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Abstract—This paper presents a targeted, machine learning 
based solution to model the phenomenon known as the ‘cytokine 
storm,’ which is suspected to play a major role in explaining the 
highly variable severity of COVID-19 among patients. It describes 
how a Natural Language Processing (NLP) approach, augmented 
by biomedical knowledge databases, can extract pre-existing 
conditions and relevant clinical markers from Electronic Health 
Records (EHRs). These extracted variables can be modeled to 
demonstrate correlation with the severity of infection outcomes, 
the building blocks of a comprehensive risk assessment and 
stratification strategy to predict which patients have higher or 
lower risks in terms of the disease severity and likelihood of 
hospitalization, exclusively from insights taken from the natural 
language data. The model has been applied to a cohort of patients 
from a large database of real, anonymized patients and has 
displayed demonstrable results. 
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I. INTRODUCTION

A. The Cytokine Storm Phenomenon
An unresolved question of the novel coronavirus is why so

many patients are asymptomatic or have mild symptoms, while 
for others the disease intensifies drastically. COVID-19 seems 
to do much of its damage by triggering an overzealous immune 
response, as opposed to direct damage from the virus itself [1]. 
For example, severe pneumonia is often associated with rapid 
virus replication, massive inflammatory cell damage, and 
elevated proinflammatory responses culminating in acute 
respiratory distress syndrome [2]. This condition is called the 
“cytokine storm,” named after the elevated levels of immune 
system proteins, called cytokines, in the blood of COVID-19’s 
sickest patients. It is also called Cytokine Release Syndrome 
(CRS). In CRS, an overstimulated immune system results in the 
body starting to attack its own cells and tissues, rather than just 
fighting off the virus [3]. Research into CRS from COVID-19, 
including who it affects and why, is absolutely critical in order 
for clinicians, administrators, and policymakers to make 
informed decisions to handle the COVID-19 crisis. 

B. The Role of Big Data in Medical Research
The World Economic Forum anticipates that 463 exabytes

of data will be created each day by the year 2025 [4]. The current 

volume of all electronic data doubles every two years [5]. This 
skyrocketing volume of data is disproportionately true in 
healthcare, at least for the next five years. According to an 
International Data Corporation report, healthcare is expected to 
be the highest data growth business sector, with a compound 
annual growth rate of 36% through 2025 [6]. Working with big 
data is increasingly critical for organizations involved in 
healthcare, medicine, and pharmaceuticals. 

Especially for a public health event of this scale, there is a 
wealth of data available on patients. However, much of the data 
is in free format unstructured text and are therefore mostly 
opaque and uninterpretable [6]. In clinical practice, a plethora of 
this data exists within Electronic Health Records, or EHRs. This 
paper attempts to demystify this data by developing a 
methodology using Natural Language Processing techniques to 
examine COVID-19 and the cytokine storm. 

II. RELATED WORK

A previously published effort presents an approach to model 
COVID-19, utilizing patient data from related diseases, 
combining clinical understanding with artificial intelligence 
modeling [7]. This paper takes a similar approach to the data, 
but ultimately only lays out a methodology in lieu of actual 
completed experiments and results. In addition, it focuses on the 
disease as a whole, as opposed to taking an in-depth look at high-
severity cases, including CRS [7]. This prior work establishes a 
valuable data science methodology, but is nonetheless lacking 
implementation and analysis, having an entirely different 
research focus from this current paper. 

Another work seeks to forecast the onset and outcomes of a 
“second wave” of COVID-19, utilizing patient data from related 
diseases, marrying clinical data with artificial intelligence [8]. 
This paper used influenza as a proxy for modeling COVID-19, 
instead of directly engaging with clinical research regarding 
COVID-19 [8]. Thus, their modeling and conclusions cannot be 
considered specific to this disease, and this current paper goes 
far beyond their system’s capabilities as a result. 

III. METHODOLOGY

A. A Big Data Analytics Approach
This section presents a computational approach to analyzing

COVID-19 related CRS based on a meta-analysis of existing 
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medical research. The vision here lies in synthesizing big data 
analytics and machine learning with a virtual Clinical Semantic 
Network (vCSN). Big data and machine learning do best with 
analyzing massive volumes of data. On the other hand, having a 
knowledge network can grant real insight into how various 
medical topics are related. 

The general outline for this approach is straightforward. 
First, generate a list of biomarkers and other clinical terms that 
help describe CRS and related phenomena. Afterwards, acquire 
a database of real patients. Then, build a cohort around the 
variables to isolate patients of interest via NLP algorithms. From 
the cohort, as a pre-processing phase, use vCSN to extract 
clinically-significant information from the raw text. Finally, 
apply statistical methods and machine learning to model the 
phenomenon. 

