter.

Query similarity: Another useful query characteristic in web
search is the diversity of queries within a given session. To
explore the level of diversity in a given session, the similarity
of every subsequent query is measured against the first query.
This helps to capture the evolution of query formulation as
the session progresses. The query similarity can additionally
reflect on whether a user was successful in their search task.
An unsuccessful search session might lead to strong similarity
between the initial query and the corresponding queries with
terms being added or removed as the session progresses.

Prior to computing the similarity score between a pair of
queries in the session, a standard text normalization is carried
out where the query text is converted to lowercase, any extra
white-space characters and stop words are eliminated. This
results in a bag-of-words representation of the query terms.
Finally, the similarity score for any two queries is computed
using the Jaccard coefficient between the two sets of bag-of-
words. It is observed from Table IV that SE search sessions
contain 27.17% more similar search queries than other Non-
SE sessions implying that users browse related topics at a
higher rate in SE sessions.

Reformulation strategies: While the number of unique
queries in a session and the similarity between queries shed
light on the length of the sessions and track the evolution of
queries as a session progresses. We further analyse the strate-
gies employed by a user when transitioning from one query to
another. Reformulated queries refer to a pair of queries having
a similarity larger than a set threshold. The reformulation of
a query can take place in several ways. However, for the sake
of simplicity we look at the following two methods: (i) Term
Addition, where one or more words are added to the query, and
(ii) Term Removal, where one or more words are removed from
the query. It can be observed from Table IV that SE search
sessions have a significantly higher rate of term additions and
removals. This is consistent with our previous finding of SE
sessions having a higher percentage of similar search queries.

C. Query-level analysis

Word and character counts: The simple query characteristics
based on word and character counts are used to better
understand the formulation of SE and Non-SE queries. It can
be observed from Table V that SE queries have a 37.8% higher
word count on average when compared to Non-SE queries.
Additionally, it can be observed that SE queries contain
27.17% more characters on average. Based on a manual analy-
sis, we observe that a majority of the SE queries concern with
debugging tasks with searches having extremely descriptive
error messages that lead to high word and character counts.



Fig. 2: Normalized SE queries distribution in US

Number of clicks: The level of interaction in terms of
number of result URLs clicked may vary significantly based
on the type of query with some tasks requiring more effort in
finding the relevant information than others. Using the click
information for a given query being logged in the search
logs, the average number of clicks is computed for SE and
Non-SE queries. To ensure that the clicks are relevant, non-
result clicks (such as, clicks on sponsored results) and clicks
that lead to another search result page (such as, spelling
corrections, related search clicks, etc.) are removed. It can be
observed from Table V that SE search queries have a lower
click rate as well as a lower SAT click rate than non-SE
search queries demonstrating that SE related search tasks are
generally more difficult than other search tasks.

Dwell time: The difference in dwell time on clicked results is
another interesting interaction characteristic that we explore.
Prior work has shown that the amount of time spent by users
on the clicked document is an important indicator of whether
they are satisfied with the content [27]. The dwell times,
recorded for each click, are averaged over the given query. It
can be observed from Table V that the total dwell time on
average for SE search queries has a 13.8% reduction compared
to other queries thereby demonstrating that SE queries are
shown to be not as successful as other Non-SE queries.

Geographic trends: To better understand how the search
trends vary across different states in the US, a heat map of
the normalized SE query volume, computed as the ratio of SE
queries to that of Non-SE queries is plotted. The normalization
removes any bias that may occur from states that are large (in
population or internet penetration), like California, Texas, New
York, having high web search activity. As seen in Figure 2,
Washington has the highest SE query volume closely followed
by Utah, California, Virginia, Colorado, Oregon and Texas.
These results seem to correlate with the statistics provided
by the U.S. Bureau of Labor Statistics in the Occupational
Employment and Wages Report 2 from May 2019 that measure
employment rate, skill and income.

2https://www.bls.gov/oes/current/oes151256.htm#st

Table VI: Taxonomy of user intent in prior work.

