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Abstract—Deep learning has led to major advances in fields
like natural language processing, computer vision, and other
Euclidean data domains. Yet, many important fields have data
defined on irregular domains, requiring graphs to be explicitly
modeled. One such application is drug discovery. Recently,
research has found that using graph neural network (GNN)
models, given enough data, can perform better than using human-
engineered fingerprints or descriptors in predicting molecular
properties of potential antibiotics.

We explore these state-of-the-art AI models on predicting
desirable molecular properties for drugs that can inhibit SARS-
CoV-2. We build upon the GNN models with ideas from recent
breakthroughs in geometric deep learning, inspired by the
topologies of the molecules. In this poster paper, we present
an overview of the drug discovery framework, drug-target
interaction framework, and GNNs. Preliminary results on two
COVID-19 related datasets are encouraging, achieving a ROC-
AUC of 0.72 for FDA-approved chemical library screened against
SARS-CoV-2 in vitro.

Index Terms—Topology adaptive graph convolutional neural
networks, message passing neural networks, GNN, COVID-19,
SARS-CoV-2

I. INTRODUCTION

The scientific community has united to combat the growing
COVID-19 pandemic. At the time of writing, there are more
than 200 vaccines in development, 12 have begun large-scale
(phase 3) clinical trials, and 2 have shown to be 95% effective
(Pfizer and Moderna) [1]. Given the urgency of the situation,
vaccine development and approval has been accelerated from
the general timeline of 10-15 years [2] to potentially under
a year. Part of this acceleration is made possible due to the
development of artificial intelligence (AI).

The first stage of this process is drug discovery, whereby sci-
entists typically spend 2-5 years to identify vaccine candidates
[2]. Instead of testing most drugs in vitro in the lab, scientists
are able to leverage computational methods to screen potential
drugs in silico, saving a lot of time and physical resources, as
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there can be millions of compounds to test. In the last decade,
scientists have found machine learning models to be a good
predictor of potential drug candidates found experimentally.
More recently, it is shown that using deep learning, given
enough data, can result in superior performance for antibiotic
drug discovery [3]. For extensive reviews of AI applied to drug
discovery, see [4], [5].

The scope of this paper is on one type of deep learning
models, namely graph neural networks (GNNs), applied to
COVID-19 drug discovery. In section II, we give a cursory
summary of drug-target interaction framework and the deep
learning approach based on GNNs. Then we describe our
specific approach combining topology adaptive graph neural
networks and message-passing neural network in section III.
We present the experiments and preliminary but promising
results on two COVID-19 related datasets in sections IV and
V, respectively. Finally, we conclude in section VI.

II. BACKGROUND AND RELATED WORK

A. Drug-target Interaction Framework

Drug-target interaction (DTI) is one of the most important
steps in the drug discovery stage. It characterizes the binding
of chemical compounds to the protein targets. Among several,
drug screening and drug repurposing are two main tasks. Drug
screening identifies ligand molecules that can bind to specific
proteins, whereas drug repurposing finds new therapeutic uses
of existing and available drugs. For both tasks, deep learn-
ing has demonstrated superior performance than traditional
computational methods [6]. In addition to classic chemical
fingerprints drug encoders like Morgan and RDKit-2D, there
are many deep learning-based drug encoders that can be
categorized into autoencoder, convolutional neural networks,
recurrent neural networks, transformers, and GNNs.

B. Graph Neural Networks

Graph neural networks (GNNs) have shown promising
results for drug discovery applications [7], [8]. They are
motivated in part by convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), which have yield
significant improvements in computer vision, natural language
processing, and other Euclidean domains. Unlike CNNs and
RNNs, GNNs are able to extract features via the graph
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structure or topology, defined by its adjacency matrix. Like a
conventional CNN architecture, a GNN architecture can have
convolutional, pooling, and fully connected layers. Convo-
lutional layers extract the features from the graph. Pooling
layers reduce the dimensionality and learn the hierarchical
representations. For tasks like graph classification (including
COVID-19 drug discovery), there may be an aggregation layer
to compare graphs of different sizes. Finally, fully connected
layers perform the classification. For a more in-depth review
of GNNs, see [9].

III. METHODS

In this paper, we focus on the convolutional layer of the
GNN architecture. In this section, we describe our approach
combining two GNN convolution methods: topology adaptive
graph neural networks and message-passing neural network.

The general graph convolution approach is as follows.
Consider a graph G = (V, E), where V is a set of N vertices
defined by graph signal X(0) ∈ RN×C (C is the number of
signal dimensions) and E is defined by its adjacency matrix
A ∈ RN×N . The general form of the convolutional layer,
introduced by [10], is

X(`+1) = σ
(
ÃX(`)W(`)

)
, (1)

where Ã = A + IN , W(`) ∈ RC×F is the trainable weight
matrix, σ is the nonlinear activation function, F is the number
of output features, ` is the layer number with input layer being
` = 0. In practice, Ã is normalized to address vanishing
and exploding gradients (for nodes with very small and large
degrees, respectively). For example, using Ā = D̃−

1
2 ÃD̃−

1
2

in place of Ã, where D̃ is the degree matrix of Ã.