B. Biomarkers for COVID-19 and the Cytokine Storm 
In order to proceed with an NLP and data analytics centric 

approach to describing COVID-19 CRS, the first step is to 
come up with a list of terms related to COVID-19 and CRS.  

A number of these terms are derived from a University of 
Chicago paper [9]. They found severe COVID-19 was 
associated with impaired T cell responses, showing that key 
immune cells were being underused. This was backed up by 
low levels of certain expected interferons, which are specific 
signaling proteins in the immune system [9]. Additionally, 
some patients in their sample suffered acute respiratory distress 
syndrome (ARDS), reflecting overzealous cytokine production 
and excessive inflammation, the hallmarks of CRS [9]. 

Specific medical observations for the cytokine storm in 
COVID-19 were published by a University of Paris team [1], 
helping the software specifically distinguish high-severity 
cases from more normal immune responses. They note striking 
downregulation of interferon-stimulated genes in critical 
patients compared to mild-to-moderate patients, showing that 
patients who fared worse may have had weaker immune 
responses in the earliest stages of the disease [1]. 

C. Biological Aging & Lifestyle Factors 

The most vulnerable groups for severe COVID-19 outcomes 
are often the elderly, so some variables specifically focusing on 
the disease in this patient cohort were sought out. COVID-19 
infection shows increased levels of plasma proinflammatory 
mediators, including IL1-β, IL1RA, and IL8 [10]. MCP1, 
MIP1α, and TNFα were isolated as being among mediators 
marking disease severity [10]. 

In order to get a more nuanced look into the role of aging in 
COVID-19, additional variables are still needed. After all, 
chronological aging and “biological aging” are not quite the 
same thing: as an extreme example, a 50-year-old with sustained 
healthy diet and exercise habits may well be better protected 
from infection than a 30-year-old morbidly obese smoker [11]. 
Smoking is a particular area of focus, because, of course, 
COVID-19 is primarily a respiratory disease, and as so, 
smoking-related terms were collected [12]. Markers of 
biological aging were found in yet another paper. These terms 

included obesity, diabetes, cholesterol, triglycerides, creatine, 
etc. [11], as well as the formula in Fig 1. 

 
Fig. 1. Nakamura’s biological aging index formula. SBP = systolic blood 
pressure, FEV1 = forced expiratory volume, Ht = height, HCT = hematocrit, 
ALBU = albumin, BUN = blood urea nitrogen [11] 

IV. IMPLEMENTATION 

A. Training Data 
The data was acquired from a health system organization 

serving the eastern United States. The database includes 97,500 
individual patients and their full medical records. For reasons of 
privacy and regulation, all patient records were fully de-
identified and anonymized. The dataset is all-encompassing, 
including extensive doctors’ notes (a vital source of data for our 
NLP apparatus), immunization records, etc. It is important to 
stress that this is not a COVID-19 database, presenting 
additional challenges for the team to work through. 

B. The Virtual Clinical Semantic Network (vCSN) 
In the context of healthcare research, NLP has significant 

limitations worth addressing. Sample text is often 
ungrammatical, filled with bullet points and sentence fragments. 
Moreover, these corpora make heavy use of acronyms and 
abbreviations, which are a massive challenge for any 
computational approach to address. In addition, clinical notes 
often contain terms or phrases that have more than one meaning. 
For example, the abbreviation MD can be interpreted as the 
credential for “Doctor of Medicine” or as an abbreviation for 
“major depression” [13]. 

One such solution is the standardization of medical language 
such as the Unified Medical Language System (UMLS), a 
platform that brings together many standards and thesauruses to 
enable interoperability between computer systems [14]. The 
UMLS metathesaurus is a repository of over 100 biomedical 
vocabularies, including CPT®, ICD-10-CM, LOINC®, 
MeSH®, RxNorm, and SNOMED CT®. Terms across 
vocabularies are grouped together based on concepts, allowing 
users to account for the huge variations in language and 
expressions. Each concept has a specific tag and numerical code. 

The Clinical Semantic Network (CSN) has established 
relationships among various clinical concepts, encapsulated 
using a tree structure [7]. The CSN tree structure allows users 
not only to know exactly how a concept is related to another 
concept, but also how closely two concepts are related.  