Reference Taxonomy

Broder et al. [31] Informational, Navigational, Transactional

Fourney et al. [32] Operation Instruction, Troubleshooting, Down-
load, Reference, General Information, Off-Topic

Panichella et al. [33] Feature Request, Opinion Asking, Problem Dis-
covery, Solution Proposal, Information Seeking,
Information Giving

This work API, Debug, HowTo, Installation, Learn, Navi-
gational, Miscellaneous

VI. QUERY TAXONOMY

Software developers can have various intents when search-
ing the web for SE queries. They may want to learn more
about a technology, debug an error message they encountered,
install a new software and so on. In this section, we aim to
understand the various intents associated with SE queries.

To this end, 200 SE queries are uniformly sampled based
on the query length (the number of tokens present in the
query) from the SE query dataset generated in Section V-A.
Three annotators independently inspected all the queries along
with the click URLs. Using the open coding approach, they
first assigned a label based on what they thought the most
prominent intent behind the query was. This was then followed
by a discussion to understand the various intent categories and
they settled on the following intent categories: API, Debug,
HowTo, Installation, Learn, Navigational and Miscellaneous.

The three annotators then labeled another set of 200 SE
queries, uniformly sampled based on query length, in order
to validate the intent categories and to make sure no new
categories emerged. The inter-annotator agreement was then
computed using Fleiss kappa [34] with a resulting score of
0.71 indicating substantial agreement among the annotators.
When the raters disagreed, it was either because of lack of
context (for example, ‘laps gpo files’, ‘xml dat’) or for queries
where multiple categories were applicable (for example, ‘how
to update android version’, ‘opencv ios’). A detailed descrip-
tion of the resulting taxonomy along with example queries can
be found in Table VII.

Table VI summarizes the user intent taxonomies developed
in prior works including, general web search [31], search in
the context of interactive applications [32] and using feedback
in the form of review comments in apps [33]. The similarities
and differences between our taxonomy and the taxonomies
defined in prior works are elaborated below:

• The Navigational intent that Broder et al [31] introduced
for general web search is retained and Transactional is re-
branded to Installation as it is more suited in the software
engineering context. The Informational intent is dissected
into finer intent categories that are specific to software
engineering like API, Debug, HowTo and Learn.

• A significant overlap is observed in the taxonomy defined
by Fourney et al. [32] for interactive applications. A one-
to-one mapping is identified between the some of the
intents as Operation Instruction, Troubleshooting, Refer-



Table VII: Intent categories for SE queries.

Intent Description Examples

API Queries where the user wants to learn more about a specific
API element in the software. These queries often lead to the
documentation page of the API.

‘bitflyer rest api’, ‘reshape pandas’, ‘cpp stdvector’, ‘fwrite
linux’, ‘keras attention tf20’, ‘flex css’, ‘htm5 drag and drop’,
‘excel text functions’, ‘break matlab’, ‘dotnet core web api
docker’, ‘microsoft graph api’, ‘sqlbulkcopy data table’

Debug Queries related to debugging an error or issue which typically
include error messages, parts of stack traces, and sometimes
a short description to given context to the error.

‘dban error disk not found’, ‘gpg error no usable configura-
tion’, ‘run time error arch linux’, ‘cant find mount source de-
vdisk openmediavault’, ‘error code 126 dll cannot be loaded’,
‘steam vr failed initialization’, ‘cant connect to net extender’

HowTo Queries where the user is trying to accomplish a specific task.
These queries often contain a short description of what the
user wants to accomplish and in some cases the technology
they want to use.

‘How to copy formula down the column’, ‘selecting rows
from dataframe with value at column output row names in r’,
‘how to specify port number in ssms’, ‘ping a server’, ‘use
api to pull data from site’, ‘aws amplify add codegen’

Learn Queries where the user is trying to learn about an abstract
topic related to software engineering. They can also include
queries that are comparing two software or reviewing them.