A. Topology Adaptive Graph Convolutional Neural Networks

The topology adaptive graph convolution network (TAGCN)
implementation of graph convolution [11] uses the polynomial
filter coefficients as learnable weights. The general form of the
TAGCN graph convolutional layer is

X(`+1) = σ
(
X(`)W

(`)
0 + AX(`)W

(`)
1 + . . .+ AKX(`)W

(`)
K

)
(2)

= σ

(
K∑
k=0

AkX(`)W
(`)
k

)
, (3)

where K is the degree of the graph polynomial filter and a
hyperparameter of the model. We can use normalized version
of A in (2), as we did in (1). Fig. 1 shows the visual
representation of polynomial filter of degree 2. TAGCN allows
learning of more complex functions with deeper models.

B. Message Passing Neural Networks

Message passing neural networks (MPNNs) are a general-
ization of GNNs, first formulated by [12]. Following the same
definition given above, we define hhhli ∈ RC be the states of
node i at t-th time step and hhh0i ∈ RC to be the initialized state
(from splitting X(0) by nodes).

Fig. 1: TAGCN Polynomial filter of degree 2 for blue node,
signals at the red nodes are propagated to the blue one and
aggregated, i.e., A2x(`)W

(`)
2 + Ax(`)W

(`)
1 + INx

(`)W
(`)
0

Fig. 2: Propagation and aggregation steps for node i.

One GNN layer can be expressed using message passing
neural network:

mmm`+1
i→j = f `α(hhh

`
i ,hhh

`
j ,Aij) (propagation) (4)

hhh`+1
j = f `β({mmm`+1

i→j |i ∈ Nj},hhh`j) (aggregation) (5)

where ` is the time step (or layer number in GNN), f `α and
f `β are parametrized function like neural network, mmm`+1

i→j is the
propagated information from node i to node j. For example, f `α
can be a MLP followed by a nonlinear activation. mmm`+1

j is the
aggregated information with Nj representing all the incoming
neighbors of node j:

mmm`+1
i =

∑
j∈Ni

mmm`+1
j→i (6)

To update the hidden state at ` + 1 for each node, we can
also use a MLP or a recurrent neural network like a GRU or
LSTM for fβ :

hhh`+1
i = fβ(mmm

`+1
i ,hhh`i) (7)

After L time steps/layers, we get the final states hhhLi and
predict the graph label using a readout function R (which can
also be MLPs):

ŷ = R({hhhLi | ∀i ∈ V}) (8)

Then apply a loss function like cross entropy loss CE(ŷ, y).
See fig. 2 for a visualization of this process.
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C. Topological adaptive message passing neural networks

Our approach is applying TAGCN to MPNN to get topology
adaptive message passing neural network. Instead of summing
just the direct neighbors in 6, we aggregate nodes up to a
degree K hops away and apply the nonlinear activation after
the summation. MPNN generalization enables us to consider
more variants such as passing messages on the nodes.

IV. EXPERIMENTS

A. Datasets

As shown in table I, we consider two COVID-19 related
datasets, with positive/negative indicating whether the sam-
ple is effective. Amu sars cov 2 in vitro dataset is a list
of FDA-approved compounds screened against SARS-CoV-
2 in vitro, and AID1706 binarized sars is a much longer
list of compounds screened against SARS-CoV in-vitro via
fluorescence. For more information and download links, see
https://www.aicures.mit.edu/data.

TABLE I: COVID-19 related datasets

Filename Negative Positive
Amu sars cov 2 in vitro 1484 88
AID1706 binarized sars 290767 446

B. Experimental Setup

In our experiments, we use the DeepPurpose DTI frame-
work from [6] and the MPNN model from [13] as baseline.
We perform 5-fold cross-validation using scaffold split and
evaluate our results using the area under the receiver oper-
ating characteristic curve (ROC-AUC). We consider several
hyperparameters such as number of layers, degree of the graph
polynomial filter, extra features (RDKit-2D), message passing
type (atoms/edges), and class weights (for class imbalance).

V. RESULTS

Figure 3 shows the preliminary results for
Amu sars cov 2 in vitro and AID1706 binarized sars
datasets. Blue and green bars represent the mean ROC-AUCs
for MPNN baseline, and MPNN with TAGCN, respectively.
Black lines represent the standard deviation. We have set
the baseline to be edge-based message passing and tried
using atom-based message passing, adding extra features
(RDKit-2D), undirected message passing, and for the smaller
dataset, optimized over all hyperparameters. In general,
GNNs yield great performance on these datasets, achieving
a ROC-AUC of 0.72 and 0.82 for Amu sars cov 2 in vitro
and AID1706 binarized sars datasets, respectively. More
results on both synthetic and real data are needed.

VI. CONCLUSION

We have presented an overview of the drug discovery
framework, drug-target interaction framework, and GNNs. We
have also introduced a novel approach combining two existing
GNN methods. Experiments suggest that GNNs can perform
well on two coronavirus datasets, and that these methods may
aid in COVID-19 drug discovery.

(a) Amu sars cov 2 results

(b) AID1706 binarized sars results

Fig. 3: Comparison of results in terms of ROC-AUC.
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