The vCSN converts this rich and complex data structure into 
a virtual model. This requires us to build a machine-learning 
based probabilistic model of all these concepts [7]. We have 
applied NLP techniques to model these concepts in terms of how 
closely they are mapped with respect to the description text. We 
then used machine learning techniques. More specifically, it 
comprises of a convolutional neural network (CNN) with 
transfer learning, to learn how these concepts are mapped (“CSN 
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Number”) and how these are related (“pathway”). The overall 
process is shown in Fig 2. 

 
Fig. 2. The relationship between CSN and vCSN 

V. RESULTS 

A. Exploratory Queries 
Provided the variables collected from our extensive research 

on COVID-19, the cytokine storm, and biological aging factors, 
the next step was seeing how frequently the terms appeared in 
the database. For each term unearthed, the program combed 
through the ‘Encounter’ and ‘Encounter Notes’ sections from 
the patient data, returning independent hits, all via Stanford’s 
CoreNLP tool. Thus, the output counts do not represent unique 
individual patients. In total, 97 terms were used.  

For the sake of organization, querying was conducted in 
multiple batches. The first set of variables were regarding 
immune cells. The second set centered around inflammatory 
pathways. The third set of variables was associated with 
interferons, specific signaling proteins key to immune response. 
A fourth set consisted of terms related to the cytokine storm that 
did not fit in the first three categories. A fifth set of variables 
were markers for biological aging, including terms associated 
with smoking. Excluding the aging terms, the query emerged 
with the counts for results in Table I. 

TABLE I.  INITIAL QUERY OUTPUT AND ENCOUNTERS 

 Encounter 
Metadata 

Encounter 
Notes 

Total Hits 16,415 164,801 
Unique Patients 206 2,637 

 

B. Cohort Generation & Tagging 
The next step was to construct a cohort of patients to focus 

on. In order to be selected for the cohort, an encounter had to 
either include a certain number of terms, or include rarer but 

cytokine-specific variables in its place. The overall size of the 
combined cohort was 421 unique patients, comprising 1,570 
unique encounters. From the “Visit_Info” subheading alone, this 
meant 11,666 columns, 14,135,301 characters, 2,011,758 
individual words, and 14.1 MB of raw textual data. 

Afterwards, this text data was processed through vCSN, 
generating a wealth of CSN tags. Known clinical terms were 
pulled out, identified, and placed into a tree of disease pathways, 
showing relationships between various conditions. In addition to 
the main CSN data silo, there were two databases available 
within vCSN to tag against: ‘Findings’ and ‘Diseases’, each with 
their own internal relationships. All data was tagged three times, 
marked with respect to “CSN,” “Findings,” and “Diseases,” 
resulting in three slightly-different interpretations. See Table II 
for details. 

TABLE II.  FINDINGS AND DISEASE TAGGING RESULTS 

 Findings Diseases 
Named Entities 
Recognized (NERs) 21,875 19,795 

CSN Phrases 113,594 53,483 
CSN Medical Words 112,254 72,358 
CSN NERs in 
Medical Words 1,731 509 

Phrases 177,109 177,119 
Medical Words 128,159 128,165 
NERs in Medical 
Words 8,066 8,067 

 

C. Cohort Data Processing, Phase I 

This is the post-processing phase to clean the tagging 
outputs. One issue was the inclusion of multiple redundant tags 
for a singular disease. In order to solve this, we developed a 
simple anti-redundancy algorithm. The vCSN representation 
can be reduced down to a tree structure. From there, the system 
does a depth-first search of the entire graph. Each node is hashed 
by title and CSN number. When encountering a new node, if the 
CSN number or titles are repeated from a prior node, the system 
merges the two together. The merge function preserves multiple 
pathways to/from the combined node, maintaining all variant 
CSN numbers for the same phenomena. 

As an example to illustrate what these tags actually mean, 
two visualizations of the CSN tagging for rheumatoid arthritis 
are presented below, before the redundancy reduction (Fig 3) 
and after (Fig 4). Note that Fig 3 has five identical copies of 
rheumatoid arthritis, in lavender, whereas they all converge to 
one in Fig 4. These figures are just screenshots from the full html 
output, which are fully interactive in 3D. 
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Fig. 3. 3D graph of CSN classification of rheumatoid arthritis, raw output 

 

 
Fig. 4. 3D graph of CSN classification of rheumatoid arthritis, after running anti-redundancy algorithm 
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D. Cohort Data Extraction, Phases II, III, & IV 
 Though vCSN breaks down the natural language samples 
from the cohort into digestible components, the output here is 
still mostly in the form of English words. This is a fundamental 
aspect of the technology. In order to make the inputs more 
comprehensible for a computer, the system performed patient-
by-patient iteration through the “visit_info” section, getting a 
count for each of the 97 terms originally used to construct the 
cohort per patient, using the tagging data. These tags were 
cleaned using the above anti-redundancy algorithm. This 
became the input for a machine learning algorithm to generate 
insights into the comparative interactions between these terms. 