‘keras vs pytorch’, ‘ios opencv’, ‘file system implementation’,
‘access database tutorial’, ‘what is the float property of css’,
‘difference between primary and unique key sql’, ‘c language
pointer to function’, ‘radeon vii fps benchmarks’

Installation Queries where the user aims to install a software, tool, pack-
age, etc. Often these searches include the target environment,
version numbers.

‘installing webroot’, ‘ubuntu eigen3 install’, ‘npm install’,
‘microsoft sql server localdb 2016 install’, ‘install r260 driver
’, ‘sql server managment studio download’, ‘visual c++ latest
download’, ‘install zoom app for windows 10’

Navigational Queries where the search engine is used to navigate to a spe-
cific resource or web-page. The user has a specific destination
in mind and uses the search engine as a shortcut to get there.

‘robot mesh studio’, ‘sharepoint’, ‘anaconda’, ‘raspberry pi’,
‘cache camper’, ‘aws.amazon’, ‘url encoder’, ‘typing test’,
‘obs studio’, ‘input mapper’, ‘unity performance’, ‘linux’,
‘eclipse’, ‘azure portal’, ‘switcher studio’, ‘rarbg index page’

Miscellaneous Queries for which none of the above intents were suitable
due to insufficient context available to make a decision.

‘edge popup allow’, ‘bootstrap prev next tabs’, ‘laps gpo
files’, ‘webknight application firewall alert’, ‘free proxy
server’, ‘xml dat’, ‘openshift client certificate’, ‘web html’

ence, Download and General Information directly map to
HowTo, Debug, API, Installation and Learn respectively.
This indicates that the web search intents observed in the
context of interactive applications forms a subset of web
search intents we observe in software engineering.

• Panichella et al. [33] defined a taxonomy for user feed-
back in the form of reviews for apps. While there was
some overlap between intents with Problem Discovery
mapping to Debug and Opinion Asking and Information
Seeking mapping to Learn or API, it is observed that
intents like Feature Request, Information Giving and So-
lution Proposal are not found in the context of web search
for software engineering.

VII. INTENT CLASSIFICATION

One of the goals of this study is to analyse the distribu-
tion of intents in SE queries. Given the large number of SE
queries, we propose a heuristics based classification model to
automatically identify the search intent given the search query.
The 200 manually labeled queries (train samples) along with
their click URLs from Section VI are analyzed to identify
various patterns correlating to each intent class. These include
frequently occurring keywords in both the query string and the
clicked URLs, number of URLs clicked, type of URLs, etc.

A rule based model, that leverages the heuristics, is then
built to automatically infer the intent labels. The performance
of the model is then tested on the train samples. The heuris-
tics are iteratively updated until an accuracy of over 90%
is attained on the train samples. The final set of heuristics

associated with each intent is described in Table VIII. The
precedence order followed by the model, in the decreasing
order of specificity, is as follows: Debug, Installation, Learn,
HowTo, API, Navigational, Miscellaneous.

To ensure that the model does not overfit on the training
samples that was used to tune the classifier, the model is
further evaluated on test set of 200 randomly sampled queries.
Upon doing a manual evaluation, it is noted that the model
achieves a test accuracy of 93.5%. The misclassifications were
either due to lack of sufficient context in the query string (for
example, ‘CrtDbgBreak return true’, ‘edge popup allow’) or
due to multiple intents being applicable for a given query (for
example, ‘dns server settings’, ‘how to update anaconda’).

VIII. INTENT ANALYSIS

To better understand the distribution of intents in SE queries,
the best performing SE query classifier (i.e. LinearSVC)
from Section IV is used to identify the SE queries from a
two week time span between May 1st, 2020 and May 15th,
2020. 6 million SE queries are then sampled along with other
query attributes like click URLs, click counts, request time,
dwell times etc for understanding users’ behavioural patterns.
After which, the heuristics based intent classification model
(described in Section VII) is used to infer the intent labels.
This is followed by an analysis on distribution of intents
across various metrics like popularity, success rate and effort
estimation. Additionally, an analysis on various trends across
sessions, different device types and in the temporal space is
carried out. The insights gained from this analysis can be



Table VIII: Heuristics associated with each intent.

Intent Heuristics

API Keywords - ‘api’, ‘function’, ‘method’,
‘call’, ‘reference’, ‘ref’, ‘doc’, ‘command’

Debug Keywords - ‘error’, ‘troubleshoot’, ‘fail’,
‘debug’, ‘exception’, ‘care’, ‘fix’, ‘prob-
lem’, ‘diagnose’, ‘not working’, ‘solve’,
‘not’, ‘couldnt’, ‘wouldnt’, ‘wont’, ‘cant’

How-to Keywords - ‘how’, ‘question’

Installation Keywords - ‘download’, ‘install’, ‘pur-
chase’, ‘buy’

Learn Keywords - ‘tutorial’, ‘wiki’, ‘learn’,
‘why’, ‘what’, ‘where’, ‘does’, ‘review’,
‘vs’, ‘versus’, ‘difference’

Navigational Single URL click leading to the target web-
site.

Miscellaneous None of the above heuristics are satisfied

leveraged to better understand the web search behaviour of
users for SE tasks allowing others to find answers to questions
like ‘what are some frequent issues users are facing with a
given software?’, ‘how does the given software tool compare
with it’s competitor tools based on whether they are have
higher success rates and lower estimated effort?’, ‘finding the
popularity of different software technologies based on users’
web search engagement’ and so on.

Popularity: For a given intent, the intent popularity is defined
as the percentage of SE queries having that specific intent. It
can be observed from Table IX that the most popular intent is
Debug closely followed by HowTo, Learn and API; whereas
Installation and Navigational queries are far less popular.

Success rate: Fox et al. [27] proposed that a search is suc-
cessful if the user has a dwell time of over 30 seconds on the
clicked URL page. We build on this definition and consider a
search to be successful if the dwell time on the last clicked
URL is more than 30 seconds owing to the fact that the user
may click on multiple URLs during the search. This is based
on the assumption that the user stops looking at other websites
once they have found the information they desired.

For a given intent, the success rate is defined as the
percentage ratio of number of successful queries to the total
number of queries belonging to that intent category. It can be
observed from Table IX that HowTo queries have the highest
success rate of 51.33%, closely followed by Learn and API;
whereas Navigational queries are the least successful. The
low success rate for Navigational queries is a result of users
spending less than 30 seconds after navigating to the URL.

Effort estimation: The effort required to complete a search
is estimated to be proportional to the average dwell time for
all clicked URLs [35]. For a given intent, the estimated effort
is computed as the mean average dwell time of all queries
belonging to that intent category. This score is transformed to

Table IX: Comparison of intent metrics.

Intent Popularity Success Rate Estimated Effort

(%) (%) (Relative Scale)

API 17.74 49.68 33.99x

Debug 21.53 48.95 11.33x

HowTo 19.01 51.33 21.49x

Learn 18.46 50.19 10.05x

Installation 11.99 46.11 x

Navigational 11.27 41.58 15.82x

Fig. 3: Co-occurrence of intents within sessions.

a relative scale by representing each score as a factor of the
estimated effort for the Installation intent category.

It can be observed from Table IX that Installation has the
least estimated effort whereas intents like HowTo and API
require significantly more effort. This results from the fact
that queries with the former intent are generally specific (for
example, ‘download anaconda for windows 10’, ‘install zoom
app’) whereas the later intents have a rather elaborate course
of action with the user carrying out the steps required to
accomplish a task (for example, ‘how to filter rows based on
column values pandas dataframe’, ‘how can we ping a server’)
or trying to understand the documentation of an API (for ex-
ample, ‘dotnet core web api docker’, ‘sqlbulkcopy data table’).