Two other numerical approaches to breaking down the data 
were also explored. In the first, a more straightforward approach, 
the team generated a localized count of the 97 terms straight 
from the “visit_info” section instead of from the CSN tags. This 
is a more targeted approach than looking through the myriad 
sections of patient data. As this data had a narrower focus, 
omitting entire sections from the sample space, the speed of the 
program improved dramatically. And finally, one can always 
work directly with all the tags in the dataset instead of fishing 
for specific terms in the tagging data. These two alternative 
outputs were then condensed into a single joint distribution for 
further analysis.  

F. Machine Learning 
In order to better understand and stratify within the patient 

cohort, the next step was to find an appropriate clustering 
algorithm. One of the most commonly used technique is k-
means [15], which clusters the data into multiple subcategories 
based on a variety of factors. However, as k-means relies on 
vector quantization, it is fundamentally incompatible with 
categorical data, requiring numerical data instead. Though the 
numerical  previous section represented a step towards full 
quantization of the dataset, they are ultimately still categorical.  

A solution to this was to create a heuristic to convert these 
categorical outputs into something simpler. This was built 
directly from the tagging outputs. The indices constructed from 
the 97 original terms were condensed down based on a 
simplified version of the query batch structure from section 5.1. 
That is to say, given tags for 1) immune cells and interferons, 2) 
inflammation and cytokine storm, and 3) biological age and 
smoking, within each subcategory all hits were tallied together, 
and then used to create a tri-variate coordinate system for the 
data. All patients in the cohort were plotted on the “immune,” 
“inflammation,” and “aging” axes. This is finally valid input for 
the k-means clustering algorithm. 

Now that the data was transformed into a format that k-
means would be able to interpret, there was nothing left to do 
but train the algorithm. This was done with Sci-Kit Learn, a free 
machine learning library developed for the Python language 
[16]. The goal was to write a program to divide the patient cohort 
into multiple clusters. Unfortunately, as the size of the cohort 
was 421 patients and 10 clusters were found in three dimensions, 
it is difficult to visualize these results in a figure in any 
meaningful way. 

 A few groups seemed to be clustered together for little 
discernible real-world reason. However, four of the groups (sub-

cohorts) had obvious overlaps when looking over both the 
extracted quantized data outputs and the patient record texts 
themselves. 285 patients appear to have exhibited severe flu-like 
symptoms for nonsmokers with inflammation, postulated to be 
the cytokine storm. 15 patients showed severe respiratory 
symptoms, this time with history of smoking. 107 patients were 
bound together by common metabolic problems, including 
cardiovascular issues and diabetes. Finally, 23 patients that were 
highly divergent from the other clusters, mostly outliers on the 
“aging” axis of the coordinate system, had bodily injury and/or 
accidents. These extraneous results likely result from the aging 
terms, as “body ache” was one of a few common threads among 
those final 23 patients. 

G. Statistical Methods & Final Visualizations  
Though the machine learning model produced some highly 

encouraging results, a drawback of the system as described is 
that the outputs and clusters are difficult to represent visually. In 
order to gain a more intuitive understanding of the patients in 
cohort and the biomarkers that are used to define them, 
alternative methods are required. Thus, statistical methods may 
be a fruitful area to examine. 

The correlations of terms from the hybridized approach, 
condensing tagging outputs and “visit_info” direct searches 
together, are illustrated in Fig 5, a tri-surface plot correlation 
matrix. The most prominent feature on this graph are the two 
large spikes on the left-hand side, which represent, from left to 
right, the correlations of diabetes/blood pressure and between 
triglycerides/cholesterol. 

 
Fig. 5. Plot of correlations from CSN/Diseases/Findings tagging metadata  

The combined distribution of both is also plotted in Fig 6, 
which is a correlation plotting heatmap. A few hotspots to note 
in Fig 6: fever/viral load, monocytes/viral load, loss of 
taste/smell, smoking/blood pressure, shortness of breath/ 
smoking, interferons/viral load, viral load/shortness of breath, 
and viral load/cholesterol. These derived relationships line up 
neatly with existing clinical observations. For example, the 
effects of smoking on blood pressure and respiration have been 
well-documented in medical science for decades. Similarly, it 
makes sense that immunology-specific terms like monocytes 
and interferons both lined up with viral load, as these concepts 
are highly interconnected. This demonstrates that the concept of 
data extraction, despite all these layers of abstraction, are still 
grounded in and correctly reflective of their real-world 
counterparts. 
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Fig. 6. Heatmap of hybridized dataset correlation
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VI. DISCUSSION 
By and large, our results are highly encouraging. This paper 

successfully demonstrates a big data analytics approach to 
healthcare. More specifically, we demonstrate that by using 
Natural Language Processing (NLP) techniques in concert with 
a virtual Clinical Semantic Network, it is possible to gather 
extensive data about the cytokine storm and COVID-19 in 
general exclusively from the raw text data extracted from patient 
health records.  