Co-occurrence of intents within sessions: To better
understand the behavioural patterns of users searching for SE
queries, a session wise analysis on the temporal co-occurrence
of different intents is performed and the findings are aggre-
gated across all sessions. From Figure 3 it can be observed
that while less than 1% of Installation and Navigational
queries are followed by other intents, HowTo queries are
commonly followed by API (33%), Learn (24.5%) and Debug
(20.6%) indicating that once the user has figured out how to
complete the task at hand they are either trying to learn more
about some of the steps involved or they are trying to resolve
an issue they encountered when trying to execute the steps.
Similar co-occurrences are observed with API queries being
frequently followed by HowTo (29%), Learn (20%) and Debug
(15.7%). However, it is interesting to note that while Learn is



Fig. 4: Hourly distribution of intents.

frequently followed by API (19.8%) and HowTo (21.3%), it
is rarely followed by Debug (8%). Another interesting insight
we observed is that Installation queries are often preceded by
Debug (14%) indicating that the user’s errors were resolved
by installing missing packages. Additionally, it can be seen
that Installation is preceded by HowTo (12.9%), API (11.7%)
and Learn (11.5%) indicating that users are truly interested
in engaging with the software and hence install it.

Hourly trends: To study the variations in temporal trends
across different intents, the distribution of intents at every
given hour of the day is plotted as the ratio of queries for
a given intent to total SE queries at the given hour. From
Figure 4 it can be observed that while the distribution of
intents like Debug and Learn are roughly the same throughout
the day, the other intents distributions show interesting
patterns. HowTo and API queries show a significant dip
in volume during night time whereas Installation and
Navigational queries steadily increase throughout the day
and peak at night time. This could mean that users tend to
perform more intellectually challenging tasks like learning
about APIs or trying to figure out how to use some feature
in a software during the day and reserve the less challenging
yet potentially time consuming tasks such as downloading
and installing software tools or packages for the night time.

Device type: Web search is heavily used by a wide variety of
users across different devices like desktop, mobile, etc with
varying search usage patterns. Kamwar et al. [36] showed that
web search patterns and usage differ vastly between different
client form factors like desktop, mobile, etc. To better un-
derstand the distribution of SE query intents across desktop
and mobile users, the percentage of queries belonging to each
intent for the given device is plotted. Looking at Figure 5, it
is interesting to note that intents like Debug, HowTo, API and
Installation are far more popular in desktop clients whereas
Learn and Navigational are significantly more popular among
mobile clients.

Fig. 5: Distribution of intents across devices.

IX. DISCUSSION

There are several implications of this work. First and most
notably, the analysis of 1 million web search sessions in Sec-
tion V suggests that software engineering related queries
are less effective than other types of queries as a result of
higher rates of query reformulations, fewer clicks, and shorter
dwell time. Custom search engines may enable better search
experience for software engineers. The query taxonomy pre-
sented in Section VI serves as guidelines for the various modes
that need to be supported by search engines to improve the
search experience for software engineers.

The search data provides a pulse of what software engi-
neers are searching for and what problems they face on
a large scale. This data can be analyzed to generate insights
to help improve software products. For example, it allows us
to identify the frequent problems users face with a software
technology, it can be used to compare different software tech-
nologies based on search query properties, or can be used to
predict the satisfaction of developers with specific software
technology. All of which act as avenues for future work. This
information could also be looped back to the creators and users
of software technologies, similar to tools like Google Trends.

Lastly, the search history of individuals can be used to pro-
vide context to personal assistants such as Siri, Cortana, etc. as
well as software bots [37] to enable personalized search expe-
riences and better software tool recommendations. Integrating
context and task-aware search into software tools can be used
to improve the productivity of users. Additionally, search data
can also be used as signal for detecting the task type [38].

X. CONCLUSION

In this paper, we presented the first large scale study on web
search usage for software engineering. We demonstrated that
it is possible to distinguish software engineering related search
queries using machine learning despite the lack of labeled
data. We further performed a thorough analysis on a sample



of 1 million web search sessions comprising of roughly 4 mil-
lion search queries to better understand software engineering
related search queries and sessions. We showed that software
engineering related search queries and sessions constitutes a
significant volume, over 2.6%, of the overall web search ses-
sions. In addition, we found that software engineering related
search tasks are less effective and require more effort than
other search queries. Subsequently, we proposed a taxonomy
for various user intents, namely - API, Debug, How-to, Learn,
Installation, Navigational, and Miscellaneous, for web search
in software engineering tasks. Lastly, we conducted an exten-
sive analysis on a sample of 6 million SE queries to understand
the distribution of intents across various web search metrics
and other trend characteristics. We believe that these insights
will be helpful in improving and maintaining existing tools
and building new tools for software engineers.

REFERENCES

[1] W. Reinhardt, B. Schmidt, P. Sloep, and H. Drachsler, “Knowledge
worker roles and actionsresults of two empirical studies,” Knowledge
and Process Management, vol. 18, no. 3, pp. 150–174, 2011.

[2] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM).
IEEE, 2012, pp. 25–34.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development envi-
ronment,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2010, pp. 513–522.

[4] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Visual Languages and Human-Centric
Computing (VL/HCC’06). IEEE, 2006, pp. 195–202.

[5] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4, pp.
424–466, Aug 2012.

[6] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 3, pp. 26:1–26:45,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2581377

[7] C. Sadowski, K. T. Stolee, and S. Elbaum, “How developers search for
code: A case study,” in Proceedings of 10th Joint Meeting on Founda-
tions of Software Engineering, ser. ESEC/FSE. New York, NY, USA:
ACM, 2015, pp. 191–201.

[8] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes, “Sourcerer: a search engine for open source code support-
ing structure-based search,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications. ACM, 2006, pp. 681–682.

[9] L. Martie, A. v. d. Hoek, and T. Kwak, “Understanding the impact of
support for iteration on code search,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, 2017,
pp. 774–785.

[10] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, and Y. L.
Traon, “Facoy: a code-to-code search engine,” in Proceedings of the
40th ICSE. ACM, 2018, pp. 946–957.

[11] R. Holmes, “Do developers search for source code examples using
multiple facts?” in Proceedings of the 2009 ICSE Workshop on Search-
Driven Development-Users, Infrastructure, Tools and Evaluation. IEEE
Computer Society, 2009, pp. 13–16.

[12] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
vol. 22, 04 2017.

[13] M. M. Rahman, J. Barson, S. Paul, J. Kayani, F. A. Lois, S. F. Quezada,
C. Parnin, K. T. Stolee, and B. Ray, “Evaluating how developers use
general-purpose web-search for code retrieval,” in Proceedings of the
15th International Conference on Mining Software Repositories, ser.
MSR ’18. New York, NY, USA: ACM, 2018, pp. 465–475.

[14] K. Ong, K. Järvelin, M. Sanderson, and F. Scholer, “Using information
scent to understand mobile and desktop web search behavior,” in Pro-
ceedings of ACM SIGIR, 2017, pp. 295–304.

[15] D. Maxwell, L. Azzopardi, and Y. Moshfeghi, “A study of snippet
length and informativeness: Behaviour, performance and user experi-
ence,” 2017, pp. 135–144.

[16] D. Kelly and L. Azzopardi, “How many results per page? a study of
SERP size, search behavior and user experience,” in sigir, 2015, pp.
183–192.

[17] L. Azzopardi, D. Kelly, and K. Brennan, “How query cost affects search
behavior,” 2013, pp. 23–32.

[18] R. Mehrotra, A. Anderson, F. Diaz, A. Sharma, H. Wallach, and E. Yil-
maz, “Auditing search engines for differential satisfaction across demo-
graphics,” in Proceedings of the 26th International Conference on World
Wide Web Companion, ser. WWW ’17 Companion, 2017.

[19] A. Aula, R. M. Khan, and Z. Guan, “How does search behavior change
as search becomes more difficult?” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. ACM, 2010, pp.
35–44.