This project began from scouring medical journals, coming 
up with a list of 97 clinically-significant terms relating to 
COVID-19, the cytokine storm, and factors of biological aging. 
Using these terms, computational means were used to 
successfully isolate a cohort of 421 unique patients from among 
97,500 overall in the EHR database. This output was put through 
the virtual Clinical Semantic Network, the Disease silo, and the 
Findings silo, resulting in three different sets of clinical 
knowledge mark-ups. Some of these were converted into 
numerical outputs, being used to construct a rudimentary 
clustering schema via k-means. The rest were used to create 
correlation maps, showing that related terms did in fact appear 
together with stunning regularity. This indicates that this method 
of data-gathering from unstructured sources, particularly for the 
cytokine storm, is a viable avenue for the clinical research 
community to pursue. 

During the course of this project, a common difficulty was 
in interpreting the meaning of a vCSN tagging. For this reason, 
the 3D force-directed graphs were developed, to visualize these 
complex branching relationships.  

Both the Findings and Disease silo results have very sparse 
counts for any tags that line up nicely with those 97 terms. Note 
that out of 97 query terms, only 18 even overlapped at all (Fig 
6). The majority of the cytokine storm-specific terminology 
were never found to coincide with another clinical term, leaving 
a subset behind which is more general. That is why in Fig 5, the 
largest spikes are for non-COVID related terms that will always 
be highly interconnected, such as triglycerides and cholesterol. 
This is expected behavior, since none of these patients actually 
were COVID-19 patients. No clinical semantic network should 
even consider including specific items like gene expressions, 
hundreds of different signaling proteins, etc. There was a real 
mismatch between the tagging approach and the querying 
approach, one which worked off each other’s strengths 
complementarity in some regards, but for more sparse fields, 
made it more difficult to glean useful insights from the data. 

 A related concern is that the most frequently-measured terms 
are normally tied to more common standard measurements in 
clinical examinations (for example, systolic blood pressure, 
temperature, fever are all part of the essential and routinely 
recorded “patient vitals”). Again, this is a fully expected 
behavior. In order to counteract this, an additional post-
processing step before constructing the machine learning model 
may be of benefit, forward selection [17]. This will allow the 
computer to create a hierarchy of the relative significance of 
each term, simplifying the model generation. 

VII. FUTURE WORK 
The work in this paper outlines a methodology for 

conducting an NLP- and big data-based analysis of unstructured 
text from Electronic Medical Records to assess the prognosis of 
a given patient for COVID-19, specifically analyzing severe 
cases and the cytokine storm that causes them. The limitation of 
lacking a database with specific COVID-19 patients does not 
undermine the usefulness of developing this procedure.  

 In fact, all that is needed to develop a better model is a more 
current database. The team is currently in the process of gaining 
access to a new dataset, populated extensively with COVID-19 
patients. Future efforts will build off of the currently established 
data-processing pipeline. Within the next few months, as the 
data and human capital becomes available, the team will attempt 
to reuse this methodology with the new dataset, hopefully 
resulting in a model with greater predictive power, as opposed 
to mere descriptive abilities. 

VIII. CONCLUSION 

 This paper presents a machine learning based modeling 
solution to analyze the relationships of specific pre-existing 
conditions and clinical data markers in understanding the 
phenomenon of cytokine storm as it relates to COVID-19 
patients. During the construction of this model, the research 
team still did not have access to COVID-19 patient data, so we 
applied the solution to a carefully chosen cohort of patients 
from an existing dataset of patients. The initial results are 
extremely promising and demonstrate that it is possible to 
generate correlation of clinical markers and pre-existing 
conditions to a risk stratification of severity of COVID-19 
patients, especially for the severest patients experiencing the 
cytokine storm. Currently we are in the process of being given 
access to real COVID-19 patients through a research study on 
patients from four nursing homes. As a next step on this 
research, the team looks forward to applying these models on 
these patients’ data and reporting detailed results soon.  
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