[20] Y. Kim, A. Hassan, R. W. White, and I. Zitouni, “Modeling dwell
time to predict click-level satisfaction,” in Proceedings of the 7th ACM
international conference on Web search and data mining. ACM, 2014,
pp. 193–202.

[21] A. Spink, Y. Yang, J. Jansen, P. Nykanen, D. P. Lorence, S. Ozmutlu,
and H. C. Ozmutlu, “A study of medical and health queries to web
search engines,” Health Information & Libraries Journal, vol. 21, no. 1,
pp. 44–51, 2004.

[22] G. P. Schoenherr and R. W. White, “Interactions between health
searchers and search engines,” in Proceedings of the 37th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’14, 2014.

[23] C. Bansal, P. Deligiannis, C. S. Maddila, and N. Rao, “Studying ran-
somware attacks using web search logs,” Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, 2020.

[24] N. Rao, C. Bansal, S. Mukherjee, and C. Maddila, “Product insights: An-
alyzing product intents in web search,” arXiv preprint arXiv:2005.08591,
2020.

[25] F. Hassan, C. Bansal, N. Nagappan, T. Zimmermann, and A. H. Awadal-
lah, “An empirical study of software exceptions in the field using search
logs,” arXiv preprint arXiv:2006.00385, 2020.

[26] F. Radlinski and T. Joachims, “Query chains: learning to rank from
implicit feedback,” in Proceedings of the eleventh ACM SIGKDD inter-
national conference on Knowledge discovery in data mining. ACM,
2005, pp. 239–248.

[27] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White, “Evaluating
implicit measures to improve web search,” ACM Trans. Inf. Syst., vol. 23,
no. 2, Apr. 2005.

[28] Alexa.com, “Alexa - Top Sites,” https://www.alexa.com/topsites, 2019.
[29] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy

estimation and model selection,” in Ijcai, vol. 14, no. 2. Montreal,
Canada, 1995, pp. 1137–1145.

[30] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[31] A. Broder, “A taxonomy of web search,” SIGIR Forum, vol. 36, 2002.
[32] A. Fourney, R. Mann, and M. Terry, “Characterizing the usability of

interactive applications through query log analysis,” 05 2011.
[33] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,

and H. C. Gall, “How can i improve my app? classifying user reviews
for software maintenance and evolution,” in 2015 IEEE ICSME, 2015,
pp. 281–290.

[34] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[35] Y. Xu and D. Mease, “Evaluating web search using task completion
time,” in Proceedings of the 32nd International ACM SIGIR, ser. SIGIR
09. New York, NY, USA: ACM, 2009, p. 676677.

[36] M. Kamvar and S. Baluja, “A large scale study of wireless search behav-
ior: Google mobile search,” in Proceedings of the SIGCHI conference
on Human Factors in computing systems. ACM, 2006, pp. 701–709.

[37] C. Lebeuf, M. Storey, and A. Zagalsky, “Software bots,” IEEE Software,
vol. 35, no. 1, pp. 18–23, January 2018.

[38] L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan, “Inference
of development activities from interaction with uninstrumented
applications,” Empirical Software Engineering, vol. 23, no. 3, pp.
1313–1351, Jun 2018. [Online]. Available: https://doi.org/10.1007/

s10664-017-9547-8

http://doi.acm.org/10.1145/2581377
https://www.alexa.com/topsites
https://doi.org/10.1007/s10664-017-9547-8
https://doi.org/10.1007/s10664-017-9547-8

	I Introduction
	II Related work
	II-A Web search behavior
	II-B Code search

	III Web search logs
	III-A Terminology
	III-B Scope of the study

	IV SE Query Classification
	IV-A Inferring labels
	IV-B Training data
	IV-C Model selection
	IV-D Model evaluation

	V SE Query Analysis
	V-A Data
	V-B Session-level analysis
	V-C Query-level analysis

	VI Query taxonomy
	VII Intent Classification
	VIII Intent Analysis
	IX Discussion
	X Conclusion
	References

